1
|
Viegas J. Profile of Bik-Kwoon Tye. Proc Natl Acad Sci U S A 2025; 122:e2500916122. [PMID: 39908099 DOI: 10.1073/pnas.2500916122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
|
2
|
Tye BK. Four decades of Eukaryotic DNA replication: From yeast genetics to high-resolution cryo-EM structures of the replisome. Proc Natl Acad Sci U S A 2024; 121:e2415231121. [PMID: 39365830 PMCID: PMC11494305 DOI: 10.1073/pnas.2415231121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
I had my eyes set on DNA replication research when I took my first molecular biology course in graduate school. My election to the National Academy of Sciences came just when I was retiring from active research. It gives me an opportunity to reflect on my personal journey in eukaryotic DNA replication research, which started as a thought experiment and culminated in witnessing the determination of the cryoelectron microscopic structure of the yeast replisome in the act of transferring histone-encoded epigenetic information at the replication fork. I would like to dedicate this inaugural article to my talented trainees and valuable collaborators in gratitude for the joy they gave me in this journey. I also want to thank my mentors who instilled in me the purpose of science. I hope junior scientists will not be disheartened by the marathon nature of research, but mindful enough to integrate and pause for other equally fun and meaningful activities of life into the marathon.
Collapse
Affiliation(s)
- Bik-Kwoon Tye
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
3
|
Redhu AK, Bhat JP. Mitochondrial glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase abrogate p53 induced apoptosis in a yeast model: Possible implications for apoptosis resistance in cancer cells. Biochim Biophys Acta Gen Subj 2019; 1864:129504. [PMID: 31862471 DOI: 10.1016/j.bbagen.2019.129504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/22/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Escape from apoptosis is an important hallmark of tumor progression and drug resistance in cancer cells. It is well demonstrated that over-expression of human wtp53 in Saccharomyces cerevisiae induces apoptosis by directly targeting the mitochondria. In this study, we showed that how S.cerevisiae escaped from p53 induced apoptosis in the presence of a fermentable carbon source (sucrose), but not on non-fermentable carbon source (glycerol). METHODS Mitochondrial fractions from yeast cultures grown in the presence of sucrose or glycerol with and without p53 expression were fractionated and analyzed by LC-MS/MS. Differentially expressed proteins were studied and detailed biochemical analysis for selected proteins was performed.The effect of mitochondrial HXK-2 over-expression induced by p53 in sucrose grown cells on cell survival was evaluated using gene deletion/tagging, co-localisation and mitochondrial ROS detection. RESULTS We observe that mitochondria isolated from p53 over-expressing cells accumulate Pentose phosphate Pathway (PPP) enzymes including glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) which led to enhanced mitochondrial NADPH production only when cells are cultured in sucrose but not glycerol. In contrast, mitochondria isolated from Δhxk2 p53 over-expressing cells grown in sucrose did not accumulate G6PDH and 6PGDH and resulted in defective growth. CONCLUSIONS Enhanced association of HXK2 with the mitochondria with the concomitant accumulation of G6PDG and 6PGDH results in increased NADPH that scavenges ROS and provides resistance to apoptosis. GENERAL SIGNIFICANCE Given the extensive similarity of aerobic glycolysis between humans and yeast, the phenomena described here could as well be responsible for the escape of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Archana Kumari Redhu
- Laboratory of Molecular Genetics, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| | - Jayadeva Paike Bhat
- Laboratory of Molecular Genetics, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
4
|
Fermentative metabolism impedes p53-dependent apoptosis in a Crabtree-positive but not in Crabtree-negative yeast. J Biosci 2017; 42:585-601. [DOI: 10.1007/s12038-017-9717-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Bai G, Smolka MB, Schimenti JC. Chronic DNA Replication Stress Reduces Replicative Lifespan of Cells by TRP53-Dependent, microRNA-Assisted MCM2-7 Downregulation. PLoS Genet 2016; 12:e1005787. [PMID: 26765334 PMCID: PMC4713100 DOI: 10.1371/journal.pgen.1005787] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022] Open
Abstract
Circumstances that compromise efficient DNA replication, such as disruptions to replication fork progression, cause a state known as DNA replication stress (RS). Whereas normally proliferating cells experience low levels of RS, excessive RS from intrinsic or extrinsic sources can trigger cell cycle arrest and senescence. Here, we report that a key driver of RS-induced senescence is active downregulation of the Minichromosome Maintenance 2–7 (MCM2-7) factors that are essential for replication origin licensing and which constitute the replicative helicase core. Proliferating cells produce high levels of MCM2-7 that enable formation of dormant origins that can be activated in response to acute, experimentally-induced RS. However, little is known about how physiological RS levels impact MCM2-7 regulation. We found that chronic exposure of primary mouse embryonic fibroblasts (MEFs) to either genetically-encoded or environmentally-induced RS triggered gradual MCM2-7 repression, followed by inhibition of replication and senescence that could be accelerated by MCM hemizygosity. The MCM2-7 reduction in response to RS is TRP53-dependent, and involves a group of Trp53-dependent miRNAs, including the miR-34 family, that repress MCM expression in replication-stressed cells before they undergo terminal cell cycle arrest. miR-34 ablation partially rescued MCM2-7 downregulation and genomic instability in mice with endogenous RS. Together, these data demonstrate that active MCM2-7 repression is a physiologically important mechanism for RS-induced cell cycle arrest and genome maintenance on an organismal level. Duplication of the genome by DNA replication is essential for cell proliferation. DNA replication is initiated from many sites (“origins”) along chromosomes that are bound by replication licensing proteins, including MCM2-7. They are also core components of the replication helicase complex that unwinds double stranded DNA to expose single stranded DNA that is the template for DNA polymerase. Eukaryotic DNA replication machinery faces many challenges to duplicate the complex and massive genome. Circumstances that inhibit progression of the replication machinery cause “replication stress” (RS). Cells can counteract RS by utilizing “dormant” or “backup” origins. Abundant MCM2-7 expression sufficiently licenses dormant origins, but reducing MCMs compromises cellular responses to RS. We show that MCM2-7 expression is downregulated in cells experiencing chronic RS, and this depends on the TRP53 tumor suppressor and microRNAs it regulates. Extended RS eventually reduces MCMs to a point that terminal cell cycle arrest occurs. We propose that this mechanism is a crucial protection against neoplasia.
Collapse
Affiliation(s)
- Gongshi Bai
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
| | - John C. Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Mcm2-7 Is an Active Player in the DNA Replication Checkpoint Signaling Cascade via Proposed Modulation of Its DNA Gate. Mol Cell Biol 2015; 35:2131-43. [PMID: 25870112 DOI: 10.1128/mcb.01357-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/05/2015] [Indexed: 01/01/2023] Open
Abstract
The DNA replication checkpoint (DRC) monitors and responds to stalled replication forks to prevent genomic instability. How core replication factors integrate into this phosphorylation cascade is incompletely understood. Here, through analysis of a unique mcm allele targeting a specific ATPase active site (mcm2DENQ), we show that the Mcm2-7 replicative helicase has a novel DRC function as part of the signal transduction cascade. This allele exhibits normal downstream mediator (Mrc1) phosphorylation, implying DRC sensor kinase activation. However, the mutant also exhibits defective effector kinase (Rad53) activation and classic DRC phenotypes. Our previous in vitro analysis showed that the mcm2DENQ mutation prevents a specific conformational change in the Mcm2-7 hexamer. We infer that this conformational change is required for its DRC role and propose that it allosterically facilitates Rad53 activation to ensure a replication-specific checkpoint response.
Collapse
|
7
|
New insight into cancer aneuploidy in zebrafish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:149-70. [PMID: 25619717 DOI: 10.1016/bs.ircmb.2014.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aneuploidy is one of the most common genetic alterations in cancer cell genomes. It greatly contributes to the heterogeneity of cancer cell genomes, and its roles in tumorigenesis are attracting more and more attentions. Zebrafish is emerging as a new genetic model for many human diseases including cancer. The zebrafish cancer model has shown an equivalent degree of aneuploidy as found in corresponding human cancers, thus it provides a great tool for us to study cancer aneuploidy and, in general, cancer biology. Here, we discuss some new advances of aneuploidy and the potential usages of this cancer model system.
Collapse
|
8
|
Bochman ML. Roles of DNA helicases in the maintenance of genome integrity. Mol Cell Oncol 2014; 1:e963429. [PMID: 27308340 PMCID: PMC4905024 DOI: 10.4161/23723548.2014.963429] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/25/2014] [Accepted: 09/01/2014] [Indexed: 11/19/2022]
Abstract
Genome integrity is achieved and maintained by the sum of all of the processes in the cell that ensure the faithful duplication and repair of DNA, as well as its genetic transmission from one cell division to the next. As central players in virtually all of the DNA transactions that occur in vivo, DNA helicases (molecular motors that unwind double-stranded DNA to produce single-stranded substrates) represent a crucial enzyme family that is necessary for genomic stability. Indeed, mutations in many human helicase genes are linked to a variety of diseases with symptoms that can be generally described as genomic instability, such as predispositions to cancers. This review focuses on the roles of both DNA replication helicases and recombination/repair helicases in maintaining genome integrity and provides a brief overview of the diseases related to defects in these enzymes.
Collapse
Affiliation(s)
- Matthew L Bochman
- Molecular and Cellular Biochemistry Department; Indiana University ; Bloomington, IN USA
| |
Collapse
|
9
|
Bagley BN, Keane TM, Maklakova VI, Marshall JG, Lester RA, Cancel MM, Paulsen AR, Bendzick LE, Been RA, Kogan SC, Cormier RT, Kendziorski C, Adams DJ, Collier LS. A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis. PLoS Genet 2012; 8:e1003034. [PMID: 23133403 PMCID: PMC3486839 DOI: 10.1371/journal.pgen.1003034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 08/29/2012] [Indexed: 12/22/2022] Open
Abstract
Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H)). MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H) to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.
Collapse
Affiliation(s)
- Bruce N. Bagley
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Thomas M. Keane
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Vilena I. Maklakova
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Jonathon G. Marshall
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Rachael A. Lester
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Michelle M. Cancel
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Alex R. Paulsen
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Laura E. Bendzick
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Raha A. Been
- Department of Genetics, Cell Biology, and Development, Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Scott C. Kogan
- Department of Laboratory Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Robert T. Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Lara S. Collier
- School of Pharmacy and UW Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Comparative oncogenomics implicates the neurofibromin 1 gene (NF1) as a breast cancer driver. Genetics 2012; 192:385-96. [PMID: 22851646 DOI: 10.1534/genetics.112.142802] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations.
Collapse
|
11
|
Genome rearrangements caused by depletion of essential DNA replication proteins in Saccharomyces cerevisiae. Genetics 2012; 192:147-60. [PMID: 22673806 DOI: 10.1534/genetics.112.141051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic screens of the collection of ~4500 deletion mutants in Saccharomyces cerevisiae have identified the cohort of nonessential genes that promote maintenance of genome integrity. Here we probe the role of essential genes needed for genome stability. To this end, we screened 217 tetracycline-regulated promoter alleles of essential genes and identified 47 genes whose depletion results in spontaneous DNA damage. We further showed that 92 of these 217 essential genes have a role in suppressing chromosome rearrangements. We identified a core set of 15 genes involved in DNA replication that are critical in preventing both spontaneous DNA damage and genome rearrangements. Mapping, classification, and analysis of rearrangement breakpoints indicated that yeast fragile sites, Ty retrotransposons, tRNA genes, early origins of replication, and replication termination sites are common features at breakpoints when essential replication genes that suppress chromosome rearrangements are downregulated. We propose mechanisms by which depletion of essential replication proteins can lead to double-stranded DNA breaks near these features, which are subsequently repaired by homologous recombination at repeated elements.
Collapse
|
12
|
Hughes CR, Guasti L, Meimaridou E, Chuang CH, Schimenti JC, King PJ, Costigan C, Clark AJL, Metherell LA. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest 2012; 122:814-20. [PMID: 22354170 DOI: 10.1172/jci60224] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/04/2012] [Indexed: 11/17/2022] Open
Abstract
An interesting variant of familial glucocorticoid deficiency (FGD), an autosomal recessive form of adrenal failure, exists in a genetically isolated Irish population. In addition to hypocortisolemia, affected children show signs of growth failure, increased chromosomal breakage, and NK cell deficiency. Targeted exome sequencing in 8 patients identified a variant (c.71-1insG) in minichromosome maintenance-deficient 4 (MCM4) that was predicted to result in a severely truncated protein (p.Pro24ArgfsX4). Western blotting of patient samples revealed that the major 96-kDa isoform present in unaffected human controls was absent, while the presence of the minor 85-kDa isoform was preserved. Interestingly, histological studies with Mcm4-depleted mice showed grossly abnormal adrenal morphology that was characterized by non-steroidogenic GATA4- and Gli1-positive cells within the steroidogenic cortex, which reduced the number of steroidogenic cells in the zona fasciculata of the adrenal cortex. Since MCM4 is one part of a MCM2-7 complex recently confirmed as the replicative helicase essential for normal DNA replication and genome stability in all eukaryotes, it is possible that our patients may have an increased risk of neoplastic change. In summary, we have identified what we believe to be the first human mutation in MCM4 and have shown that it is associated with adrenal insufficiency, short stature, and NK cell deficiency.
Collapse
Affiliation(s)
- Claire R Hughes
- Queen Mary University of London, Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London,, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chuang CH, Yang D, Bai G, Freeland A, Pruitt SC, Schimenti JC. Post-transcriptional homeostasis and regulation of MCM2-7 in mammalian cells. Nucleic Acids Res 2012; 40:4914-24. [PMID: 22362746 PMCID: PMC3367205 DOI: 10.1093/nar/gks176] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The MiniChromosome Maintenance 2-7 (MCM2-7) complex provides essential replicative helicase function. Insufficient MCMs impair the cell cycle and cause genomic instability (GIN), leading to cancer and developmental defects in mice. Remarkably, depletion or mutation of one Mcm can decrease all Mcm levels. Here, we use mice and cells bearing a GIN-causing hypomophic allele of Mcm4 (Chaos3), in conjunction with disruption alleles of other Mcms, to reveal two new mechanisms that regulate MCM protein levels and pre-RC formation. First, the Mcm4Chaos3 allele, which disrupts MCM4:MCM6 interaction, triggers a Dicer1 and Drosha-dependent ∼40% reduction in Mcm2–7 mRNAs. The decreases in Mcm mRNAs coincide with up-regulation of the miR-34 family of microRNAs, which is known to be Trp53-regulated and target Mcms. Second, MCM3 acts as a negative regulator of the MCM2–7 helicase in vivo by complexing with MCM5 in a manner dependent upon a nuclear-export signal-like domain, blocking the recruitment of MCMs onto chromatin. Therefore, the stoichiometry of MCM components and their localization is controlled post-transcriptionally at both the mRNA and protein levels. Alterations to these pathways cause significant defects in cell growth reflected by disease phenotypes in mice.
Collapse
Affiliation(s)
- Chen-Hua Chuang
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
14
|
Blow JJ, Ge XQ, Jackson DA. How dormant origins promote complete genome replication. Trends Biochem Sci 2011; 36:405-14. [PMID: 21641805 PMCID: PMC3329722 DOI: 10.1016/j.tibs.2011.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/26/2011] [Accepted: 05/04/2011] [Indexed: 01/21/2023]
Abstract
Many replication origins that are licensed by loading MCM2-7 complexes in G1 are not normally used. Activation of these dormant origins during S phase provides a first line of defence for the genome if replication is inhibited. When replication forks fail, dormant origins are activated within regions of the genome currently engaged in replication. At the same time, DNA damage-response kinases activated by the stalled forks preferentially suppress the assembly of new replication factories, thereby ensuring that chromosomal regions experiencing replicative stress complete synthesis before new regions of the genome are replicated. Mice expressing reduced levels of MCM2-7 have fewer dormant origins, are cancer-prone and are genetically unstable, demonstrating the importance of dormant origins for preserving genome integrity. We review the function of dormant origins, the molecular mechanism of their regulation and their physiological implications.
Collapse
Affiliation(s)
- J Julian Blow
- Wellcome Trust Centre for Gene Regulation & Expression, University of Dundee Dow Street, Dundee DD1 5EH, UK.
| | | | | |
Collapse
|
15
|
Jung PP, Fritsch ES, Blugeon C, Souciet JL, Potier S, Lemoine S, Schacherer J, de Montigny J. Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae. BMC Genomics 2011; 12:331. [PMID: 21711526 PMCID: PMC3157476 DOI: 10.1186/1471-2164-12-331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/28/2011] [Indexed: 01/04/2023] Open
Abstract
Background Gross chromosomal rearrangements (GCRs) such as aneuploidy are key factors in genome evolution as well as being common features of human cancer. Their role in tumour initiation and progression has not yet been completely elucidated and the effects of additional chromosomes in cancer cells are still unknown. Most previous studies in which Saccharomyces cerevisiae has been used as a model for cancer cells have been carried out in the haploid context. To obtain new insights on the role of ploidy, the cellular effects of GCRs were compared between the haploid and diploid contexts. Results A total number of 21 haploid and diploid S. cerevisiae strains carrying various types of GCRs (aneuploidies, nonreciprocal translocations, segmental duplications and deletions) were studied with a view to determining the effects of ploidy on the cellular responses. Differences in colony and cell morphology as well as in the growth rates were observed between mutant and parental strains. These results suggest that cells are impaired physiologically in both contexts. We also investigated the variation in genomic expression in all the mutants. We observed that gene expression was significantly altered. The data obtained here clearly show that genes involved in energy metabolism, especially in the tricarboxylic acid cycle, are up-regulated in all these mutants. However, the genes involved in the composition of the ribosome or in RNA processing are down-regulated in diploids but up-regulated in haploids. Over-expression of genes involved in the regulation of the proteasome was found to occur only in haploid mutants. Conclusion The present comparisons between the cellular responses of strains carrying GCRs in different ploidy contexts bring to light two main findings. First, GCRs induce a general stress response in all studied mutants, regardless of their ploidy. Secondly, the ploidy context plays a crucial role in maintaining the stoichiometric balance of the proteins: the translation rates decrease in diploid strains, whereas the excess protein synthesized is degraded in haploids by proteasome activity.
Collapse
Affiliation(s)
- Paul P Jung
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, CNRS, UMR, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, Botchan MR, Shima N. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 2011; 41:543-53. [PMID: 21362550 PMCID: PMC3062258 DOI: 10.1016/j.molcel.2011.02.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/24/2010] [Accepted: 12/21/2010] [Indexed: 01/25/2023]
Abstract
Eukaryotic cells license far more origins than are actually used for DNA replication, thereby generating a large number of dormant origins. Accumulating evidence suggests that such origins play a role in chromosome stability and tumor suppression, though the underlying mechanism is largely unknown. Here, we show that a loss of dormant origins results in an increased number of stalled replication forks, even in unchallenged S phase in primary mouse fibroblasts derived from embryos homozygous for the Mcm4(Chaos3) allele. We found that this allele reduces the stability of the MCM2-7 complex, but confers normal helicase activity in vitro. Despite the activation of multiple fork recovery pathways, replication intermediates in these cells persist into M phase, increasing the number of abnormal anaphase cells with lagging chromosomes and/or acentric fragments. These findings suggest that dormant origins constitute a major pathway for stalled fork recovery, contributing to faithful chromosome segregation and tumor suppression.
Collapse
Affiliation(s)
- Tsuyoshi Kawabata
- Department of Genetics, Cell Biology and Development, University of Minnesota
- Masonic Cancer Center, Minneapolis, MN 55455 USA
| | - Spencer W. Luebben
- Department of Genetics, Cell Biology and Development, University of Minnesota
| | - Satoru Yamaguchi
- Department of Genetics, Cell Biology and Development, University of Minnesota
- Masonic Cancer Center, Minneapolis, MN 55455 USA
| | - Ivar Ilves
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Ilze Matise
- Masonic Cancer Center, Minneapolis, MN 55455 USA
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - Tavanna Buske
- Department of Genetics, Cell Biology and Development, University of Minnesota
| | - Michael R. Botchan
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, University of Minnesota
- Masonic Cancer Center, Minneapolis, MN 55455 USA
| |
Collapse
|
17
|
Abstract
This study reports an unusual ploidy-specific response to replication stress presented by a defective minichromosome maintenance (MCM) helicase allele in yeast. The corresponding mouse allele, Mcm4(Chaos3), predisposes mice to mammary gland tumors. While mcm4(Chaos3) causes replication stress in both haploid and diploid yeast, only diploid mutants exhibit G2/M delay, severe genetic instability (GIN), and reduced viability. These different outcomes are associated with distinct repair pathways adopted in haploid and diploid mutants. Haploid mutants use the Rad6-dependent pathways that resume stalled forks, whereas the diploid mutants use the Rad52- and MRX-dependent pathways that repair double strand breaks. The repair pathway choice is irreversible and not regulated by the availability of repair enzymes. This ploidy effect is independent of mating type heterozygosity and not further enhanced by increasing ploidy. In summary, a defective MCM helicase causes GIN only in particular cell types. In response to replication stress, early events associated with ploidy dictate the repair pathway choice. This study uncovers a fundamental difference between haplophase and diplophase in the maintenance of genome integrity.
Collapse
|
18
|
Chuang CH, Wallace MD, Abratte C, Southard T, Schimenti JC. Incremental genetic perturbations to MCM2-7 expression and subcellular distribution reveal exquisite sensitivity of mice to DNA replication stress. PLoS Genet 2010; 6:e1001110. [PMID: 20838603 PMCID: PMC2936539 DOI: 10.1371/journal.pgen.1001110] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/03/2010] [Indexed: 12/31/2022] Open
Abstract
Mutations causing replication stress can lead to genomic instability (GIN). In vitro studies have shown that drastic depletion of the MCM2-7 DNA replication licensing factors, which form the replicative helicase, can cause GIN and cell proliferation defects that are exacerbated under conditions of replication stress. To explore the effects of incrementally attenuated replication licensing in whole animals, we generated and analyzed the phenotypes of mice that were hemizygous for Mcm2, 3, 4, 6, and 7 null alleles, combinations thereof, and also in conjunction with the hypomorphic Mcm4(Chaos3) cancer susceptibility allele. Mcm4(Chaos3/Chaos3) embryonic fibroblasts have ∼40% reduction in all MCM proteins, coincident with reduced Mcm2-7 mRNA. Further genetic reductions of Mcm2, 6, or 7 in this background caused various phenotypes including synthetic lethality, growth retardation, decreased cellular proliferation, GIN, and early onset cancer. Remarkably, heterozygosity for Mcm3 rescued many of these defects. Consistent with a role in MCM nuclear export possessed by the yeast Mcm3 ortholog, the phenotypic rescues correlated with increased chromatin-bound MCMs, and also higher levels of nuclear MCM2 during S phase. The genetic, molecular and phenotypic data demonstrate that relatively minor quantitative alterations of MCM expression, homeostasis or subcellular distribution can have diverse and serious consequences upon development and confer cancer susceptibility. The results support the notion that the normally high levels of MCMs in cells are needed not only for activating the basal set of replication origins, but also "backup" origins that are recruited in times of replication stress to ensure complete replication of the genome.
Collapse
Affiliation(s)
- Chen-Hua Chuang
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
| | - Marsha D. Wallace
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
| | - Christian Abratte
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
| | - Teresa Southard
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
| | - John C. Schimenti
- Department of Biomedical Sciences and Center for Vertebrate Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Aneuploid chromosomes are highly unstable during DNA transformation of Candida albicans. EUKARYOTIC CELL 2009; 8:1554-66. [PMID: 19700634 DOI: 10.1128/ec.00209-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans strains tolerate aneuploidy, historically detected as karyotype alterations by pulsed-field gel electrophoresis and more recently revealed by array comparative genome hybridization, which provides a comprehensive and detailed description of gene copy number. Here, we first retrospectively analyzed 411 expression array experiments to predict the frequency of aneuploidy in different strains. As expected, significant levels of aneuploidy were seen in strains exposed to stress conditions, including UV light and/or sorbose treatment, as well as in strains that are resistant to antifungal drugs. More surprisingly, strains that underwent transformation with DNA displayed the highest frequency of chromosome copy number changes, with strains that were initially aneuploid exhibiting approximately 3-fold more copy number changes than strains that were initially diploid. We then prospectively analyzed the effect of lithium acetate (LiOAc) transformation protocols on the stability of trisomic chromosomes. Consistent with the retrospective analysis, the proportion of karyotype changes was highly elevated in strains carrying aneuploid chromosomes. We then tested the hypothesis that stresses conferred by heat and/or LiOAc exposure promote chromosome number changes during DNA transformation procedures. Indeed, a short pulse of very high temperature caused frequent gains and losses of multiple chromosomes or chromosome segments. Furthermore, milder heat exposure over longer periods caused increased levels of loss of heterozygosity. Nonetheless, aneuploid chromosomes were also unstable when strains were transformed by electroporation, which does not include a heat shock step. Thus, aneuploid strains are particularly prone to undergo changes in chromosome number during the stresses of DNA transformation protocols.
Collapse
|