1
|
Castellano G, Bonnet Da Silva J, Pietropaolo S. The role of gene-environment interactions in social dysfunction: Focus on preclinical evidence from mouse studies. Neuropharmacology 2024; 261:110179. [PMID: 39369849 DOI: 10.1016/j.neuropharm.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Human and animal research has demonstrated that genetic and environmental factors can strongly modulate behavioral function, including the expression of social behaviors and their dysfunctionalities. Several genes have been linked to pathologies characterized by alterations in social behaviors, e.g., aggressive/antisocial personality disorder (ASPD), or autism spectrum disorder (ASD). Environmental stimulation (e.g., physical exercise, environmental enrichment) or adversity (e.g., chronic stress, social isolation) may respectively improve or impair social interactions. While the independent contribution of genetic and environmental factors to social behaviors has been assessed in a variety of human and animal studies, the impact of their interactive effects on social functions has been less extensively investigated. Genetic mutations and environmental changes can indeed influence each other through complex mutual effects, e.g., inducing synergistic, antagonistic or interactive behavioral outcomes. This complexity is difficult to be disentangled in human populations, thus encouraging studies in animal models, especially in the mouse species which is the most suitable for genetic manipulations. Here we review the available preclinical evidence on the impact of gene-environment interactions on social behaviors and their dysfunction, focusing on studies in laboratory mice. We included findings combining naturally occurring mutations, selectively bred or transgenic mice with multiple environmental manipulations, including positive (environmental enrichment, physical exercise) and aversive (social isolation, maternal separation, and stress) experiences. The impact of these results is critically discussed in terms of their generalizability across mouse models and social tests, as well as their implications for human studies on social dysfunction.
Collapse
Affiliation(s)
- Giulia Castellano
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | | |
Collapse
|
2
|
Bläsius K, Ludwig L, Knapp S, Flaßhove C, Sonnabend F, Keller D, Tacken N, Gao X, Kahveci-Türköz S, Grannemann C, Babendreyer A, Adrain C, Huth S, Baron JM, Ludwig A, Düsterhöft S. Pathological mutations reveal the key role of the cytosolic iRhom2 N-terminus for phosphorylation-independent 14-3-3 interaction and ADAM17 binding, stability, and activity. Cell Mol Life Sci 2024; 81:102. [PMID: 38409522 PMCID: PMC10896983 DOI: 10.1007/s00018-024-05132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.
Collapse
Affiliation(s)
- Katharina Bläsius
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Lena Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Sarah Knapp
- Institute of Biochemistry and Molecular Biology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Charlotte Flaßhove
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Friederike Sonnabend
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Diandra Keller
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Nikola Tacken
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Xintong Gao
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Selcan Kahveci-Türköz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Caroline Grannemann
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Colin Adrain
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, Northern Ireland
| | - Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Schmitz D, Li Z, Lo Faro V, Rask-Andersen M, Ameur A, Rafati N, Johansson Å. Copy number variations and their effect on the plasma proteome. Genetics 2023; 225:iyad179. [PMID: 37793096 PMCID: PMC10697815 DOI: 10.1093/genetics/iyad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
Structural variations, including copy number variations (CNVs), affect around 20 million bases in the human genome and are common causes of rare conditions. CNVs are rarely investigated in complex disease research because most CNVs are not targeted on the genotyping arrays or the reference panels for genetic imputation. In this study, we characterize CNVs in a Swedish cohort (N = 1,021) using short-read whole-genome sequencing (WGS) and use long-read WGS for validation in a subcohort (N = 15), and explore their effect on 438 plasma proteins. We detected 184,182 polymorphic CNVs and identified 15 CNVs to be associated with 16 proteins (P < 8.22×10-10). Of these, 5 CNVs could be perfectly validated using long-read sequencing, including a CNV which was associated with measurements of the osteoclast-associated immunoglobulin-like receptor (OSCAR) and located upstream of OSCAR, a gene important for bone health. Two other CNVs were identified to be clusters of many short repetitive elements and another represented a complex rearrangement including an inversion. Our findings provide insights into the structure of common CNVs and their effects on the plasma proteome, and highlights the importance of investigating common CNVs, also in relation to complex diseases.
Collapse
Affiliation(s)
- Daniel Schmitz
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Zhiwei Li
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Valeria Lo Faro
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| | - Nima Rafati
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, 751 08 Uppsala, Sweden
| |
Collapse
|
4
|
Cording KR, Bateup HS. Altered motor learning and coordination in mouse models of autism spectrum disorder. Front Cell Neurosci 2023; 17:1270489. [PMID: 38026686 PMCID: PMC10663323 DOI: 10.3389/fncel.2023.1270489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with increasing prevalence. Over 1,000 risk genes have now been implicated in ASD, suggesting diverse etiology. However, the diagnostic criteria for the disorder still comprise two major behavioral domains - deficits in social communication and interaction, and the presence of restricted and repetitive patterns of behavior (RRBs). The RRBs associated with ASD include both stereotyped repetitive movements and other motor manifestations including changes in gait, balance, coordination, and motor skill learning. In recent years, the striatum, the primary input center of the basal ganglia, has been implicated in these ASD-associated motor behaviors, due to the striatum's role in action selection, motor learning, and habit formation. Numerous mouse models with mutations in ASD risk genes have been developed and shown to have alterations in ASD-relevant behaviors. One commonly used assay, the accelerating rotarod, allows for assessment of both basic motor coordination and motor skill learning. In this corticostriatal-dependent task, mice walk on a rotating rod that gradually increases in speed. In the extended version of this task, mice engage striatal-dependent learning mechanisms to optimize their motor routine and stay on the rod for longer periods. This review summarizes the findings of studies examining rotarod performance across a range of ASD mouse models, and the resulting implications for the involvement of striatal circuits in ASD-related motor behaviors. While performance in this task is not uniform across mouse models, there is a cohort of models that show increased rotarod performance. A growing number of studies suggest that this increased propensity to learn a fixed motor routine may reflect a common enhancement of corticostriatal drive across a subset of mice with mutations in ASD-risk genes.
Collapse
Affiliation(s)
- Katherine R. Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Helen S. Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
5
|
Di-Battista A, Favilla BP, Zamariolli M, Nunes N, Defelicibus A, Armelin-Correa L, da Silva IT, Reymond A, Moyses-Oliveira M, Melaragno MI. Premature ovarian insufficiency is associated with global alterations in the regulatory landscape and gene expression in balanced X-autosome translocations. Epigenetics Chromatin 2023; 16:19. [PMID: 37202802 DOI: 10.1186/s13072-023-00493-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Patients with balanced X-autosome translocations and premature ovarian insufficiency (POI) constitute an interesting paradigm to study the effect of chromosome repositioning. Their breakpoints are clustered within cytobands Xq13-Xq21, 80% of them in Xq21, and usually, no gene disruption can be associated with POI phenotype. As deletions within Xq21 do not cause POI, and since different breakpoints and translocations with different autosomes lead to this same gonadal phenotype, a "position effect" is hypothesized as a possible mechanism underlying POI pathogenesis. OBJECTIVE AND METHODS To study the effect of the balanced X-autosome translocations that result in POI, we fine-mapped the breakpoints in six patients with POI and balanced X-autosome translocations and addressed gene expression and chromatin accessibility changes in four of them. RESULTS We observed differential expression in 85 coding genes, associated with protein regulation, multicellular regulation, integrin signaling, and immune response pathways, and 120 differential peaks for the three interrogated histone marks, most of which were mapped in high-activity chromatin state regions. The integrative analysis between transcriptome and chromatin data pointed to 12 peaks mapped less than 2 Mb from 11 differentially expressed genes in genomic regions not related to the patients' chromosomal rearrangement, suggesting that translocations have broad effects on the chromatin structure. CONCLUSION Since a wide impact on gene regulation was observed in patients, our results observed in this study support the hypothesis of position effect as a pathogenic mechanism for premature ovarian insufficiency associated with X-autosome translocations. This work emphasizes the relevance of chromatin changes in structural variation, since it advances our knowledge of the impact of perturbations in the regulatory landscape within interphase nuclei, resulting in the position effect pathogenicity.
Collapse
Affiliation(s)
- Adriana Di-Battista
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bianca Pereira Favilla
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil
| | - Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil
| | - Natália Nunes
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil
| | - Alexandre Defelicibus
- Laboratory of Bioinformatics and Computational Biology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Lucia Armelin-Correa
- Department of Biological Sciences, Universidade Federal São Paulo, Diadema, Brazil
| | - Israel Tojal da Silva
- Laboratory of Bioinformatics and Computational Biology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Mariana Moyses-Oliveira
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil
- Sleep Institute, Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, 04023-900, Brazil.
| |
Collapse
|
6
|
Hijazi H, Reis LM, Pehlivan D, Bernstein JA, Muriello M, Syverson E, Bonner D, Estiar MA, Gan-Or Z, Rouleau GA, Lyulcheva E, Greenhalgh L, Tessarech M, Colin E, Guichet A, Bonneau D, van Jaarsveld RH, Lachmeijer AMA, Ruaud L, Levy J, Tabet AC, Ploski R, Rydzanicz M, Kępczyński Ł, Połatyńska K, Li Y, Fatih JM, Marafi D, Rosenfeld JA, Coban-Akdemir Z, Bi W, Gibbs RA, Hobson GM, Hunter JV, Carvalho CMB, Posey JE, Semina EV, Lupski JR. TCEAL1 loss-of-function results in an X-linked dominant neurodevelopmental syndrome and drives the neurological disease trait in Xq22.2 deletions. Am J Hum Genet 2022; 109:2270-2282. [PMID: 36368327 PMCID: PMC9748253 DOI: 10.1016/j.ajhg.2022.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.2 genes (BEX3, RAB40A, TCEAL4, TCEAL3, TCEAL1, and MORF4L2) associate with an early-onset neurological disease trait (EONDT) consisting of hypotonia, intellectual disability, neurobehavioral abnormalities, and dysmorphic facial features. None of the genes within the SRO have been associated with monogenic disease in OMIM. Through local and international collaborations facilitated by GeneMatcher and Matchmaker Exchange, we have identified and herein report seven de novo variants involving TCEAL1 in seven unrelated families: three hemizygous truncating alleles; one hemizygous missense allele; one heterozygous TCEAL1 full gene deletion; one heterozygous contiguous deletion of TCEAL1, TCEAL3, and TCEAL4; and one heterozygous frameshift variant allele. Variants were identified through exome or genome sequencing with trio analysis or through chromosomal microarray. Comparison with previously reported Xq22 deletions encompassing TCEAL1 identified a more-defined syndrome consisting of hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features include strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. An additional maternally inherited hemizygous missense allele of uncertain significance was identified in a male with hypertonia and spasticity without syndromic features. These data provide evidence that TCEAL1 loss of function causes a neurological rare disease trait involving significant neurological impairment with features overlapping the EONDT phenotype in females with the Xq22 deletion.
Collapse
Affiliation(s)
- Hadia Hijazi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Michael Muriello
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - Erin Syverson
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - Devon Bonner
- Department of Pediatrics, Division of Medical Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Mehrdad A Estiar
- Department of Human Genetics, McGill University, Montreal, QC, Canada; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, QC, Canada; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montreal, QC, Canada; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada; Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| | - Ekaterina Lyulcheva
- Liverpool Centre for Genomic Medicine, Liverpool Women's Hospital, Liverpool, UK
| | - Lynn Greenhalgh
- Liverpool Centre for Genomic Medicine, Liverpool Women's Hospital, Liverpool, UK
| | - Marine Tessarech
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015-INSERM 1083, University of Angers, Angers, France
| | - Estelle Colin
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015-INSERM 1083, University of Angers, Angers, France
| | - Agnès Guichet
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015-INSERM 1083, University of Angers, Angers, France
| | - Dominique Bonneau
- Department of Medical Genetics, Angers University Hospital, Angers, France; Mitovasc Unit, UMR CNRS 6015-INSERM 1083, University of Angers, Angers, France
| | - R H van Jaarsveld
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A M A Lachmeijer
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lyse Ruaud
- INSERM UMR1141, Neurodiderot, University of Paris, 75019 Paris, France; APHP.Nord, Robert Debré University Hospital, Department of Genetics, 75019 Paris, France
| | - Jonathan Levy
- APHP.Nord, Robert Debré University Hospital, Department of Genetics, 75019 Paris, France
| | - Anne-Claude Tabet
- APHP.Nord, Robert Debré University Hospital, Department of Genetics, 75019 Paris, France
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Łukasz Kępczyński
- Department of Genetics, Polish Mother's Memorial Hospital - Research Institute, Łódź, Poland
| | - Katarzyna Połatyńska
- Department of Developmental Neurology an Epileptology, Polish Mother's Memorial Hospital - Research Institute, Łódź, Poland
| | - Yidan Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Grace M Hobson
- Department of Research, Nemours Children's Health, Wilmington, DE, USA
| | - Jill V Hunter
- E.B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA; Departments of Ophthalmology and Visual Sciences and Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
7
|
Du H, Jolly A, Grochowski CM, Yuan B, Dawood M, Jhangiani SN, Li H, Muzny D, Fatih JM, Coban-Akdemir Z, Carlin ME, Scheuerle AE, Witzl K, Posey JE, Pendleton M, Harrington E, Juul S, Hastings PJ, Bi W, Gibbs RA, Sedlazeck FJ, Lupski JR, Carvalho CMB, Liu P. The multiple de novo copy number variant (MdnCNV) phenomenon presents with peri-zygotic DNA mutational signatures and multilocus pathogenic variation. Genome Med 2022; 14:122. [PMID: 36303224 PMCID: PMC9609164 DOI: 10.1186/s13073-022-01123-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The multiple de novo copy number variant (MdnCNV) phenotype is described by having four or more constitutional de novo CNVs (dnCNVs) arising independently throughout the human genome within one generation. It is a rare peri-zygotic mutational event, previously reported to be seen once in every 12,000 individuals referred for genome-wide chromosomal microarray analysis due to congenital abnormalities. These rare families provide a unique opportunity to understand the genetic factors of peri-zygotic genome instability and the impact of dnCNV on human diseases. METHODS Chromosomal microarray analysis (CMA), array-based comparative genomic hybridization, short- and long-read genome sequencing (GS) were performed on the newly identified MdnCNV family to identify de novo mutations including dnCNVs, de novo single-nucleotide variants (dnSNVs), and indels. Short-read GS was performed on four previously published MdnCNV families for dnSNV analysis. Trio-based rare variant analysis was performed on the newly identified individual and four previously published MdnCNV families to identify potential genetic etiologies contributing to the peri-zygotic genomic instability. Lin semantic similarity scores informed quantitative human phenotype ontology analysis on three MdnCNV families to identify gene(s) driving or contributing to the clinical phenotype. RESULTS In the newly identified MdnCNV case, we revealed eight de novo tandem duplications, each ~ 1 Mb, with microhomology at 6/8 breakpoint junctions. Enrichment of de novo single-nucleotide variants (SNV; 6/79) and de novo indels (1/12) was found within 4 Mb of the dnCNV genomic regions. An elevated post-zygotic SNV mutation rate was observed in MdnCNV families. Maternal rare variant analyses identified three genes in distinct families that may contribute to the MdnCNV phenomenon. Phenotype analysis suggests that gene(s) within dnCNV regions contribute to the observed proband phenotype in 3/3 cases. CNVs in two cases, a contiguous gene duplication encompassing PMP22 and RAI1 and another duplication affecting NSD1 and SMARCC2, contribute to the clinically observed phenotypic manifestations. CONCLUSIONS Characteristic features of dnCNVs reported here are consistent with a microhomology-mediated break-induced replication (MMBIR)-driven mechanism during the peri-zygotic period. Maternal genetic variants in DNA repair genes potentially contribute to peri-zygotic genomic instability. Variable phenotypic features were observed across a cohort of three MdnCNV probands, and computational quantitative phenotyping revealed that two out of three had evidence for the contribution of more than one genetic locus to the proband's phenotype supporting the hypothesis of de novo multilocus pathogenic variation (MPV) in those families.
Collapse
Affiliation(s)
- Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christopher M Grochowski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Baylor Genetics Laboratory, Houston, TX, 77021, USA
- Seattle Children's Hospital, Seattle, WA, 98105, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - He Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mary Esther Carlin
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Angela E Scheuerle
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Division of Genetics Diagnostics, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Karin Witzl
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | | | | - Sissel Juul
- Oxford Nanopore Technologies Inc, New York, NY, 10013, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, BCM, Houston, TX, 77030, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Baylor Genetics Laboratory, Houston, TX, 77021, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fritz J Sedlazeck
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Texas Children's Hospital, Houston, TX, 77030, USA.
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA, 98122, USA.
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Baylor Genetics Laboratory, Houston, TX, 77021, USA.
| |
Collapse
|
8
|
Garg P, Jadhav B, Lee W, Rodriguez OL, Martin-Trujillo A, Sharp AJ. A phenome-wide association study identifies effects of copy-number variation of VNTRs and multicopy genes on multiple human traits. Am J Hum Genet 2022; 109:1065-1076. [PMID: 35609568 PMCID: PMC9247821 DOI: 10.1016/j.ajhg.2022.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/28/2022] [Indexed: 01/04/2023] Open
Abstract
The human genome contains tens of thousands of large tandem repeats and hundreds of genes that show common and highly variable copy-number changes. Due to their large size and repetitive nature, these variable number tandem repeats (VNTRs) and multicopy genes are generally recalcitrant to standard genotyping approaches and, as a result, this class of variation is poorly characterized. However, several recent studies have demonstrated that copy-number variation of VNTRs can modify local gene expression, epigenetics, and human traits, indicating that many have a functional role. Here, using read depth from whole-genome sequencing to profile copy number, we report results of a phenome-wide association study (PheWAS) of VNTRs and multicopy genes in a discovery cohort of ∼35,000 samples, identifying 32 traits associated with copy number of 38 VNTRs and multicopy genes at 1% FDR. We replicated many of these signals in an independent cohort and observed that VNTRs showing trait associations were significantly enriched for expression QTLs with nearby genes, providing strong support for our results. Fine-mapping studies indicated that in the majority (∼90%) of cases, the VNTRs and multicopy genes we identified represent the causal variants underlying the observed associations. Furthermore, several lie in regions where prior SNV-based GWASs have failed to identify any significant associations with these traits. Our study indicates that copy number of VNTRs and multicopy genes contributes to diverse human traits and suggests that complex structural variants potentially explain some of the so-called "missing heritability" of SNV-based GWASs.
Collapse
Affiliation(s)
- Paras Garg
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Bharati Jadhav
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - William Lee
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Oscar L Rodriguez
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Alejandro Martin-Trujillo
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount, Hess Center for Science and Medicine, 1470 Madison Avenue, Room 8-116, Box 1498, New York, NY 10029, USA.
| |
Collapse
|
9
|
Lupski JR. Biology in balance: human diploid genome integrity, gene dosage, and genomic medicine. Trends Genet 2022; 38:554-571. [PMID: 35450748 PMCID: PMC9222541 DOI: 10.1016/j.tig.2022.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/01/2023]
Abstract
The path to completion of the functional annotation of the haploid human genome reference build, exploration of the clan genomics hypothesis, understanding human gene and genome functional biology, and gene genome and organismal evolution, is in reach.
Collapse
Affiliation(s)
- James R Lupski
- Genetics & Genomics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Cokyaman T, Silan F. Diagnostic Utility of Array Comparative Genomic Hybridization in Children with Neurological Diseases. Fetal Pediatr Pathol 2022; 41:68-76. [PMID: 32401632 DOI: 10.1080/15513815.2020.1764683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION We evaluated the contribution of array comparative genomic hybridization (aCGH) to the final diagnosis in children with neurocognitive disturbances or dysmorphic findings, but lacked a specific diagnosis. MATERIALS AND METHODS Medical files of pediatric patients with neurocognitive disturbances who underwent aCGH analysis were reviewed retrospectively. RESULTS Of 155 patients, 77 copy number variations were detected and 50% (39/77) were considered causative. The aCGH's final diagnostic rate was 25.1% (39/155). CONCLUSION With aCGH analysis, the diagnosis rate for patients with undiagnosed neurocognitive disturbances or dysmorphic syndrome may increase by 25-30%. If the phenotypic findings of the widely known neurocognitive disturbances cannot be identified during the initial clinical assessment, aCGH analysis may be beneficial.
Collapse
Affiliation(s)
- Turgay Cokyaman
- Pediatric Neurology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Fatma Silan
- Medical Genetics, Faculty of Medicine, Çanakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
11
|
Saridakis E. The genetic informational network: how DNA conveys semantic information. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:112. [PMID: 34734317 DOI: 10.1007/s40656-021-00470-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The question of whether "genetic information" is a merely causal factor in development or can be made sense of semantically, in a way analogous to a language or other type of representation, has generated a long debate in the philosophy of biology. It is intimately connected with another intense debate, concerning the limits of genetic determinism. In this paper I argue that widespread attempts to draw analogies between genetic information and information contained in books, blueprints or computer programs, are fundamentally inadequate. In development, gene exons are the central part of an intricate and densely ramified semantic Genetic Informational Network. DNA in the entire genome is in a state of continuous positive and negative feedback with itself and with its 'environment', and is 'read' and acted upon by the cell in various alternative and complementary ways. The linear combinatorial coding relation between codons and amino acids is but one aspect of semantic genetic information, which is, when considered in its entirety, a far wider and richer concept.
Collapse
Affiliation(s)
- Emmanuel Saridakis
- Laboratory of Structural and Supramolecular Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "DEMOKRITOS", 15310, Athens, Greece.
| |
Collapse
|
12
|
Nakamura M, Ye K, E Silva MB, Yamauchi T, Hoeppner DJ, Fayyazuddin A, Kang G, Yuda EA, Nagashima M, Enomoto S, Hiramoto T, Sharp R, Kaneko I, Tajinda K, Adachi M, Mihara T, Tokuno S, Geyer MA, Broin PÓ, Matsumoto M, Hiroi N. Computational identification of variables in neonatal vocalizations predictive for postpubertal social behaviors in a mouse model of 16p11.2 deletion. Mol Psychiatry 2021; 26:6578-6588. [PMID: 33859357 PMCID: PMC8517042 DOI: 10.1038/s41380-021-01089-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Autism spectrum disorder (ASD) is often signaled by atypical cries during infancy. Copy number variants (CNVs) provide genetically identifiable cases of ASD, but how early atypical cries predict a later onset of ASD among CNV carriers is not understood in humans. Genetic mouse models of CNVs have provided a reliable tool to experimentally isolate the impact of CNVs and identify early predictors for later abnormalities in behaviors relevant to ASD. However, many technical issues have confounded the phenotypic characterization of such mouse models, including systematically biased genetic backgrounds and weak or absent behavioral phenotypes. To address these issues, we developed a coisogenic mouse model of human proximal 16p11.2 hemizygous deletion and applied computational approaches to identify hidden variables within neonatal vocalizations that have predictive power for postpubertal dimensions relevant to ASD. After variables of neonatal vocalizations were selected by least absolute shrinkage and selection operator (Lasso), random forest, and Markov model, regression models were constructed to predict postpubertal dimensions relevant to ASD. While the average scores of many standard behavioral assays designed to model dimensions did not differentiate a model of 16p11.2 hemizygous deletion and wild-type littermates, specific call types and call sequences of neonatal vocalizations predicted individual variability of postpubertal reciprocal social interaction and olfactory responses to a social cue in a genotype-specific manner. Deep-phenotyping and computational analyses identified hidden variables within neonatal social communication that are predictive of postpubertal behaviors.
Collapse
Affiliation(s)
- Mitsuteru Nakamura
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kenny Ye
- Department of Epidemiology and Health Science, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariel Barbachan E Silva
- School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Takahira Yamauchi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Daniel J Hoeppner
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Amir Fayyazuddin
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Gina Kang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Emi A Yuda
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Masako Nagashima
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shingo Enomoto
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Takeshi Hiramoto
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Richard Sharp
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Itaru Kaneko
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Katsunori Tajinda
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Megumi Adachi
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
| | - Takuma Mihara
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Shinichi Tokuno
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Graduate School of Health Innovation, Kanagawa University of Human Services, Kawasaki-shi, Kanagawa, Japan
| | - Mark A Geyer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Pilib Ó Broin
- School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Mitsuyuki Matsumoto
- La Jolla Laboratory, Astellas Research Institute of America LLC, San Diego, CA, USA
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | - Noboru Hiroi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Cell Systems Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
13
|
Small ML. On Mobilization. PERSONAL NETWORKS 2021:573-595. [DOI: 10.1017/9781108878296.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Sokpor G, Xie Y, Nguyen HP, Tuoc T. Emerging Role of m 6 A Methylome in Brain Development: Implications for Neurological Disorders and Potential Treatment. Front Cell Dev Biol 2021; 9:656849. [PMID: 34095121 PMCID: PMC8170044 DOI: 10.3389/fcell.2021.656849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Dynamic modification of RNA affords proximal regulation of gene expression triggered by non-genomic or environmental changes. One such epitranscriptomic alteration in RNA metabolism is the installation of a methyl group on adenosine [N6-methyladenosine (m6A)] known to be the most prevalent modified state of messenger RNA (mRNA) in the mammalian cell. The methylation machinery responsible for the dynamic deposition and recognition of m6A on mRNA is composed of subunits that play specific roles, including reading, writing, and erasing of m6A marks on mRNA to influence gene expression. As a result, peculiar cellular perturbations have been linked to dysregulation of components of the mRNA methylation machinery or its cofactors. It is increasingly clear that neural tissues/cells, especially in the brain, make the most of m6A modification in maintaining normal morphology and function. Neurons in particular display dynamic distribution of m6A marks during development and in adulthood. Interestingly, such dynamic m6A patterns are responsive to external cues and experience. Specific disturbances in the neural m6A landscape lead to anomalous phenotypes, including aberrant stem/progenitor cell proliferation and differentiation, defective cell fate choices, and abnormal synaptogenesis. Such m6A-linked neural perturbations may singularly or together have implications for syndromic or non-syndromic neurological diseases, given that most RNAs in the brain are enriched with m6A tags. Here, we review the current perspectives on the m6A machinery and function, its role in brain development and possible association with brain disorders, and the prospects of applying the clustered regularly interspaced short palindromic repeats (CRISPR)–dCas13b system to obviate m6A-related neurological anomalies.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Yuanbin Xie
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Huu P Nguyen
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
15
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic regulation by m 6A RNA methylation in brain development and diseases. J Cereb Blood Flow Metab 2020; 40:2331-2349. [PMID: 32967524 PMCID: PMC7820693 DOI: 10.1177/0271678x20960033] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Cellular RNAs are pervasively tagged with diverse chemical moieties, collectively called epitranscriptomic modifications. The methylation of adenosine at N6 position generates N6-methyladenosine (m6A), which is the most abundant and reversible epitranscriptomic modification in mammals. The m6A signaling is mediated by a dedicated set of proteins comprised of writers, erasers, and readers. Contrary to the activation-repression binary view of gene regulation, emerging evidence suggests that the m6A methylation controls multiple aspects of mRNA metabolism, such as splicing, export, stability, translation, and degradation, culminating in the fine-tuning of gene expression. Brain shows the highest abundance of m6A methylation in the body, which is developmentally altered. Within the brain, m6A methylation is biased toward neuronal transcripts and sensitive to neuronal activity. In a healthy brain, m6A maintains several developmental and physiological processes such as neurogenesis, axonal growth, synaptic plasticity, circadian rhythm, cognitive function, and stress response. The m6A imbalance contributes to the pathogenesis of acute and chronic CNS insults, brain cancer, and neuropsychiatric disorders. This review discussed the molecular mechanisms of m6A regulation and its implication in the developmental, physiological, and pathological processes of the brain.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin–Madison, Madison, WI, USA
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA
| |
Collapse
|
16
|
Franciskovich R, Soler-Alfonso C, Neira-Fresneda J, Lupski JR, McCann-Crosby B, Potocki L. Short stature and growth hormone deficiency in a subset of patients with Potocki-Lupski syndrome: Expanding the phenotype of PTLS. Am J Med Genet A 2020; 182:2077-2084. [PMID: 32656927 PMCID: PMC8445515 DOI: 10.1002/ajmg.a.61741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 11/07/2022]
Abstract
Potocki-Lupski Syndrome (PTLS, MIM 610883), or duplication of chromosome 17p11.2, is a clinically recognizable condition characterized by infantile hypotonia, failure to thrive, developmental delay, intellectual disability, and congenital anomalies. Short stature, classified as greater than two standard deviations below the mean, has not previously been considered a major feature of PTLS. Retrospective chart review on a cohort of 37 individuals with PTLS was performed to investigate the etiology of short stature. Relevant data included anthropometric measurements, insulin growth factor-1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), growth hormone (GH) stimulation testing, blood glucose levels, brain MRI, and bone age. Approximately 25% (9/37) of individuals with PTLS had short stature. Growth hormone deficiency (GHD) was definitively identified in two individuals. These two PTLS patients with growth hormone deficiency, as well as three others with short stature and no documented GHD, received growth hormone and obtained improvement in linear growth. One individual was identified to have pituitary abnormalities on MRI and had complications of hypoglycemia due to unrecognized GHD. Individuals with PTLS can benefit from undergoing evaluation for GHD should they present with short stature or hypoglycemia. Early identification of GHD could facilitate potential therapeutic benefit for individuals with PTLS, including linear growth, musculoskeletal, and in cases of hypoglycemia, potentially cognitive development as well.
Collapse
Affiliation(s)
- Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, USA
| | | | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Bonnie McCann-Crosby
- Texas Children’s Hospital, Houston, USA
- Division of Pediatric Endocrinology, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, USA
| |
Collapse
|
17
|
Siavrienė E, Preikšaitienė E, Maldžienė Ž, Mikštienė V, Rančelis T, Ambrozaitytė L, Gueneau L, Reymond A, Kučinskas V. A de novo 13q31.3 microduplication encompassing the miR-17 ~ 92 cluster results in features mirroring those associated with Feingold syndrome 2. Gene 2020; 753:144816. [PMID: 32473250 DOI: 10.1016/j.gene.2020.144816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/24/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Hemizygosity of the MIR17HG gene encoding the miR-17 ~ 92 cluster is associated with Feingold syndrome 2 characterized by intellectual disability, skeletal abnormalities, short stature, and microcephaly. Here, we report on a female with a de novo 13q31.3 microduplication encompassing MIR17HG but excluding GPC5. She presented developmental delay, skeletal and digital abnormalities, and features such as tall stature and macrocephaly mirroring those of Feingold syndrome 2 patients. The limited extent of the proband's rearrangement to the miR cluster and the corresponding normal expression level of the neighboring GPC5 in her cells, together with previously described data on affected individuals of two families carrying overlapping duplications of the miR-17 ~ 92 cluster that comprise part of GPC5, who likewise presented macrocephaly, developmental delay, as well as skeletal, digital and stature abnormalities, allow to define a new syndrome due to independent microduplication of the miR-17 ~ 92 cluster.
Collapse
Affiliation(s)
- Evelina Siavrienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Živilė Maldžienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Violeta Mikštienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tautvydas Rančelis
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Lucie Gueneau
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
18
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
19
|
Pytte J, Flynn LL, Anderton RS, Mastaglia FL, Theunissen F, James I, Pfaff A, Koks S, Saunders AM, Bedlack R, Burns DK, Lutz MW, Siddique N, Siddique T, Roses AD, Akkari PA. Disease-modifying effects of an SCAF4 structural variant in a predominantly SOD1 ALS cohort. Neurol Genet 2020; 6:e470. [PMID: 32754644 PMCID: PMC7357414 DOI: 10.1212/nxg.0000000000000470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To test the hypothesis that rs573116164 will have disease-modifying effects in patients with superoxide dismutase 1 (SOD1) familial amyotrophic lateral sclerosis (fALS), we characterized rs573116164 within a cohort of 190 patients with fALS and 560 healthy age-matched controls to assess the variant for association with various measures of disease. METHODS Using a previously described bioinformatics evaluation algorithm, a polymorphic short structural variant associated with SOD1 was identified according to its theoretical effect on gene expression. An 12-18 poly-T repeat (rs573116164) within the 3' untranslated region of serine and arginine rich proteins-related carboxy terminal domain associated factor 4 (SCAF4), a gene that is adjacent to SOD1, was assessed for disease association and influence on survival and age at onset in an fALS cohort using PCR, Sanger sequencing, and capillary separation techniques for allele detection. RESULTS In a North American cohort of predominantly SOD1 fALS patients (n =190) and age-matched healthy controls (n = 560), we showed that carriage of an 18T SCAF4 allele was associated with disease within this cohort (odds ratio [OR] 6.6; 95% confidence interval [CI] 3.9-11.2; p = 4.0e-11), but also within non-SOD1 cases (n = 27; OR 5.3; 95% CI 1.9-14.5; p = 0.0014). This finding suggests genetically SOD1-independent effects of SCAF4 on fALS susceptibility. Furthermore, carriage of an 18T allele was associated with a 26-month reduction in survival time (95% CI 6.6-40.8; p = 0.014), but did not affect age at onset of disease. CONCLUSIONS The findings in this fALS cohort suggest that rs573116164 could have SOD1-independent and broader relevance in ALS, warranting further investigation in other fALS and sporadic ALS cohorts, as well as studies of functional effects of the 18T variant on gene expression.
Collapse
Affiliation(s)
- Julia Pytte
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Loren L Flynn
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Frances Theunissen
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Ian James
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Abigail Pfaff
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Sulev Koks
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Ann M Saunders
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Richard Bedlack
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Daniel K Burns
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Michael W Lutz
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Nailah Siddique
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Teepu Siddique
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - Allen D Roses
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| | - P Anthony Akkari
- Centre for Neuromuscular and Neurological Disorders (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), University of Western Australia, Crawley; Perron Institute for Neurological and Translational Science (J.P., L.L.F., R.S.A., F.L.M., F.T., A.P., S.K., P.A.A.), Nedlands; Centre for Molecular Medicine and Innovative Therapeutics (L.L.F., A.P., S.K., P.A.A.), Murdoch University; School of Health Sciences (R.S.A.), and Institute for Health Research (R.S.A.), University of Notre Dame Australia, Fremantle; Institute for Immunology and Infectious Diseases (I.J.), Murdoch University, Australia; Department of Neurology (A.M.S., R.B., M.W.L., A.D.R.), Duke University School of Medicine, Durham, NC; Zinfandel Pharmaceuticals, Inc. (A.M.S., D.K.B., A.D.R.), Durham, NC; ALS Clinic (R.B.), Duke University, Durham, NC; Departments of Neurology, Pathology and Cell and Molecular Biology (N.S., T.S.), the Les Turner ALS Center, Northwestern University Feinberg School of Medicine; and the Northwestern University Interdepartmental Neuroscience Program (N.S., T.S.), Chicago, IL
| |
Collapse
|
20
|
Ren X, Yang N, Wu N, Xu X, Chen W, Zhang L, Li Y, Du RQ, Dong S, Zhao S, Chen S, Jiang LP, Wang L, Zhang J, Wu Z, Jin L, Qiu G, Lupski JR, Shi J, Zhang F, Liu P. Increased TBX6 gene dosages induce congenital cervical vertebral malformations in humans and mice. J Med Genet 2020; 57:371-379. [PMID: 31888956 PMCID: PMC9179029 DOI: 10.1136/jmedgenet-2019-106333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Congenital vertebral malformations (CVMs) manifest with abnormal vertebral morphology. Genetic factors have been implicated in CVM pathogenesis, but the underlying pathogenic mechanisms remain unclear in most subjects. We previously reported that the human 16p11.2 BP4-BP5 deletion and its associated TBX6 dosage reduction caused CVMs. We aim to investigate the reciprocal 16p11.2 BP4-BP5 duplication and its potential genetic contributions to CVMs. METHODS AND RESULTS Patients who were found to carry the 16p11.2 BP4-BP5 duplication by chromosomal microarray analysis were retrospectively analysed for their vertebral phenotypes. The spinal assessments in seven duplication carriers showed that four (57%) presented characteristics of CVMs, supporting the contention that increased TBX6 dosage could induce CVMs. For further in vivo functional investigation in a model organism, we conducted genome editing of the upstream regulatory region of mouse Tbx6 using CRISPR-Cas9 and obtained three mouse mutant alleles (Tbx6up1 to Tbx6up3 ) with elevated expression levels of Tbx6. Luciferase reporter assays showed that the Tbx6up3 allele presented with the 160% expression level of that observed in the reference (+) allele. Therefore, the homozygous Tbx6up3/up3 mice could functionally mimic the TBX6 dosage of heterozygous carriers of 16p11.2 BP4-BP5 duplication (approximately 150%, ie, 3/2 gene dosage of the normal level). Remarkably, 60% of the Tbx6up3/up3 mice manifested with CVMs. Consistent with our observations in humans, the CVMs induced by increased Tbx6 dosage in mice mainly affected the cervical vertebrae. CONCLUSION Our findings in humans and mice consistently support that an increased TBX6 dosage contributes to the risk of developing cervical CVMs.
Collapse
Affiliation(s)
- Xiaojun Ren
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Nan Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ximing Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingping Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Ren-Qian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shuangshuang Dong
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuxia Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Li-Ping Jiang
- State key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Jiangang Shi
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| |
Collapse
|
21
|
Hui K, Katayama Y, Nakayama KI, Nomura J, Sakurai T. Characterizing vulnerable brain areas and circuits in mouse models of autism: Towards understanding pathogenesis and new therapeutic approaches. Neurosci Biobehav Rev 2020; 110:77-91. [DOI: 10.1016/j.neubiorev.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022]
|
22
|
Kommadath A, Grant JR, Krivushin K, Butty AM, Baes CF, Carthy TR, Berry DP, Stothard P. A large interactive visual database of copy number variants discovered in taurine cattle. Gigascience 2020; 8:5523204. [PMID: 31241156 PMCID: PMC6593363 DOI: 10.1093/gigascience/giz073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Copy number variants (CNVs) contribute to genetic diversity and phenotypic variation. We aimed to discover CNVs in taurine cattle using a large collection of whole-genome sequences and to provide an interactive database of the identified CNV regions (CNVRs) that includes visualizations of sequence read alignments, CNV boundaries, and genome annotations. RESULTS CNVs were identified in each of 4 whole-genome sequencing datasets, which together represent >500 bulls from 17 breeds, using a popular multi-sample read-depth-based algorithm, cn.MOPS. Quality control and CNVR construction, performed dataset-wise to avoid batch effects, resulted in 26,223 CNVRs covering 107.75 unique Mb (4.05%) of the bovine genome. Hierarchical clustering of samples by CNVR genotypes indicated clear separation by breeds. An interactive HTML database was created that allows data filtering options, provides graphical and tabular data summaries including Hardy-Weinberg equilibrium tests on genotype proportions, and displays genes and quantitative trait loci at each CNVR. Notably, the database provides sequence read alignments at each CNVR genotype and the boundaries of constituent CNVs in individual samples. Besides numerous novel discoveries, we corroborated the genotypes reported for a CNVR at the KIT locus known to be associated with the piebald coat colour phenotype in Hereford and some Simmental cattle. CONCLUSIONS We present a large comprehensive collection of taurine cattle CNVs in a novel interactive visual database that displays CNV boundaries, read depths, and genome features for individual CNVRs, thus providing users with a powerful means to explore and scrutinize CNVRs of interest more thoroughly.
Collapse
Affiliation(s)
- Arun Kommadath
- Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, Edmonton, AB, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Jason R Grant
- Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, Edmonton, AB, Canada
| | - Kirill Krivushin
- Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, Edmonton, AB, Canada
| | - Adrien M Butty
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tara R Carthy
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Ireland
| | - Donagh P Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Ireland
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Hiroi N, Yamauchi T. Modeling and Predicting Developmental Trajectories of Neuropsychiatric Dimensions Associated With Copy Number Variations. Int J Neuropsychopharmacol 2019; 22:488-500. [PMID: 31135887 PMCID: PMC6672556 DOI: 10.1093/ijnp/pyz026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
Copy number variants, such as duplications and hemizygous deletions at chromosomal loci of up to a few million base pairs, are highly associated with psychiatric disorders. Hemizygous deletions at human chromosome 22q11.2 were found to be associated with elevated instances of schizophrenia and autism spectrum disorder in 1992 and 2002, respectively. Following these discoveries, many mouse models have been developed and tested to analyze the effects of gene dose alterations in small chromosomal segments and single genes of 22q11.2. Despite several limitations to modeling mental illness in mice, mouse models have identified several genes on 22q11.2-Tbx1, Dgcr8, Comt, Sept5, and Prodh-that contribute to dimensions of autism spectrum disorder and schizophrenia, including working memory, social communication and interaction, and sensorimotor gating. Mouse studies have identified that heterozygous deletion of Tbx1 results in defective social communication during the neonatal period and social interaction deficits during adolescence/adulthood. Overexpression of Tbx1 or Comt in adult neural progenitor cells in the hippocampus delays the developmental maturation of working memory capacity. Collectively, mouse models of variants of these 4 genes have revealed several potential neuronal mechanisms underlying various aspects of psychiatric disorders, including adult neurogenesis, microRNA processing, catecholamine metabolism, and synaptic transmission. The validity of the mouse data would be ultimately tested when therapies or drugs based on such potential mechanisms are applied to humans.
Collapse
Affiliation(s)
- Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Takahira Yamauchi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
24
|
Takumi T, Tamada K, Hatanaka F, Nakai N, Bolton PF. Behavioral neuroscience of autism. Neurosci Biobehav Rev 2019; 110:60-76. [PMID: 31059731 DOI: 10.1016/j.neubiorev.2019.04.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Several genetic causes of ASD have been identified and this has enabled researchers to construct mouse models. Mouse behavioral tests reveal impaired social interaction and communication, as well as increased repetitive behavior and behavioral inflexibility in these mice, which correspond to core behavioral deficits observed in individuals with ASD. However, the connection between these behavioral abnormalities and the underlying dysregulation in neuronal circuits and synaptic function is poorly understood. Moreover, different components of the ASD phenotype may be linked to dysfunction in different brain regions, making it even more challenging to chart the pathophysiological mechanisms involved in ASD. Here we summarize the research on mouse models of ASD and their contribution to understanding pathophysiological mechanisms. Specifically, we emphasize abnormal serotonin production and regulation, as well as the disruption in circadian rhythms and sleep that are observed in a subset of ASD, and propose that spatiotemporal disturbances in brainstem development may be a primary cause of ASD that propagates towards the cerebral cortex.
Collapse
Affiliation(s)
- Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | | - Nobuhiro Nakai
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Patrick F Bolton
- Institute of Psychiatry, King's College London, London, SE5 8AF, UK
| |
Collapse
|
25
|
Lupski JR. 2018 Victor A. McKusick Leadership Award: Molecular Mechanisms for Genomic and Chromosomal Rearrangements. Am J Hum Genet 2019; 104:391-406. [PMID: 30849326 PMCID: PMC6407437 DOI: 10.1016/j.ajhg.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Vetrini F, McKee S, Rosenfeld JA, Suri M, Lewis AM, Nugent KM, Roeder E, Littlejohn RO, Holder S, Zhu W, Alaimo JT, Graham B, Harris JM, Gibson JB, Pastore M, McBride KL, Komara M, Al-Gazali L, Al Shamsi A, Fanning EA, Wierenga KJ, Scott DA, Ben-Neriah Z, Meiner V, Cassuto H, Elpeleg O, Holder JL, Burrage LC, Seaver LH, Van Maldergem L, Mahida S, Soul JS, Marlatt M, Matyakhina L, Vogt J, Gold JA, Park SM, Varghese V, Lampe AK, Kumar A, Lees M, Holder-Espinasse M, McConnell V, Bernhard B, Blair E, Harrison V, Muzny DM, Gibbs RA, Elsea SH, Posey JE, Bi W, Lalani S, Xia F, Yang Y, Eng CM, Lupski JR, Liu P. De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome. Genome Med 2019; 11:12. [PMID: 30819258 PMCID: PMC6393995 DOI: 10.1186/s13073-019-0623-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity). METHODS Genome-wide analyses by exome sequencing (ES) and chromosomal microarray analysis (CMA) identified individuals with heterozygous, likely damaging, loss-of-function alleles in TCF20. We implemented further molecular and clinical analyses to determine the inheritance of the pathogenic variant alleles and studied the spectrum of phenotypes. RESULTS We report 25 unique inactivating single nucleotide variants/indels (1 missense, 1 canonical splice-site variant, 18 frameshift, and 5 nonsense) and 4 deletions of TCF20. The pathogenic variants were detected in 32 patients and 4 affected parents from 31 unrelated families. Among cases with available parental samples, the variants were de novo in 20 instances and inherited from 4 symptomatic parents in 5, including in one set of monozygotic twins. Two pathogenic loss-of-function variants were recurrent in unrelated families. Patients presented with a phenotype characterized by developmental delay, intellectual disability, hypotonia, variable dysmorphic features, movement disorders, and sleep disturbances. CONCLUSIONS TCF20 pathogenic variants are associated with a novel syndrome manifesting clinical characteristics similar to those observed in Smith-Magenis syndrome. Together with previously described cases, the clinical entity of TCF20-associated neurodevelopmental disorders (TAND) emerges from a genotype-driven perspective.
Collapse
Affiliation(s)
- Francesco Vetrini
- Baylor Genetics, Houston, TX, 77021, USA.,Present address: Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mohnish Suri
- Nottingham Genetics Service, Nottingham City Hospital, Nottingham, UK
| | - Andrea M Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kimberly Margaret Nugent
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Elizabeth Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Rebecca O Littlejohn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Sue Holder
- North West Thames Regional Genetics Service, 759 Northwick Park Hospital, London, UK
| | | | - Joseph T Alaimo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brett Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Present address: Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill M Harris
- Dell Children's Medical Group, Austin, TX, 78723, USA
| | | | - Matthew Pastore
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital; and Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, 43205, USA
| | - Kim L McBride
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital; and Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH, 43205, USA
| | - Makanko Komara
- Department of Pediatrics, College of Medicine & Health Sciences, United Arab University, Al Ain, UAE
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine & Health Sciences, United Arab University, Al Ain, UAE
| | | | - Elizabeth A Fanning
- Department of Pediatrics, Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Klaas J Wierenga
- Department of Pediatrics, Section of Genetics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Present address: Mayo Clinic Florida, Department of Clinical Genomics, Jacksonville, FL, 32224, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ziva Ben-Neriah
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, 91120, Jerusalem, Israel
| | - J Lloyd Holder
- Department of Pediatrics, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Laurie H Seaver
- Department of Pediatrics, University of Hawaii, Honolulu, HI, 96826, USA
| | | | - Sonal Mahida
- Department of Neurology, Boston Children's Hospital, Boston, MA, 0211, USA
| | - Janet S Soul
- Department of Neurology, Boston Children's Hospital, Boston, MA, 0211, USA
| | - Margaret Marlatt
- Department of Neurology, Boston Children's Hospital, Boston, MA, 0211, USA
| | | | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners; and Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - June-Anne Gold
- East Anglia Regional Genetics Service, Addenbrooke's Hospital, Cambridge, UK
| | - Soo-Mi Park
- East Anglia Regional Genetics Service, Addenbrooke's Hospital, Cambridge, UK
| | - Vinod Varghese
- All-Wales Medical Genetics Service, University Hospital of Wales, Cardiff, UK
| | - Anne K Lampe
- South East of Scotland Clinical Genetic Service, Western General Hospital, Edinburgh, UK
| | - Ajith Kumar
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Melissa Lees
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | | | - Vivienne McConnell
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Birgitta Bernhard
- North West Thames Regional Genetics Service, 759 Northwick Park Hospital, London, UK
| | - Ed Blair
- Oxford Regional Genetics Service, Oxford University Hospitals, Oxford, UK
| | - Victoria Harrison
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | | | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sarah H Elsea
- Baylor Genetics, Houston, TX, 77021, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Weimin Bi
- Baylor Genetics, Houston, TX, 77021, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Seema Lalani
- Baylor Genetics, Houston, TX, 77021, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Fan Xia
- Baylor Genetics, Houston, TX, 77021, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yaping Yang
- Baylor Genetics, Houston, TX, 77021, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christine M Eng
- Baylor Genetics, Houston, TX, 77021, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Baylor Genetics, Houston, TX, 77021, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Pengfei Liu
- Baylor Genetics, Houston, TX, 77021, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Abad C, Cook MM, Cao L, Jones JR, Rao NR, Dukes-Rimsky L, Pauly R, Skinner C, Wang Y, Luo F, Stevenson RE, Walz K, Srivastava AK. A Rare De Novo RAI1 Gene Mutation Affecting BDNF-Enhancer-Driven Transcription Activity Associated with Autism and Atypical Smith-Magenis Syndrome Presentation. BIOLOGY 2018; 7:biology7020031. [PMID: 29794985 PMCID: PMC6023015 DOI: 10.3390/biology7020031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022]
Abstract
Deletions and mutations involving the Retinoic Acid Induced 1 (RAI1) gene at 17p11.2 cause Smith-Magenis syndrome (SMS). Here we report a patient with autism as the main clinical presentation, with some SMS-like features and a rare de novo RAI1 gene mutation, c.3440G > A (p.R1147Q). We functionally characterized the RAI1 p.R1147Q mutant protein. The mutation, located near the nuclear localization signal, had no effect on the subcellular localization of the mutant protein. However, similar to previously reported RAI1 missense mutations in SMS patients, the RAI1 p.R1147Q mutant protein showed a significant deficiency in activating in vivo transcription of a reporter gene driven by a BDNF (brain-derived neurotrophic factor) intronic enhancer. In addition, expression of other genes associated with neurobehavioral abnormalities and/or neurodevelopmental disorders were found to be altered in this patient. These results suggest a likely contribution of RAI1, either alone or in combination of other factors, to social behavior and reinforce the RAI1 gene as a candidate gene in patients with autistic manifestations or social behavioral abnormalities.
Collapse
Affiliation(s)
- Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami, FL 33136, USA.
| | - Melissa M Cook
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA.
| | - Lei Cao
- John P. Hussman Institute for Human Genomics, University of Miami, FL 33136, USA.
| | - Julie R Jones
- Molecular Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, SC 29646, USA.
| | - Nalini R Rao
- John P. Hussman Institute for Human Genomics, University of Miami, FL 33136, USA.
| | - Lynn Dukes-Rimsky
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA.
| | - Rini Pauly
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA.
| | - Cindy Skinner
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA.
| | - Yunsheng Wang
- School of Computing, Clemson University, Clemson, SC 29634, USA.
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC 29634, USA.
| | - Roger E Stevenson
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA.
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami, FL 33136, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, FL 33136, USA.
| | - Anand K Srivastava
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA.
- Department of Genetics and Biochemsitry, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
28
|
Hiroi N. Critical reappraisal of mechanistic links of copy number variants to dimensional constructs of neuropsychiatric disorders in mouse models. Psychiatry Clin Neurosci 2018; 72:301-321. [PMID: 29369447 PMCID: PMC5935536 DOI: 10.1111/pcn.12641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/27/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022]
Abstract
Copy number variants are deletions and duplications of a few thousand to million base pairs and are associated with extraordinarily high levels of autism spectrum disorder, schizophrenia, intellectual disability, or attention-deficit hyperactivity disorder. The unprecedented levels of robust and reproducible penetrance of copy number variants make them one of the most promising and reliable entry points to delve into the mechanistic bases of many mental disorders. However, the precise mechanistic bases of these associations still remain elusive in humans due to the many genes encoded in each copy number variant and the diverse associated phenotypic features. Genetically engineered mice have provided a technical means to ascertain precise genetic mechanisms of association between copy number variants and dimensional aspects of mental illnesses. Molecular, cellular, and neuronal phenotypes can be detected as potential mechanistic substrates for various behavioral constructs of mental illnesses. However, mouse models come with many technical pitfalls. Genetic background is not well controlled in many mouse models, leading to rather obvious interpretative issues. Dose alterations of many copy number variants and single genes within copy number variants result in some molecular, cellular, and neuronal phenotypes without a behavioral phenotype or with a behavioral phenotype opposite to what is seen in humans. In this review, I discuss technical and interpretative pitfalls of mouse models of copy number variants and highlight well-controlled studies to suggest potential neuronal mechanisms of dimensional aspects of mental illnesses. Mouse models of copy number variants represent toeholds to achieve a better understanding of the mechanistic bases of dimensions of neuropsychiatric disorders and thus for development of mechanism-based therapeutic options in humans.
Collapse
Affiliation(s)
- Noboru Hiroi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, USA.,Department of Neuroscience, Albert Einstein College of Medicine, New York, USA.,Department of Genetics, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
29
|
Harel T, Lupski JR. Genomic disorders 20 years on-mechanisms for clinical manifestations. Clin Genet 2017; 93:439-449. [PMID: 28950406 DOI: 10.1111/cge.13146] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Genomic disorders result from copy-number variants (CNVs) or submicroscopic rearrangements of the genome rather than from single nucleotide variants (SNVs). Diverse technologies, including array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) microarrays, and more recently, whole genome sequencing and whole-exome sequencing, have enabled robust genome-wide unbiased detection of CNVs in affected individuals and in reportedly healthy controls. Sequencing of breakpoint junctions has allowed for elucidation of upstream mechanisms leading to genomic instability and resultant structural variation, whereas studies of the association between CNVs and specific diseases or susceptibility to morbid traits have enhanced our understanding of the downstream effects. In this review, we discuss the hallmarks of genomic disorders as they were defined during the first decade of the field, including genomic instability and the mechanism for rearrangement defined as nonallelic homologous recombination (NAHR); recurrent vs nonrecurrent rearrangements; and gene dosage sensitivity. Moreover, we highlight the exciting advances of the second decade of this field, including a deeper understanding of genomic instability and the mechanisms underlying complex rearrangements, mechanisms for constitutional and somatic chromosomal rearrangements, structural intra-species polymorphisms and susceptibility to NAHR, the role of CNVs in the context of genome-wide copy number and single nucleotide variation, and the contribution of noncoding CNVs to human disease.
Collapse
Affiliation(s)
- T Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - J R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
30
|
Abstract
Smith-Magenis syndrome (SMS; OMIM #182290) is a complex genetic disorder characterized by distinctive physical features, developmental delay, cognitive impairment, and a typical behavioral phenotype. SMS is caused by interstitial 17p11.2 deletions, encompassing multiple genes and including the retinoic acid-induced 1 gene (RAI1), or by mutations in RAI1 itself. About 10% of all the SMS patients, in fact, carry an RAI1 mutation responsible for the phenotype. RAI1 (OMIM *607642) is a dosage-sensitive gene expressed in many tissues and highly conserved among species. Over the years, several studies have demonstrated that RAI1 (or its homologs in animal models) acts as a transcriptional factor implicated in embryonic neurodevelopment, neuronal differentiation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucose metabolisms, behavioral functions, and circadian activity. Patients with RAI1 pathogenic variants show some phenotypic differences when compared to those carrying the typical deletion. They usually have lower incidence of hypotonia and less cognitive impairment than those with 17p11.2 deletions but more frequently show the behavioral characteristics of the syndrome and overeating issues. These differences reflect the primary pathogenetic role of RAI1 without the pathogenetic contribution of the other genes included in the typical 17p11.2 deletion. The better comprehension of physiological roles of RAI1, its molecular co-workers and interactors, and its contribution in determining the typical SMS phenotype will certainly open a new path for therapeutic interventions.
Collapse
Affiliation(s)
- Mariateresa Falco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Sonia Amabile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Fabio Acquaviva
- Department of Translational Medical Sciences (DISMET), Section of Pediatric Clinical Genetics, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
31
|
Rao NR, Abad C, Perez IC, Srivastava AK, Young JI, Walz K. Rai1 Haploinsufficiency Is Associated with Social Abnormalities in Mice. BIOLOGY 2017; 6:biology6020025. [PMID: 28448442 PMCID: PMC5485472 DOI: 10.3390/biology6020025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022]
Abstract
Background: Autism is characterized by difficulties in social interaction, communication, and repetitive behaviors; with different degrees of severity in each of the core areas. Haploinsufficiency and point mutations of RAI1 are associated with Smith-Magenis syndrome (SMS), a genetic condition that scores within the autism spectrum range for social responsiveness and communication, and is characterized by neurobehavioral abnormalities, intellectual disability, developmental delay, sleep disturbance, and self-injurious behaviors. Methods: To investigate the relationship between Rai1 and social impairment, we evaluated the Rai1+/− mice with a battery of tests to address social behavior in mice. Results: We found that the mutant mice showed diminished interest in social odors, abnormal submissive tendencies, and increased repetitive behaviors when compared to wild type littermates. Conclusions: These findings suggest that Rai1 contributes to social behavior in mice, and prompt it as a candidate gene for the social behaviors observed in Smith-Magenis Syndrome patients.
Collapse
Affiliation(s)
- Nalini R Rao
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA.
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA.
| | - Irene C Perez
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA.
| | - Anand K Srivastava
- J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC 29646, USA.
| | - Juan I Young
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
32
|
Mullegama SV, Alaimo JT, Fountain MD, Burns B, Balog AH, Chen L, Elsea SH. RAI1 Overexpression Promotes Altered Circadian Gene Expression and Dyssomnia in Potocki-Lupski Syndrome. J Pediatr Genet 2017; 6:155-164. [PMID: 28794907 DOI: 10.1055/s-0037-1599147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022]
Abstract
Retinoic acid induced 1 ( RAI1 ) encodes a dosage-sensitive gene that when haploinsufficient results in Smith-Magenis syndrome (SMS) and when overexpressed results in Potocki-Lupski syndrome (PTLS). Phenotypic and molecular evidence illustrates that haploinsufficiency of RAI1 disrupts circadian rhythm through the dysregulation of the master circadian regulator, circadian locomotor output cycles kaput ( CLOCK) , and other core circadian components, contributing to prominent sleep disturbances in SMS. However, the phenotypic and molecular characterization of sleep features in PTLS has not been elucidated. Using the Pittsburgh Sleep Quality Index (PSQI), caregivers of 15 school-aged children with PTLS reported difficulties in initiating sleep. Indeed, more than 70% of individuals manifested moderate to severe sleep latency, as defined by the PSQI. Moreover, these individuals manifested difficulties in sleep maintenance, with middle of the night and early morning awakenings. When assessing daytime sleepiness through the Epworth Sleepiness Scale, approximately 21% of the individuals manifested excessive daytime somnolence. This indicates that mild dyssomnia characterizes the majority of the sleep phenotype, with occasionally problematic daytime somnolence, a phenotype different than that expressed by individuals with SMS, where daytime sleepiness is a chronic problem. Gene expression analysis of the core circadian machinery in the hypothalamus of the PTLS mouse model ( Rai1 -Tg) found significant dysregulation of the transcriptional activators, Clock and Arntl , and the transcriptional repressors, Per1-3 and Cry1/2 , during both light and dark phases. These findings suggest a partial loss of circadian entrainment typically evoked by environmental photic cues. Examination of circadian clock gene expression in the Rai1- Tg mouse heart, liver, and kidney found unchanged expression of Clock and most of its downstream targets during both light and dark phases, suggesting an asynchronized circadian rhythm. Furthermore, examination of circadian gene expression in synchronized PTLS lymphoblasts revealed reduced transcripts of the Period ( PER1-3 ) family and normal expression of CRY1/2 . The finding that central circadian gene expression was altered while many peripheral circadian components were intact suggests a tissue-specific circadian uncoupling of the circadian machinery due to Rai1 overexpression. Overall, our results demonstrate that overexpression of RAI1 results in sleep deficiencies in individuals with PTLS due to a lack of properly regulated circadian machinery gene expression and highlight the importance of evaluating sleep concerns in individuals with PTLS.
Collapse
Affiliation(s)
- Sureni V Mullegama
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, United States
| | - Joseph T Alaimo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Michael D Fountain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Brooke Burns
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Amanda Hebert Balog
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Li Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States.,Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, United States.,Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| |
Collapse
|
33
|
Gschwind AR, Singh A, Certa U, Reymond A, Heckel T. Diversity and regulatory impact of copy number variation in the primate Macaca fascicularis. BMC Genomics 2017; 18:144. [PMID: 28183275 PMCID: PMC5301398 DOI: 10.1186/s12864-017-3531-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 02/01/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Copy number variations (CNVs) are a significant source of genetic diversity and commonly found in mammalian genomes. We have generated a genome-wide CNV map for Cynomolgus monkeys (Macaca fascicularis). This crab-eating macaque is the closest animal model to humans that is used in biomedical research. RESULTS We show that Cynomolgus monkey CNVs are in general much smaller in size than gene loci and are specific to the population of origin. Genome-wide expression data from five vitally important organs demonstrates that CNVs in close proximity to transcription start sites associate strongly with expression changes. Among these eQTL genes we find an overrepresentation of genes involved in metabolism, receptor activity, and transcription. CONCLUSION These results provide evidence that CNVs shape tissue transcriptomes in monkey populations, potentially offering an adaptive advantage. We suggest that this genetic diversity should be taken into account when using Cynomolgus macaques as models.
Collapse
Affiliation(s)
- Andreas R Gschwind
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics SIB, Lausanne, Switzerland
| | - Anjali Singh
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Ulrich Certa
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Tobias Heckel
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland.
| |
Collapse
|
34
|
Loviglio MN, Beck CR, White JJ, Leleu M, Harel T, Guex N, Niknejad A, Bi W, Chen ES, Crespo I, Yan J, Charng WL, Gu S, Fang P, Coban-Akdemir Z, Shaw CA, Jhangiani SN, Muzny DM, Gibbs RA, Rougemont J, Xenarios I, Lupski JR, Reymond A. Identification of a RAI1-associated disease network through integration of exome sequencing, transcriptomics, and 3D genomics. Genome Med 2016; 8:105. [PMID: 27799067 PMCID: PMC5088687 DOI: 10.1186/s13073-016-0359-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/16/2016] [Indexed: 02/13/2023] Open
Abstract
Background Smith-Magenis syndrome (SMS) is a developmental disability/multiple congenital anomaly disorder resulting from haploinsufficiency of RAI1. It is characterized by distinctive facial features, brachydactyly, sleep disturbances, and stereotypic behaviors. Methods We investigated a cohort of 15 individuals with a clinical suspicion of SMS who showed neither deletion in the SMS critical region nor damaging variants in RAI1 using whole exome sequencing. A combination of network analysis (co-expression and biomedical text mining), transcriptomics, and circularized chromatin conformation capture (4C-seq) was applied to verify whether modified genes are part of the same disease network as known SMS-causing genes. Results Potentially deleterious variants were identified in nine of these individuals using whole-exome sequencing. Eight of these changes affect KMT2D, ZEB2, MAP2K2, GLDC, CASK, MECP2, KDM5C, and POGZ, known to be associated with Kabuki syndrome 1, Mowat-Wilson syndrome, cardiofaciocutaneous syndrome, glycine encephalopathy, mental retardation and microcephaly with pontine and cerebellar hypoplasia, X-linked mental retardation 13, X-linked mental retardation Claes-Jensen type, and White-Sutton syndrome, respectively. The ninth individual carries a de novo variant in JAKMIP1, a regulator of neuronal translation that was recently found deleted in a patient with autism spectrum disorder. Analyses of co-expression and biomedical text mining suggest that these pathologies and SMS are part of the same disease network. Further support for this hypothesis was obtained from transcriptome profiling that showed that the expression levels of both Zeb2 and Map2k2 are perturbed in Rai1–/– mice. As an orthogonal approach to potentially contributory disease gene variants, we used chromatin conformation capture to reveal chromatin contacts between RAI1 and the loci flanking ZEB2 and GLDC, as well as between RAI1 and human orthologs of the genes that show perturbed expression in our Rai1–/– mouse model. Conclusions These holistic studies of RAI1 and its interactions allow insights into SMS and other disorders associated with intellectual disability and behavioral abnormalities. Our findings support a pan-genomic approach to the molecular diagnosis of a distinctive disorder. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0359-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Nicla Loviglio
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Janson J White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marion Leleu
- School of Life Sciences, EPFL (Ecole Polytechnique Fédérale de Lausanne), 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicolas Guex
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Anne Niknejad
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Edward S Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Isaac Crespo
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Jiong Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Laboratory Medicine Program, UHN, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ping Fang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Present address: WuXiNextCODE, 101Main Street, Cambridge, MA, 02142, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacques Rougemont
- School of Life Sciences, EPFL (Ecole Polytechnique Fédérale de Lausanne), 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Ioannis Xenarios
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
35
|
Yuan B, Neira J, Gu S, Harel T, Liu P, Briceño I, Elsea SH, Gómez A, Potocki L, Lupski JR. Nonrecurrent PMP22-RAI1 contiguous gene deletions arise from replication-based mechanisms and result in Smith-Magenis syndrome with evident peripheral neuropathy. Hum Genet 2016; 135:1161-74. [PMID: 27386852 DOI: 10.1007/s00439-016-1703-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Hereditary neuropathy with liability to pressure palsies (HNPP) and Smith-Magenis syndrome (SMS) are genomic disorders associated with deletion copy number variants involving chromosome 17p12 and 17p11.2, respectively. Nonallelic homologous recombination (NAHR)-mediated recurrent deletions are responsible for the majority of HNPP and SMS cases; the rearrangement products encompass the key dosage-sensitive genes PMP22 and RAI1, respectively, and result in haploinsufficiency for these genes. Less frequently, nonrecurrent genomic rearrangements occur at this locus. Contiguous gene duplications encompassing both PMP22 and RAI1, i.e., PMP22-RAI1 duplications, have been investigated, and replication-based mechanisms rather than NAHR have been proposed for these rearrangements. In the current study, we report molecular and clinical characterizations of six subjects with the reciprocal phenomenon of deletions spanning both genes, i.e., PMP22-RAI1 deletions. Molecular studies utilizing high-resolution array comparative genomic hybridization and breakpoint junction sequencing identified mutational signatures that were suggestive of replication-based mechanisms. Systematic clinical studies revealed features consistent with SMS, including features of intellectual disability, speech and gross motor delays, behavioral problems and ocular abnormalities. Five out of six subjects presented clinical signs and/or objective electrophysiologic studies of peripheral neuropathy. Clinical profiling may improve the clinical management of this unique group of subjects, as the peripheral neuropathy can be more severe or of earlier onset as compared to SMS patients having the common recurrent deletion. Moreover, the current study, in combination with the previous report of PMP22-RAI1 duplications, contributes to the understanding of rare complex phenotypes involving multiple dosage-sensitive genes from a genetic mechanistic standpoint.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juanita Neira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ignacio Briceño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Referencia Andino, Bogotá, Colombia
- Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alberto Gómez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Referencia Andino, Bogotá, Colombia
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Carvalho CMB, Lupski JR. Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 2016; 17:224-38. [PMID: 26924765 DOI: 10.1038/nrg.2015.25] [Citation(s) in RCA: 486] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the recent burst of technological developments in genomics, and the clinical implementation of genome-wide assays, our understanding of the molecular basis of genomic disorders, specifically the contribution of structural variation to disease burden, is evolving quickly. Ongoing studies have revealed a ubiquitous role for genome architecture in the formation of structural variants at a given locus, both in DNA recombination-based processes and in replication-based processes. These reports showcase the influence of repeat sequences on genomic stability and structural variant complexity and also highlight the tremendous plasticity and dynamic nature of our genome in evolution, health and disease susceptibility.
Collapse
Affiliation(s)
- Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Centro de Pesquisas René Rachou - FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
37
|
Frye RE, Cox D, Slattery J, Tippett M, Kahler S, Granpeesheh D, Damle S, Legido A, Goldenthal MJ. Mitochondrial Dysfunction may explain symptom variation in Phelan-McDermid Syndrome. Sci Rep 2016; 6:19544. [PMID: 26822410 PMCID: PMC4731780 DOI: 10.1038/srep19544] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/09/2015] [Indexed: 12/02/2022] Open
Abstract
Phelan-McDermid Syndrome (PMS), which is defined by a deletion within 22q13, demonstrates significant phenotypic variation. Given that six mitochondrial genes are located within 22q13, including complex I and IV genes, we hypothesize that mitochondrial complex activity abnormalities may explain phenotypic variation in PMS symptoms. Complex I, II, II + III and IV activity was measured in 51 PMS participants. Caretakers completed questionnaires and provided genetic information through the PMS foundation registry. Complex activity was abnormal in 59% of PMS participants. Abnormalities were found in complex I and IV but not complex II + III and II activity, consistent with disruption of genes within the 22q13 region. However, complex activity abnormalities were not related to specific gene deletions suggesting a "neighboring effect" of regional deletions on adjacent gene expression. A specific combination of symptoms (autism spectrum disorder, developmental regression, failure-to-thrive, exercise intolerance/fatigue) was associated with complex activity abnormalities. 64% of 106 individuals in the PMS foundation registry who did not have complex activity measured also endorsed this pattern of symptoms. These data suggest that mitochondrial abnormalities, specifically abnormalities in complex I and IV activity, may explain some phenotypic variation in PMS individuals. These results point to novel pathophysiology mechanisms and treatment targets for PMS patients.
Collapse
Affiliation(s)
- Richard E. Frye
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Devin Cox
- Kansas University Medical Center, Kansas City, Kansas, KS, USA
| | - John Slattery
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Marie Tippett
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Stephen Kahler
- University of Arkansas for Medical Sciences, Department of Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, AR 72202, USA
| | - Doreen Granpeesheh
- Center for Autism and Related Disorders, Inc., Woodland Hills, California, CA, USA
| | - Shirish Damle
- Drexel University College of Medicine, Department of Pediatrics, Neurology Section, St. Christopher’s Hospital for Children, Philadelphia, PA 19134, USA
| | - Agustin Legido
- Drexel University College of Medicine, Department of Pediatrics, Neurology Section, St. Christopher’s Hospital for Children, Philadelphia, PA 19134, USA
| | - Michael J. Goldenthal
- Drexel University College of Medicine, Department of Pediatrics, Neurology Section, St. Christopher’s Hospital for Children, Philadelphia, PA 19134, USA
| |
Collapse
|
38
|
Evidence for genetic regulation of mRNA expression of the dosage-sensitive gene retinoic acid induced-1 (RAI1) in human brain. Sci Rep 2016; 6:19010. [PMID: 26743651 PMCID: PMC4705554 DOI: 10.1038/srep19010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022] Open
Abstract
RAI1 (retinoic acid induced-1) is a dosage-sensitive gene that causes Smith-Magenis syndrome (SMS) when mutated or deleted and Potocki-Lupski Syndrome (PTLS) when duplicated, with psychiatric features commonly observed in both syndromes. How common genetic variants regulate this gene, however, is unknown. In this study, we found that RAI1 mRNA expression in Chinese prefrontal and temporal cortex correlate with genotypes of common single nucleotide polymorphisms (SNPs) located in the RAI1 5′-upstream region. Using genotype imputation, “R2-Δ2” analysis, and data from the RegulomeDB database, we identified SNPs rs4925102 and rs9907986 as possible regulatory variants, accounting for approximately 30–40% of the variance in RAI1 mRNA expression in both brain regions. Specifically, rs4925102 and rs9907986 are predicted to disrupt the binding of retinoic acid RXR-RAR receptors and the transcription factor DEAF1 (Deformed epidermal autoregulatory factor-1), respectively. Consistent with these predictions, we observed binding of RXRα and RARα to the predicted RAI1 target in chromatin immunoprecipitation assays. Retinoic acid is crucial for early development of the central neural system, and DEAF1 is associated with intellectual disability. The observation that a significant portion of RAI1 mRNA expression is genetically controlled raises the possibility that common RAI1 5′-region regulatory variants contribute more generally to psychiatric disorders.
Collapse
|
39
|
Kusenda M, Vacic V, Malhotra D, Rodgers L, Pavon K, Meth J, Kumar RA, Christian SL, Peeters H, Cho SS, Addington A, Rapoport JL, Sebat J. The Influence of Microdeletions and Microduplications of 16p11.2 on Global Transcription Profiles. J Child Neurol 2015; 30:1947-53. [PMID: 26391891 PMCID: PMC4739844 DOI: 10.1177/0883073815602066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
Copy number variants (CNVs) of a 600 kb region on 16p11.2 are associated with neurodevelopmental disorders and changes in brain volume. The authors hypothesize that abnormal brain development associated with this CNV can be attributed to changes in transcriptional regulation. The authors determined the effects of 16p11.2 dosage on gene expression by transcription profiling of lymphoblast cell lines derived from 6 microdeletion carriers, 15 microduplication carriers and 15 controls. Gene dosage had a significant influence on the transcript abundance of a majority (20/34) of genes within the CNV region. In addition, a limited number of genes were dysregulated in trans. Genes most strongly correlated with patient head circumference included SULT1A, KCTD13, and TMEM242. Given the modest effect of 16p11.2 copy number on global transcriptional regulation in lymphocytes, larger studies utilizing neuronal cell types may be needed in order to elucidate the signaling pathways that influence brain development in this genetic disorder.
Collapse
Affiliation(s)
- Mary Kusenda
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Department of Biology, Chemistry and Environmental Studies, Molloy College, Rockville Centre, New York 11571, USA
| | - Vladimir Vacic
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Dheeraj Malhotra
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Linda Rodgers
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kevin Pavon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jennifer Meth
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ravinesh A. Kumar
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | | | - Hilde Peeters
- Laboratory for Genetics of Human Development, Department of Human Genetics, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Netherlands
| | - Shawn S. Cho
- Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Anjene Addington
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Judith L. Rapoport
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jonathan Sebat
- Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
40
|
Zepeda-Mendoza CJ, Mukhopadhyay S, Wong ES, Harder N, Splinter E, de Wit E, Eckersley-Maslin MA, Ried T, Eils R, Rohr K, Mills A, de Laat W, Flicek P, Sengupta AM, Spector DL. Quantitative analysis of chromatin interaction changes upon a 4.3 Mb deletion at mouse 4E2. BMC Genomics 2015; 16:982. [PMID: 26589460 PMCID: PMC4654810 DOI: 10.1186/s12864-015-2137-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/23/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Circular chromosome conformation capture (4C) has provided important insights into three dimensional (3D) genome organization and its critical impact on the regulation of gene expression. We developed a new quantitative framework based on polymer physics for the analysis of paired-end sequencing 4C (PE-4Cseq) data. We applied this strategy to the study of chromatin interaction changes upon a 4.3 Mb DNA deletion in mouse region 4E2. RESULTS A significant number of differentially interacting regions (DIRs) and chromatin compaction changes were detected in the deletion chromosome compared to a wild-type (WT) control. Selected DIRs were validated by 3D DNA FISH experiments, demonstrating the robustness of our pipeline. Interestingly, significant overlaps of DIRs with CTCF/Smc1 binding sites and differentially expressed genes were observed. CONCLUSIONS Altogether, our PE-4Cseq analysis pipeline provides a comprehensive characterization of DNA deletion effects on chromatin structure and function.
Collapse
Affiliation(s)
- Cinthya J Zepeda-Mendoza
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| | | | - Emily S Wong
- The European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Nathalie Harder
- Department Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, University of Heidelberg, BioQuant, IPMB, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.
| | - Erik Splinter
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584, CT Utrecht, The Netherlands.
| | - Elzo de Wit
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584, CT Utrecht, The Netherlands.
| | - Melanie A Eckersley-Maslin
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
- Epigenetics Programme, Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Thomas Ried
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, 50 South Drive, Bldg. 50, Rm. 1408, Bethesda, MD, 20892, USA.
| | - Roland Eils
- Department Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, University of Heidelberg, BioQuant, IPMB, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.
| | - Karl Rohr
- Department Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, University of Heidelberg, BioQuant, IPMB, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.
| | - Alea Mills
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| | - Wouter de Laat
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584, CT Utrecht, The Netherlands.
| | - Paul Flicek
- The European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Anirvan M Sengupta
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ, 08854-8019, USA.
| | - David L Spector
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
41
|
Yuan B, Harel T, Gu S, Liu P, Burglen L, Chantot-Bastaraud S, Gelowani V, Beck C, Carvalho C, Cheung S, Coe A, Malan V, Munnich A, Magoulas P, Potocki L, Lupski J. Nonrecurrent 17p11.2p12 Rearrangement Events that Result in Two Concomitant Genomic Disorders: The PMP22-RAI1 Contiguous Gene Duplication Syndrome. Am J Hum Genet 2015; 97:691-707. [PMID: 26544804 DOI: 10.1016/j.ajhg.2015.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
The genomic duplication associated with Potocki-Lupski syndrome (PTLS) maps in close proximity to the duplication associated with Charcot-Marie-Tooth disease type 1A (CMT1A). PTLS is characterized by hypotonia, failure to thrive, reduced body weight, intellectual disability, and autistic features. CMT1A is a common autosomal dominant distal symmetric peripheral polyneuropathy. The key dosage-sensitive genes RAI1 and PMP22 are respectively associated with PTLS and CMT1A. Recurrent duplications accounting for the majority of subjects with these conditions are mediated by nonallelic homologous recombination between distinct low-copy repeat (LCR) substrates. The LCRs flanking a contiguous genomic interval encompassing both RAI1 and PMP22 do not share extensive homology; thus, duplications encompassing both loci are rare and potentially generated by a different mutational mechanism. We characterized genomic rearrangements that simultaneously duplicate PMP22 and RAI1, including nine potential complex genomic rearrangements, in 23 subjects by high-resolution array comparative genomic hybridization and breakpoint junction sequencing. Insertions and microhomologies were found at the breakpoint junctions, suggesting potential replicative mechanisms for rearrangement formation. At the breakpoint junctions of these nonrecurrent rearrangements, enrichment of repetitive DNA sequences was observed, indicating that they might predispose to genomic instability and rearrangement. Clinical evaluation revealed blended PTLS and CMT1A phenotypes with a potential earlier onset of neuropathy. Moreover, additional clinical findings might be observed due to the extra duplicated material included in the rearrangements. Our genomic analysis suggests replicative mechanisms as a predominant mechanism underlying PMP22-RAI1 contiguous gene duplications and provides further evidence supporting the role of complex genomic architecture in genomic instability.
Collapse
|
42
|
Neira-Fresneda J, Potocki L. Neurodevelopmental Disorders Associated with Abnormal Gene Dosage: Smith-Magenis and Potocki-Lupski Syndromes. J Pediatr Genet 2015; 4:159-67. [PMID: 27617127 DOI: 10.1055/s-0035-1564443] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are reciprocal contiguous gene syndromes within the well-characterized 17p11.2 region. Approximately 3.6 Mb microduplication of 17p11.2, known as PTLS, represents the mechanistically predicted homologous recombination reciprocal of the SMS microdeletion, both resulting in multiple congenital anomalies. Mouse model studies have revealed that the retinoic acid-inducible 1 gene (RAI1) within the SMS and PTLS critical genomic interval is the dosage-sensitive gene responsible for the major phenotypic features in these disorders. Even though PTLS and SMS share the same genomic region, clinical manifestations and behavioral issues are distinct and in fact some mirror traits may be on opposite ends of a given phenotypic spectrum. We describe the neurobehavioral phenotypes of SMS and PTLS patients during different life phases as well as clinical guidelines for diagnosis and a multidisciplinary approach once diagnosis is confirmed by array comparative genomic hybridization or RAI1 gene sequencing. The main goal is to increase awareness of these rare disorders because an earlier diagnosis will lead to more timely developmental intervention and medical management which will improve clinical outcome.
Collapse
Affiliation(s)
- Juanita Neira-Fresneda
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States; Texas Children's Hospital, Houston, Texas, United States
| |
Collapse
|
43
|
Zhang F, Lupski JR. Non-coding genetic variants in human disease. Hum Mol Genet 2015; 24:R102-10. [PMID: 26152199 DOI: 10.1093/hmg/ddv259] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/03/2015] [Indexed: 01/16/2023] Open
Abstract
Genetic variants, including single-nucleotide variants (SNVs) and copy number variants (CNVs), in the non-coding regions of the human genome can play an important role in human traits and complex diseases. Most of the genome-wide association study (GWAS) signals map to non-coding regions and potentially point to non-coding variants, whereas their functional interpretation is challenging. In this review, we discuss the human non-coding variants and their contributions to human diseases in the following four parts. (i) Functional annotations of non-coding SNPs mapped by GWAS: we discuss recent progress revealing some of the molecular mechanisms for GWAS signals affecting gene function. (ii) Technical progress in interpretation of non-coding variants: we briefly describe some of the technologies for functional annotations of non-coding variants, including the methods for genome-wide mapping of chromatin interaction, computational tools for functional predictions and the new genome editing technologies useful for dissecting potential functional consequences of non-coding variants. (iii) Non-coding CNVs in human diseases: we review our emerging understanding the role of non-coding CNVs in human disease. (iv) Compound inheritance of large genomic deletions and non-coding variants: compound inheritance at a locus consisting of coding variants plus non-coding ones is described.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA and Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
44
|
Lupski JR. Structural variation mutagenesis of the human genome: Impact on disease and evolution. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:419-36. [PMID: 25892534 PMCID: PMC4609214 DOI: 10.1002/em.21943] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 05/19/2023]
Abstract
Watson-Crick base-pair changes, or single-nucleotide variants (SNV), have long been known as a source of mutations. However, the extent to which DNA structural variation, including duplication and deletion copy number variants (CNV) and copy number neutral inversions and translocations, contribute to human genome variation and disease has been appreciated only recently. Moreover, the potential complexity of structural variants (SV) was not envisioned; thus, the frequency of complex genomic rearrangements and how such events form remained a mystery. The concept of genomic disorders, diseases due to genomic rearrangements and not sequence-based changes for which genomic architecture incite genomic instability, delineated a new category of conditions distinct from chromosomal syndromes and single-gene Mendelian diseases. Nevertheless, it is the mechanistic understanding of CNV/SV formation that has promoted further understanding of human biology and disease and provided insights into human genome and gene evolution. Environ. Mol. Mutagen. 56:419-436, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza Room 604B, Houston, Texas
| |
Collapse
|
45
|
Banka S, Cain SA, Carim S, Daly SB, Urquhart JE, Erdem G, Harris J, Bottomley M, Donnai D, Kerr B, Kingston H, Superti-Furga A, Unger S, Ennis H, Worthington J, Herrick AL, Merry CLR, Yue WW, Kielty CM, Newman WG. Leri's pleonosteosis, a congenital rheumatic disease, results from microduplication at 8q22.1 encompassing GDF6 and SDC2 and provides insight into systemic sclerosis pathogenesis. Ann Rheum Dis 2015; 74:1249-56. [PMID: 24442880 DOI: 10.1136/annrheumdis-2013-204309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/02/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Leri's pleonosteosis (LP) is an autosomal dominant rheumatic condition characterised by flexion contractures of the interphalangeal joints, limited motion of multiple joints, and short broad metacarpals, metatarsals and phalanges. Scleroderma-like skin thickening can be seen in some individuals with LP. We undertook a study to characterise the phenotype of LP and identify its genetic basis. METHODS AND RESULTS Whole-genome single-nucleotide polymorphism genotyping in two families with LP defined microduplications of chromosome 8q22.1 as the cause of this condition. Expression analysis of dermal fibroblasts from affected individuals showed overexpression of two genes, GDF6 and SDC2, within the duplicated region, leading to dysregulation of genes that encode proteins of the extracellular matrix and downstream players in the transforming growth factor (TGF)-β pathway. Western blot analysis revealed markedly decreased inhibitory SMAD6 levels in patients with LP. Furthermore, in a cohort of 330 systemic sclerosis cases, we show that the minor allele of a missense SDC2 variant, p.Ser71Thr, could confer protection against disease (p<1×10(-5)). CONCLUSIONS Our work identifies the genetic cause of LP in these two families, demonstrates the phenotypic range of the condition, implicates dysregulation of extracellular matrix homoeostasis genes in its pathogenesis, and highlights the link between TGF-β/SMAD signalling, growth/differentiation factor 6 and syndecan-2. We propose that LP is an additional member of the growing 'TGF-β-pathies' group of musculoskeletal disorders, which includes Myhre syndrome, acromicric dysplasia, geleophysic dysplasias, Weill-Marchesani syndromes and stiff skin syndrome. Identification of a systemic sclerosis-protective SDC2 variant lays the foundation for exploration of the role of syndecan-2 in systemic sclerosis in the future.
Collapse
MESH Headings
- Adult
- Aged
- Child, Preschool
- Chromosomes, Human, Pair 8/genetics
- Extracellular Matrix/metabolism
- Facies
- Female
- Fibroblasts/metabolism
- Gene Duplication
- Gene Expression Profiling
- Growth Differentiation Factor 6/genetics
- Growth Differentiation Factor 6/metabolism
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/metabolism
- Hand Deformities, Congenital/physiopathology
- Humans
- Infant
- Joint Diseases/congenital
- Joint Diseases/genetics
- Joint Diseases/metabolism
- Joint Diseases/physiopathology
- Male
- Middle Aged
- Ossification, Heterotopic/genetics
- Ossification, Heterotopic/metabolism
- Ossification, Heterotopic/physiopathology
- Phenotype
- Scleroderma, Systemic/genetics
- Signal Transduction
- Syndecan-2/genetics
- Syndecan-2/metabolism
- Transforming Growth Factor beta/metabolism
- Young Adult
Collapse
Affiliation(s)
- Siddharth Banka
- Faculty of Medical and Human Sciences, Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Stuart A Cain
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Sabrya Carim
- Faculty of Medical and Human Sciences, Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Sarah B Daly
- Faculty of Medical and Human Sciences, Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Jill E Urquhart
- Faculty of Medical and Human Sciences, Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Günhan Erdem
- Faculty of Medical and Human Sciences, Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK Department of Environmental Health and Biosafety, Health College, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Jade Harris
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Michelle Bottomley
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Dian Donnai
- Faculty of Medical and Human Sciences, Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Bronwyn Kerr
- Faculty of Medical and Human Sciences, Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Helen Kingston
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| | - Andreas Superti-Furga
- Department of Pediatrics, University of Lausanne, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sheila Unger
- Department of Genetics, University of Lausanne, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Holly Ennis
- Arthritis Research UK Epidemiology Unit, Centre for Musculoskeletal Research, University of Manchester, MAHSC, Manchester, UK
| | - Jane Worthington
- Arthritis Research UK Epidemiology Unit, Centre for Musculoskeletal Research, University of Manchester, MAHSC, Manchester, UK NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academy of Health Sciences, Manchester, UK
| | - Ariane L Herrick
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academy of Health Sciences, Manchester, UK
| | - Catherine L R Merry
- Stem Cell Glycobiology Group, School of Materials, University of Manchester, Manchester, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Cay M Kielty
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - William G Newman
- Faculty of Medical and Human Sciences, Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Manchester, UK
| |
Collapse
|
46
|
A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology. Am J Hum Genet 2015; 96:784-96. [PMID: 25937446 DOI: 10.1016/j.ajhg.2015.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
The 16p11.2 600 kb copy-number variants (CNVs) are associated with mirror phenotypes on BMI, head circumference, and brain volume and represent frequent genetic lesions in autism spectrum disorders (ASDs) and schizophrenia. Here we interrogated the transcriptome of individuals carrying reciprocal 16p11.2 CNVs. Transcript perturbations correlated with clinical endophenotypes and were enriched for genes associated with ASDs, abnormalities of head size, and ciliopathies. Ciliary gene expression was also perturbed in orthologous mouse models, raising the possibility that ciliary dysfunction contributes to 16p11.2 pathologies. In support of this hypothesis, we found structural ciliary defects in the CA1 hippocampal region of 16p11.2 duplication mice. Moreover, by using an established zebrafish model, we show genetic interaction between KCTD13, a key driver of the mirrored neuroanatomical phenotypes of the 16p11.2 CNV, and ciliopathy-associated genes. Overexpression of BBS7 rescues head size and neuroanatomical defects of kctd13 morphants, whereas suppression or overexpression of CEP290 rescues phenotypes induced by KCTD13 under- or overexpression, respectively. Our data suggest that dysregulation of ciliopathy genes contributes to the clinical phenotypes of these CNVs.
Collapse
|
47
|
Abstract
Recent years have witnessed a flurry of important technological and methodological developments in the discovery and analysis of copy number variations (CNVs), which are increasingly enabling the systematic evaluation of their impact on a broad range of phenotypes from molecular-level (intermediate) traits to higher-order clinical phenotypes. Like single nucleotide variants in the human genome, CNVs have been linked to complex traits in humans, including disease and drug response. These recent developments underscore the importance of incorporating complex forms of genetic variation into disease mapping studies and promise to transform our understanding of genome function and the genetic basis of disease. Here we review some of the findings that have emerged from transcriptome studies of CNVs facilitated by the rapid advances in -omics technologies and corresponding methodologies.
Collapse
|
48
|
Schrodi SJ, DeBarber A, He M, Ye Z, Peissig P, Van Wormer JJ, Haws R, Brilliant MH, Steiner RD. Prevalence estimation for monogenic autosomal recessive diseases using population-based genetic data. Hum Genet 2015; 134:659-69. [PMID: 25893794 DOI: 10.1007/s00439-015-1551-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/05/2015] [Indexed: 01/28/2023]
Abstract
Genetic methods can complement epidemiological surveys and clinical registries in determining prevalence of monogenic autosomal recessive diseases. Several large population-based genetic databases, such as the NHLBI GO Exome Sequencing Project, are now publically available. By assuming Hardy-Weinberg equilibrium, the frequency of individuals homozygous in the general population for a particular pathogenic allele can be directly calculated from a sample of chromosomes where some harbor the pathogenic allele. Further assuming that the penetrance of the pathogenic allele(s) is known, the prevalence of recessive phenotypes can be determined. Such work can inform public health efforts for rare recessive diseases. A Bayesian estimation procedure has yet to be applied to the problem of estimating disease prevalence from large population-based genetic data. A Bayesian framework is developed to derive the posterior probability density of monogenic, autosomal recessive phenotypes. Explicit equations are presented for the credible intervals of these disease prevalence estimates. A primary impediment to performing accurate disease prevalence calculations is the determination of truly pathogenic alleles. This issue is discussed, but in many instances remains a significant barrier to investigations solely reliant on statistical interrogation--functional studies can provide important information for solidifying evidence of variant pathogenicity. We also discuss several challenges to these efforts, including the population structure in the sample of chromosomes, the treatment of allelic heterogeneity, and reduced penetrance of pathogenic variants. To illustrate the application of these methods, we utilized recently published genetic data collected on a large sample from the Schmiedeleut Hutterites. We estimate prevalence and calculate 95% credible intervals for 13 autosomal recessive diseases using these data. In addition, the Bayesian estimation procedure is applied to data from a central European study of hereditary fructose intolerance. The methods described herein show a viable path to robustly estimating both the expected prevalence of autosomal recessive phenotypes and corresponding credible intervals using population-based genetic databases that have recently become available. As these genetic databases increase in number and size with the advent of cost-effective next-generation sequencing, we anticipate that these methods and approaches may be helpful in recessive disease prevalence calculations, potentially impacting public health management, health economic analyses, and treatment of rare diseases.
Collapse
Affiliation(s)
- Steven J Schrodi
- Center for Human Genetics, Marshfield Clinic Research Foundation, 1000 N Oak Ave-MLR, Marshfield, WI, 54449, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kloosterman WP, Hochstenbach R. Deciphering the pathogenic consequences of chromosomal aberrations in human genetic disease. Mol Cytogenet 2014; 7:100. [PMID: 25606056 PMCID: PMC4299681 DOI: 10.1186/s13039-014-0100-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/08/2014] [Indexed: 01/14/2023] Open
Abstract
Chromosomal aberrations include translocations, deletions, duplications, inversions, aneuploidies and complex rearrangements. They underlie genetic disease in roughly 15% of patients with multiple congenital abnormalities and/or mental retardation (MCA/MR). In genetic diagnostics, the pathogenicity of chromosomal aberrations in these patients is typically assessed based on criteria such as phenotypic similarity to other patients with the same or overlapping aberration, absence in healthy individuals, de novo occurrence, and protein coding gene content. However, a thorough understanding of the molecular mechanisms that lead to MCA/MR as a result of chromosome aberrations is often lacking. Chromosome aberrations can affect one or more genes in a complex manner, such as by changing the regulation of gene expression, by disrupting exons, and by creating fusion genes. The precise delineation of breakpoints by whole-genome sequencing enables the construction of local genomic architecture and facilitates the prediction of the molecular determinants of the patient's phenotype. Here, we review current methods for breakpoint identification and their impact on the interpretation of chromosome aberrations in patients with MCA/MR. In addition, we discuss opportunities to dissect disease mechanisms based on large-scale genomic technologies and studies in model organisms.
Collapse
Affiliation(s)
- Wigard P Kloosterman
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | - Ron Hochstenbach
- Department of Medical Genetics, Genome Diagnostics, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
50
|
Palumbo O, Palumbo P, Delvecchio M, Palladino T, Stallone R, Crisetti M, Zelante L, Carella M. Microdeletion of 12q24.31: report of a girl with intellectual disability, stereotypies, seizures and facial dysmorphisms. Am J Med Genet A 2014; 167A:438-44. [PMID: 25428890 DOI: 10.1002/ajmg.a.36872] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 10/04/2014] [Indexed: 12/17/2022]
Abstract
We provide a detailed clinical and molecular characterization of an 11-year-old female patient presenting with neurodevelopmental delay (NDD), intellectual disability (ID), seizures, stereotypies and dysmorphic features. Chromosomal microarrays analysis (CMA) detected a small, rare de novo deletion on chromosome 12q24.31 encompassing 31 protein-coding RefSeq genes and a microRNA. Phenotypic comparison with molecularly well-defined cases previously reported in the literature harboring an overlapping 12q24.31 microdeletion indicate that these patients shared common clinical features including neurodevelopmental delay, intellectual disability and behavioral problems. Also, seizures and dysmorphic features are frequent and a consistent pattern was recognized. Since there are remarkable resemblance between the patient described here and at least another one previously reported, our report is provides supportive evidence for the existence of an emerging syndrome caused by a microdeletion in 12q24.31. We propose a minimal region shared among patients contributing to the etiology of the common clinical features observed suggesting as candidate, for the first time, the gene SETD1B which is a component of a histone methyltransferase complex. In addition, we speculate on the possible contributive role of the MIR4304 to some clinical features observed in our patient. Evaluation of more patients with well-characterized deletions within 12q24.31, as well as careful clinical assessment of them, is needed to corroborate our hypothesis, to perform a more detailed genotype-phenotype correlation and, finally, to fully delineate this emerging microdeletion syndrome.
Collapse
Affiliation(s)
- Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | | | | | | | | | | | | | | |
Collapse
|