1
|
Liu F, Zhang H, Wang H, Zhu X, Li S, Jiang N, Yu C, Liu Y, Xiao Y. The homeodomain transcription factor CEH-37 regulates PMK-1/p38 MAPK pathway to protect against intestinal infection via the phosphatase VHP-1. Cell Mol Life Sci 2023; 80:312. [PMID: 37796333 PMCID: PMC11072455 DOI: 10.1007/s00018-023-04970-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Increasing evidence indicate that the expression of defense genes at the right place and the right time are regulated by host-defense transcription factors. However, the precise mechanisms of this regulation are not well understood. Homeodomain transcription factors, encoded by homeobox genes, play crucial role for the development of multicellular eukaryotes. In this study, we demonstrated that homeodomain transcription factor CEH-37 (known as OTX2 in mammals) was a key transcription factor for host defense in Caenorhabditis elegans. Meanwhile, CEH-37 acted in the intestine to protect C. elegans against pathogen infection. We further showed that the homeodomain transcription factor CEH-37 positively regulated PMK-1/ p38 MAPK activity to promote the intestinal immunity via suppression phosphatase VHP-1. Furthermore, we demonstrated that this function was conserved, because the human homeodomain transcription factor OTX2 also exhibited protective function in lung epithelial cells during Pseudomonas aeruginosa infection. Thus, our work reveal that CEH-37/OTX2 is a evolutionarily conserved transcription factor for defense against pathogen infection. The finding provides a model in which CEH-37 decreases VHP-1 phosphatase activity, allowing increased stimulation of PMK-1/p38 MAPK phosphorylation cascade in the intestine for pathogen resistance.
Collapse
Affiliation(s)
- Fang Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Hongjiao Zhang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Haijuan Wang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Nian Jiang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Changyan Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China.
| | - Yi Xiao
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- College of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Institute of Life Sciences, Zunyi Medical University, Zunyi , 563000, Guizhou, China.
| |
Collapse
|
2
|
Traa A, Shields H, AlOkda A, Rudich ZD, Ko B, Van Raamsdonk JM. Endosomal trafficking protein TBC-2 is required for the longevity of long-lived mitochondrial mutants. FRONTIERS IN AGING 2023; 4:1145198. [PMID: 37261067 PMCID: PMC10228650 DOI: 10.3389/fragi.2023.1145198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Mutations that result in a mild impairment of mitochondrial function can extend longevity. Previous studies have shown that the increase in lifespan is dependent on stress responsive transcription factors, including DAF-16/FOXO, which exhibits increased nuclear localization in long-lived mitochondrial mutants. We recently found that the localization of DAF-16 within the cell is dependent on the endosomal trafficking protein TBC-2. Based on the important role of DAF-16 in both longevity and resistance to stress, we examined the effect of disrupting tbc-2 on lifespan and stress resistance in the long-lived mitochondrial mutants nuo-6 and isp-1 in Caenorhabditis elegans. Loss of tbc-2 markedly reduced the long lifespans of both mitochondrial mutants. Disruption of tbc-2 also decreased resistance to chronic oxidative stress in nuo-6 and isp-1 mutants but had little or no detrimental effect on resistance to other stressors. In contrast, tbc-2 inhibition had no effect on oxidative stress resistance or lifespan in isp-1 worms when DAF-16 is absent, suggesting that the effect of tbc-2 on mitochondrial mutant lifespan may be mediated by mislocalization of DAF-16. However, this result is complicated by the fact that deletion of daf-16 markedly decreases both phenotypes in isp-1 worms, which could result in a floor effect. In exploring the contribution of DAF-16 further, we found that disruption of tbc-2 did not affect the nuclear localization of DAF-16 in isp-1 worms or prevent the upregulation of DAF-16 target genes in the long-lived mitochondrial mutants. This suggests the possibility that the effect of tbc-2 on lifespan and stress resistance in the long-lived mitochondrial mutants is at least partially independent of its effects on DAF-16 localization. Overall, this work demonstrates the importance of endosomal trafficking for the extended longevity and enhanced stress resistance resulting from mild impairment of mitochondrial function.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Hazel Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Zenith D. Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bokang Ko
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M. Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Traa A, Soo SK, AlOkda A, Ko B, Rocheleau CE, Van Raamsdonk JM. Endosomal trafficking protein TBC-2 modulates stress resistance and lifespan through DAF-16-dependent and independent mechanisms. Aging Cell 2023; 22:e13762. [PMID: 36794357 PMCID: PMC10014066 DOI: 10.1111/acel.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 02/17/2023] Open
Abstract
The FOXO transcription factor, DAF-16, plays an integral role in insulin/IGF-1 signaling (IIS) and stress response. In conditions of stress or decreased IIS, DAF-16 moves to the nucleus where it activates genes that promote survival. To gain insight into the role of endosomal trafficking in resistance to stress, we disrupted tbc-2, which encodes a GTPase activating protein that inhibits RAB-5 and RAB-7. We found that tbc-2 mutants have decreased nuclear localization of DAF-16 in response to heat stress, anoxia, and bacterial pathogen stress, but increased nuclear localization of DAF-16 in response to chronic oxidative stress and osmotic stress. tbc-2 mutants also exhibit decreased upregulation of DAF-16 target genes in response to stress. To determine whether the rate of nuclear localization of DAF-16 affected stress resistance in these animals, we examined survival after exposure to multiple exogenous stressors. Disruption of tbc-2 decreased resistance to heat stress, anoxia, and bacterial pathogen stress in both wild-type worms and stress-resistant daf-2 insulin/IGF-1 receptor mutants. Similarly, deletion of tbc-2 decreases lifespan in both wild-type worms and daf-2 mutants. When DAF-16 is absent, the loss of tbc-2 is still able to decrease lifespan but has little or no impact on resistance to most stresses. Combined, this suggests that disruption of tbc-2 affects lifespan through both DAF-16-dependent and DAF-16-independent pathways, while the effect of tbc-2 deletion on resistance to stress is primarily DAF-16-dependent. Overall, this work demonstrates the importance of endosomal trafficking for the proper nuclear localization of DAF-16 during stress and that perturbation of normal endosomal trafficking is sufficient to decrease both stress resistance and lifespan.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bokang Ko
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christian E Rocheleau
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Lazaro-Pena MI, Cornwell AB, Diaz-Balzac CA, Das R, Macoretta N, Thakar J, Samuelson AV. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Caenorhabditis elegans aging and systemically regulates longevity from serotonergic and GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523661. [PMID: 36711523 PMCID: PMC9882034 DOI: 10.1101/2023.01.11.523661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 is co-expressed with key longevity transcription factors, including daf-16 (FOXO), hlh-30 (TFEB), skn-1 (Nrf2), and hif-1 , which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity. Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.
Collapse
|
5
|
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102:1449-1494. [PMID: 35343830 DOI: 10.1152/physrev.00017.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. While far from understood in its full complexity, it is scientifically well-established that aging is influenced by genetic and environmental factors, and can be modulated by various interventions. One of aging's early hallmarks are aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect lifespan and healthspan across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice), and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Christoph Benner
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
6
|
Dutta N, Garcia G, Higuchi-Sanabria R. Hijacking Cellular Stress Responses to Promote Lifespan. FRONTIERS IN AGING 2022; 3:860404. [PMID: 35821861 PMCID: PMC9261414 DOI: 10.3389/fragi.2022.860404] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.
Collapse
|
7
|
Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis. Nat Commun 2022; 13:651. [PMID: 35115503 PMCID: PMC8814026 DOI: 10.1038/s41467-022-28272-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Sustained mitochondrial fitness relies on coordinated biogenesis and clearance. Both processes are regulated by constant targeting of proteins into the organelle. Thus, mitochondrial protein import sets the pace for mitochondrial abundance and function. However, our understanding of mitochondrial protein translocation as a regulator of longevity remains enigmatic. Here, we targeted the main protein import translocases and assessed their contribution to mitochondrial abundance and organismal physiology. We find that reduction in cellular mitochondrial load through mitochondrial protein import system suppression, referred to as MitoMISS, elicits a distinct longevity paradigm. We show that MitoMISS triggers the mitochondrial unfolded protein response, orchestrating an adaptive reprogramming of metabolism. Glycolysis and de novo serine biosynthesis are causatively linked to longevity, whilst mitochondrial chaperone induction is dispensable for lifespan extension. Our findings extent the pro-longevity role of UPRmt and provide insight, relevant to the metabolic alterations that promote or undermine survival and longevity. Mitochondrial function is linked to lifespan. Here the authors show that inhibition of mitochondrial protein import leads to a reduction in mitochondrial abundance and extends lifespan in Caenorhabditis elegans via activation of glycolysis and de novo serine biosynthesis.
Collapse
|
8
|
Jung Y, Artan M, Kim N, Yeom J, Hwang AB, Jeong DE, Altintas Ö, Seo K, Seo M, Lee D, Hwang W, Lee Y, Sohn J, Kim EJE, Ju S, Han SK, Nam HJ, Adams L, Ryu Y, Moon DJ, Kang C, Yoo JY, Park SK, Ha CM, Hansen M, Kim S, Lee C, Park SY, Lee SJV. MON-2, a Golgi protein, mediates autophagy-dependent longevity in Caenorhabditis elegans. SCIENCE ADVANCES 2021; 7:eabj8156. [PMID: 34860542 PMCID: PMC8641931 DOI: 10.1126/sciadv.abj8156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/14/2021] [Indexed: 06/02/2023]
Abstract
The Golgi apparatus plays a central role in trafficking cargoes such as proteins and lipids. Defects in the Golgi apparatus lead to various diseases, but its role in organismal longevity is largely unknown. Using a quantitative proteomic approach, we found that a Golgi protein, MON-2, was up-regulated in long-lived Caenorhabditis elegans mutants with mitochondrial respiration defects and was required for their longevity. Similarly, we showed that DOP1/PAD-1, which acts with MON-2 to traffic macromolecules between the Golgi and endosome, contributed to the longevity of respiration mutants. Furthermore, we demonstrated that MON-2 was required for up-regulation of autophagy, a longevity-associated recycling process, by activating the Atg8 ortholog GABARAP/LGG-1 in C. elegans. Consistently, we showed that mammalian MON2 activated GABARAPL2 through physical interaction, which increased autophagic flux in mammalian cells. Thus, the evolutionarily conserved role of MON2 in trafficking between the Golgi and endosome is an integral part of autophagy-mediated longevity.
Collapse
Affiliation(s)
- Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Murat Artan
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Jeonghun Yeom
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Ara B. Hwang
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Özlem Altintas
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Mihwa Seo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Eun Ji E. Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hyun-Jun Nam
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Linnea Adams
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Youngjae Ryu
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, South Korea
| | - Dong Jin Moon
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Chanhee Kang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu 41068, South Korea
| | - Malene Hansen
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| |
Collapse
|
9
|
Campos JC, Wu Z, Rudich PD, Soo SK, Mistry M, Ferreira JC, Blackwell TK, Van Raamsdonk JM. Mild mitochondrial impairment enhances innate immunity and longevity through ATFS-1 and p38 signaling. EMBO Rep 2021; 22:e52964. [PMID: 34617666 PMCID: PMC8647147 DOI: 10.15252/embr.202152964] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
While mitochondrial function is essential for life in all multicellular organisms, a mild impairment of mitochondrial function can extend longevity in model organisms. By understanding the molecular mechanisms involved, these pathways might be targeted to promote healthy aging. In studying two long-lived mitochondrial mutants in C. elegans, we found that disrupting subunits of the mitochondrial electron transport chain results in upregulation of genes involved in innate immunity, which is driven by the mitochondrial unfolded protein response (mitoUPR) but also dependent on the canonical p38-mediated innate immune signaling pathway. Both of these pathways are required for the increased resistance to bacterial pathogens and extended longevity of the long-lived mitochondrial mutants, as is the FOXO transcription factor DAF-16. This work demonstrates that both the p38-mediated innate immune signaling pathway and the mitoUPR act in concert on the same innate immunity genes to promote pathogen resistance and longevity and that input from the mitochondria can extend longevity by signaling through these pathways. This indicates that multiple evolutionarily conserved genetic pathways controlling innate immunity also function to modulate lifespan.
Collapse
Affiliation(s)
- Juliane C Campos
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.,Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.,Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Meeta Mistry
- Bioinformatics Core, Harvard School of Public Health, Harvard Medical School, Boston, MA, USA
| | - Julio Cb Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - T Keith Blackwell
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jeremy M Van Raamsdonk
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Gerisch B, Tharyan RG, Mak J, Denzel SI, Popkes-van Oepen T, Henn N, Antebi A. HLH-30/TFEB Is a Master Regulator of Reproductive Quiescence. Dev Cell 2020; 53:316-329.e5. [PMID: 32302543 DOI: 10.1016/j.devcel.2020.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 01/28/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022]
Abstract
All animals have evolved the ability to survive nutrient deprivation, and nutrient signaling pathways are conserved modulators of health and disease. In C. elegans, late-larval starvation provokes the adult reproductive diapause (ARD), a long-lived quiescent state that enables survival for months without food, yet underlying molecular mechanisms remain unknown. Here, we show that ARD is distinct from other forms of diapause, showing little requirement for canonical longevity pathways, autophagy, and fat metabolism. Instead it requires the HLH-30/TFEB transcription factor to promote the morphological and physiological remodeling involved in ARD entry, survival, and recovery, suggesting that HLH-30 is a master regulator of reproductive quiescence. HLH-30 transcriptome and genetic analyses reveal that Max-like HLH factors, AMP-kinase, mTOR, protein synthesis, and mitochondrial fusion are target processes that promote ARD longevity. ARD thus rewires metabolism to ensure long-term survival and may illuminate similar mechanisms acting in stem cell quiescence and long-term fasting.
Collapse
Affiliation(s)
- Birgit Gerisch
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Rebecca George Tharyan
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Jennifer Mak
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Sarah I Denzel
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne 50931, Germany
| | - Till Popkes-van Oepen
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne 50931, Germany
| | - Nadine Henn
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Adam Antebi
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
11
|
Dilberger B, Baumanns S, Schmitt F, Schmiedl T, Hardt M, Wenzel U, Eckert GP. Mitochondrial Oxidative Stress Impairs Energy Metabolism and Reduces Stress Resistance and Longevity of C. elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6840540. [PMID: 31827694 PMCID: PMC6885289 DOI: 10.1155/2019/6840540] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mitochondria supply cellular energy and are key regulators of intrinsic cell death and consequently affect longevity. The nematode Caenorhabditis elegans is frequently used for lifespan assays. Using paraquat (PQ) as a generator of reactive oxygen species, we here describe its effects on the acceleration of aging and the associated dysfunctions at the level of mitochondria. METHODS Nematodes were incubated with various concentrations of paraquat in a heat-stress resistance assay (37°C) using nucleic staining. The most effective concentration was validated under physiological conditions, and chemotaxis was assayed. Mitochondrial membrane potential (ΔΨm) was measured using rhodamine 123, and activity of respiratory chain complexes determined using a Clark-type electrode in isolated mitochondria. Energetic metabolites in the form of pyruvate, lactate, and ATP were determined using commercial kits. Mitochondrial integrity and structure was investigated using transmission electron microscopy. Live imaging after staining with fluorescent dyes was used to measure mitochondrial and cytosolic ROS. Expression of longevity- and mitogenesis-related genes were evaluated using qRT-PCR. RESULTS PQ (5 mM) significantly increased ROS formation in nematodes and reduced the chemotaxis, the physiological lifespan, and the survival in assays for heat-stress resistance. The number of fragmented mitochondria significantly increased. The ∆Ψm, the activities of complexes I-IV of the mitochondrial respiratory chain, and the levels of pyruvate and lactate were significantly reduced, whereas ATP production was not affected. Transcript levels of genetic marker genes, atfs-1, atp-2, skn-1, and sir-2.1, were significantly upregulated after PQ incubation, which implicates a close connection between mitochondrial dysfunction and oxidative stress response. Expression levels of aak-2 and daf-16 were unchanged. CONCLUSION Using paraquat as a stressor, we here describe the association of oxidative stress, restricted energy metabolism, and reduced stress resistance and longevity in the nematode Caenorhabditis elegans making it a readily accessible in vivo model for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Benjamin Dilberger
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Stefan Baumanns
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Fabian Schmitt
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Tommy Schmiedl
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Martin Hardt
- Imaging Unit, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gunter P. Eckert
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
12
|
Wen Bin Goh W, Thalappilly S, Thibault G. Moving beyond the current limits of data analysis in longevity and healthy lifespan studies. Drug Discov Today 2019; 24:2273-2285. [PMID: 31499187 DOI: 10.1016/j.drudis.2019.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/03/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022]
Abstract
Living longer with sustainable quality of life is becoming increasingly important in aging populations. Understanding associative biological mechanisms have proven daunting, because of multigenicity and population heterogeneity. Although Big Data and Artificial Intelligence (AI) could help, naïve adoption is ill advised. We hold the view that model organisms are better suited for big-data analytics but might lack relevance because they do not immediately reflect the human condition. Resolving this hurdle and bridging the human-model organism gap will require some finesse. This includes improving signal:noise ratios by appropriate contextualization of high-throughput data, establishing consistency across multiple high-throughput platforms, and adopting supporting technologies that provide useful in silico and in vivo validation strategies.
Collapse
Affiliation(s)
- Wilson Wen Bin Goh
- Bio-Data Science and Education Research Group, School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| | - Subhash Thalappilly
- Lipid Regulation and Cell Stress Research Group, School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Guillaume Thibault
- Lipid Regulation and Cell Stress Research Group, School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Institute of Molecular and Cell Biology, A*STAR, 138673, Singapore.
| |
Collapse
|
13
|
Torgovnick A, Schiavi A, Shaik A, Kassahun H, Maglioni S, Rea SL, Johnson TE, Reinhardt HC, Honnen S, Schumacher B, Nilsen H, Ventura N. BRCA1 and BARD1 mediate apoptotic resistance but not longevity upon mitochondrial stress in Caenorhabditis elegans. EMBO Rep 2018; 19:embr.201845856. [PMID: 30366941 DOI: 10.15252/embr.201845856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 02/05/2023] Open
Abstract
Interventions that promote healthy aging are typically associated with increased stress resistance. Paradoxically, reducing the activity of core biological processes such as mitochondrial or insulin metabolism promotes the expression of adaptive responses, which in turn increase animal longevity and resistance to stress. In this study, we investigated the relation between the extended Caenorhabditis elegans lifespan elicited by reduction in mitochondrial functionality and resistance to genotoxic stress. We find that reducing mitochondrial activity during development confers germline resistance to DNA damage-induced cell cycle arrest and apoptosis in a cell-non-autonomous manner. We identified the C. elegans homologs of the BRCA1/BARD1 tumor suppressor genes, brc-1/brd-1, as mediators of the anti-apoptotic effect but dispensable for lifespan extension upon mitochondrial stress. Unexpectedly, while reduced mitochondrial activity only in the soma was not sufficient to promote longevity, its reduction only in the germline or in germline-less strains still prolonged lifespan. Thus, in animals with partial reduction in mitochondrial functionality, the mechanisms activated during development to safeguard the germline against genotoxic stress are uncoupled from those required for somatic robustness and animal longevity.
Collapse
Affiliation(s)
- Alessandro Torgovnick
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.,Clinic I of Internal Medicine, Center for Integrated Oncology, Center for Molecular Medicine and the CECAD Research Center, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Genome Stability in Aging and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Alfonso Schiavi
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Anjumara Shaik
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Henok Kassahun
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway.,Akershus University, Akershus, Norway
| | - Silvia Maglioni
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Shane L Rea
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Thomas E Johnson
- Institute for Behavioral Genetics & Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Hans C Reinhardt
- Clinic I of Internal Medicine, Center for Integrated Oncology, Center for Molecular Medicine and the CECAD Research Center, University of Cologne, Cologne, Germany
| | - Sebastian Honnen
- Medical Faculty, Institute of Toxicology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Björn Schumacher
- Medical Faculty, Institute for Genome Stability in Aging and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway.,Akershus University, Akershus, Norway
| | - Natascia Ventura
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany .,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Pomatto LCD, Davies KJA. Adaptive homeostasis and the free radical theory of ageing. Free Radic Biol Med 2018; 124:420-430. [PMID: 29960100 PMCID: PMC6098721 DOI: 10.1016/j.freeradbiomed.2018.06.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
The Free Radical Theory of Ageing, was first proposed by Denham Harman in the mid-1950's, based largely on work conducted by Rebeca Gerschman and Daniel Gilbert. At its core, the Free Radical Theory of Ageing posits that free radical and related oxidants, from the environment and internal metabolism, cause damage to cellular constituents that, over time, result in an accumulation of structural and functional problems. Several variations on the original concept have been advanced over the past six decades, including the suggestion of a central role for mitochondria-derived reactive species, and the proposal of an age-related decline in the effectiveness of protein, lipid, and DNA repair systems. Such innovations have helped the Free Radical Theory of Aging to achieve widespread popularity. Nevertheless, an ever-growing number of apparent 'exceptions' to the Theory have seriously undermined its acceptance. In part, we suggest, this has resulted from a rather simplistic experimental approach of knocking-out, knocking-down, knocking-in, or overexpressing antioxidant-related genes to determine effects on lifespan. In some cases such experiments have yielded results that appear to support the Free Radical Theory of Aging, but there are just as many published papers that appear to contradict the Theory. We suggest that free radicals and related oxidants are but one subset of stressors with which all life forms must cope over their lifespans. Adaptive Homeostasis is the mechanism by which organisms dynamically expand or contract the homeostatic range of stress defense and repair systems, employing a veritable armory of signal transduction pathways (such as the Keap1-Nrf2 system) to generate a complex profile of inducible and enzymatic protection that best fits the particular need. Viewed as a component of Adaptive Homeostasis, the Free Radical Theory of Aging appears both viable and robust.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and sciences, the University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Denzel MS, Lapierre LR, Mack HID. Emerging topics in C. elegans aging research: Transcriptional regulation, stress response and epigenetics. Mech Ageing Dev 2018; 177:4-21. [PMID: 30134144 PMCID: PMC6696993 DOI: 10.1016/j.mad.2018.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Key discoveries in aging research have been made possible with the use of model organisms. Caenorhabditis elegans is a short-lived nematode that has become a well-established system to study aging. The practicality and powerful genetic manipulations associated with this metazoan have revolutionized our ability to understand how organisms age. 25 years after the publication of the discovery of the daf-2 gene as a genetic modifier of lifespan, C. elegans remains as relevant as ever in the quest to understand the process of aging. Nematode aging research has proven useful in identifying transcriptional regulators, small molecule signals, cellular mechanisms, epigenetic modifications associated with stress resistance and longevity, and lifespan-extending compounds. Here, we review recent discoveries and selected topics that have emerged in aging research using this incredible little worm.
Collapse
Affiliation(s)
- Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| | | |
Collapse
|
16
|
Senchuk MM, Dues DJ, Schaar CE, Johnson BK, Madaj ZB, Bowman MJ, Winn ME, Van Raamsdonk JM. Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genet 2018. [PMID: 29522556 PMCID: PMC5862515 DOI: 10.1371/journal.pgen.1007268] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mild deficits in mitochondrial function have been shown to increase lifespan in multiple species including worms, flies and mice. Here, we study three C. elegans mitochondrial mutants (clk-1, isp-1 and nuo-6) to identify overlapping genetic pathways that contribute to their longevity. We find that genes regulated by the FOXO transcription factor DAF-16 are upregulated in all three strains, and that the transcriptional changes present in these worms overlap significantly with the long-lived insulin-IGF1 signaling pathway mutant daf-2. We show that DAF-16 and multiple DAF-16 interacting proteins (MATH-33, IMB-2, CST-1/2, BAR-1) are required for the full longevity of all three mitochondrial mutants. Our results suggest that the activation of DAF-16 in these mutants results from elevated levels of reactive oxygen species. Overall, this work reveals an overlapping genetic pathway required for longevity in three mitochondrial mutants, and, combined with previous work, demonstrates that DAF-16 is a downstream mediator of lifespan extension in multiple pathways of longevity. The use of genetic model organisms has permitted the identification of a large number of genes that influence longevity. These genes have been grouped into different pathways of lifespan extension, which have been proposed to modulate longevity by distinct mechanisms. In this work, we explore the mechanisms underlying longevity in three long-lived mitochondrial mutants in C. elegans. We find that all three mutants show upregulation of DAF-16/FOXO target genes and that DAF-16 as well as multiple proteins that function with DAF-16 are required for their longevity. Since DAF-16 has previously been shown to be responsible for the increase in lifespan resulting from decreasing insulin-IGF1 signaling, this indicates that different pathways of lifespan extension have overlapping mechanisms, and that DAF-16/FOXO is a common downstream mediator of longevity.
Collapse
Affiliation(s)
- Megan M. Senchuk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Dylan J. Dues
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Claire E. Schaar
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Benjamin K. Johnson
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Zachary B. Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Megan J. Bowman
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Mary E. Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Jeremy M. Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
17
|
Functional Characterization of Novel Circular RNA Molecule, circzip-2 and Its Synthesizing Gene zip-2 in C. elegans Model of Parkinson’s Disease. Mol Neurobiol 2018; 55:6914-6926. [DOI: 10.1007/s12035-018-0903-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/10/2018] [Indexed: 02/01/2023]
|
18
|
Mitohormesis, an Antiaging Paradigm. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:35-77. [DOI: 10.1016/bs.ircmb.2018.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Labbadia J, Brielmann RM, Neto MF, Lin YF, Haynes CM, Morimoto RI. Mitochondrial Stress Restores the Heat Shock Response and Prevents Proteostasis Collapse during Aging. Cell Rep 2017; 21:1481-1494. [PMID: 29117555 PMCID: PMC5726777 DOI: 10.1016/j.celrep.2017.10.038] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/18/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022] Open
Abstract
In Caenorhabditis elegans, the programmed repression of the heat shock response (HSR) accompanies the transition to reproductive maturity, leaving cells vulnerable to environmental stress and protein aggregation with age. To identify the factors driving this event, we performed an unbiased genetic screen for suppressors of stress resistance and identified the mitochondrial electron transport chain (ETC) as a central regulator of the age-related decline of the HSR and cytosolic proteostasis. Mild downregulation of ETC activity, either by genetic modulation or exposure to mitochondria-targeted xenobiotics, maintained the HSR in adulthood by increasing HSF-1 binding and RNA polymerase II recruitment at HSF-1 target genes. This resulted in a robust restoration of cytoplasmic proteostasis and increased vitality later in life, without detrimental effects on fecundity. We propose that low levels of mitochondrial stress regulate cytoplasmic proteostasis and healthspan during aging by coordinating the long-term activity of HSF-1 with conditions preclusive to optimal fitness.
Collapse
Affiliation(s)
- Johnathan Labbadia
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA; Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | - Renee M Brielmann
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Mario F Neto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Yi-Fan Lin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
20
|
Chang HW, Pisano S, Chaturbedi A, Chen J, Gordon S, Baruah A, Lee SS. Transcription factors CEP-1/p53 and CEH-23 collaborate with AAK-2/AMPK to modulate longevity in Caenorhabditis elegans. Aging Cell 2017; 16:814-824. [PMID: 28560849 PMCID: PMC5506430 DOI: 10.1111/acel.12619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 12/21/2022] Open
Abstract
A decline in mitochondrial electron transport chain (ETC) function has long been implicated in aging and various diseases. Recently, moderate mitochondrial ETC dysfunction has been found to prolong lifespan in diverse organisms, suggesting a conserved and complex role of mitochondria in longevity determination. Several nuclear transcription factors have been demonstrated to mediate the lifespan extension effect associated with partial impairment of the ETC, suggesting that compensatory transcriptional response to be crucial. In this study, we showed that the transcription factors CEP-1/p53 and CEH-23 act through a similar mechanism to modulate longevity in response to defective ETC in Caenorhabditis elegans. Genomewide gene expression profiling comparison revealed a new link between these two transcription factors and AAK-2/AMP kinase (AMPK) signaling. Further functional analyses suggested that CEP-1/p53 and CEH-23 act downstream of AAK-2/AMPK signaling and CRTC-1 transcriptional coactivator to promote stress resistance and lifespan. As AAK-2, CEP-1, and CEH-23 are all highly conserved, our findings likely provide important insights for understanding the organismal adaptive response to mitochondrial dysfunction in diverse organisms and will be relevant to aging and pathologies with a mitochondrial etiology in human.
Collapse
Affiliation(s)
- Hsin-Wen Chang
- Department of Molecular Biology and Genetics; Cornell University; Ithaca NY 14853 USA
| | - Steve Pisano
- Department of Molecular Biology and Genetics; Cornell University; Ithaca NY 14853 USA
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics; Cornell University; Ithaca NY 14853 USA
| | - Jennifer Chen
- Department of Molecular Biology and Genetics; Cornell University; Ithaca NY 14853 USA
| | - Sarah Gordon
- Department of Molecular Biology and Genetics; Cornell University; Ithaca NY 14853 USA
| | - Aiswarya Baruah
- Department of Molecular Biology and Genetics; Cornell University; Ithaca NY 14853 USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics; Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
21
|
Qureshi MA, Haynes CM, Pellegrino MW. The mitochondrial unfolded protein response: Signaling from the powerhouse. J Biol Chem 2017; 292:13500-13506. [PMID: 28687630 DOI: 10.1074/jbc.r117.791061] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are multifaceted and indispensable organelles required for cell performance. Accordingly, dysfunction to mitochondria can result in cellular decline and possibly the onset of disease. Cells use a variety of means to recover mitochondria and restore homeostasis, including the activation of retrograde pathways such as the mitochondrial unfolded protein response (UPRmt). In this Minireview, we will discuss how cells adapt to mitochondrial stress through UPRmt regulation. Furthermore, we will explore the current repertoire of biological functions that are associated with this essential stress-response pathway.
Collapse
Affiliation(s)
- Mohammed A Qureshi
- From the Department of Biology, University of Texas Arlington, Arlington, Texas 76019 and
| | - Cole M Haynes
- the Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Mark W Pellegrino
- From the Department of Biology, University of Texas Arlington, Arlington, Texas 76019 and
| |
Collapse
|
22
|
Dues DJ, Schaar CE, Johnson BK, Bowman MJ, Winn ME, Senchuk MM, Van Raamsdonk JM. Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans. Free Radic Biol Med 2017; 108:362-373. [PMID: 28392283 PMCID: PMC5493208 DOI: 10.1016/j.freeradbiomed.2017.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/24/2017] [Accepted: 04/02/2017] [Indexed: 12/19/2022]
Abstract
Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress. Our results suggest that elevated ROS levels in isp-1 worms cause the activation of multiple stress-response pathways including the mitochondrial unfolded protein response, the SKN-1-mediated stress response, and the hypoxia response. In addition, these worms have increased expression of specific antioxidant enzymes, including a marked upregulation of the inducible superoxide dismutase genes sod-3 and sod-5. Examining the contribution of sod-3 and sod-5 to the oxidative stress resistance in isp-1 worms revealed that loss of either of these genes increased resistance to oxidative stress, but not other forms of stress. Deletion of sod-3 or sod-5 decreased the lifespan of isp-1 worms and further exacerbated their slow physiologic rates. Thus, while deletion of sod-3 and sod-5 genes has little impact on stress resistance, physiologic rates or lifespan in wild-type worms, these genes are required for the longevity of isp-1 worms. Overall, this work shows that the increased resistance to oxidative stress in isp-1 worms does not account for their longevity, and that resistance to oxidative stress can be experimentally dissociated from lifespan.
Collapse
Affiliation(s)
- Dylan J Dues
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Claire E Schaar
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Benjamin K Johnson
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Megan J Bowman
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mary E Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Jeremy M Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
23
|
Bennett CF, Kwon JJ, Chen C, Russell J, Acosta K, Burnaevskiy N, Crane MM, Bitto A, Vander Wende H, Simko M, Pineda V, Rossner R, Wasko BM, Choi H, Chen S, Park S, Jafari G, Sands B, Perez Olsen C, Mendenhall AR, Morgan PG, Kaeberlein M. Transaldolase inhibition impairs mitochondrial respiration and induces a starvation-like longevity response in Caenorhabditis elegans. PLoS Genet 2017; 13:e1006695. [PMID: 28355222 PMCID: PMC5389855 DOI: 10.1371/journal.pgen.1006695] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/12/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dysfunction can increase oxidative stress and extend lifespan in Caenorhabditis elegans. Homeostatic mechanisms exist to cope with disruptions to mitochondrial function that promote cellular health and organismal longevity. Previously, we determined that decreased expression of the cytosolic pentose phosphate pathway (PPP) enzyme transaldolase activates the mitochondrial unfolded protein response (UPRmt) and extends lifespan. Here we report that transaldolase (tald-1) deficiency impairs mitochondrial function in vivo, as evidenced by altered mitochondrial morphology, decreased respiration, and increased cellular H2O2 levels. Lifespan extension from knockdown of tald-1 is associated with an oxidative stress response involving p38 and c-Jun N-terminal kinase (JNK) MAPKs and a starvation-like response regulated by the transcription factor EB (TFEB) homolog HLH-30. The latter response promotes autophagy and increases expression of the flavin-containing monooxygenase 2 (fmo-2). We conclude that cytosolic redox established through the PPP is a key regulator of mitochondrial function and defines a new mechanism for mitochondrial regulation of longevity.
Collapse
Affiliation(s)
- Christopher F. Bennett
- Department of Pathology, University of Washington, Seattle, WA, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
| | - Jane J. Kwon
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Christine Chen
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Joshua Russell
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Kathlyn Acosta
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Nikolay Burnaevskiy
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Matthew M. Crane
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Alessandro Bitto
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Helen Vander Wende
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Marissa Simko
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Victor Pineda
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Ryan Rossner
- Department of Pathology, University of Washington, Seattle, WA, United States of America
- Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, United States of America
| | - Brian M. Wasko
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Haeri Choi
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Shiwen Chen
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Shirley Park
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Gholamali Jafari
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Bryan Sands
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Carissa Perez Olsen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | | | - Philip G. Morgan
- Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
24
|
Identification of the Target of the Retrograde Response that Mediates Replicative Lifespan Extension in Saccharomyces cerevisiae. Genetics 2016; 204:659-673. [PMID: 27474729 DOI: 10.1534/genetics.116.188086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/25/2016] [Indexed: 01/13/2023] Open
Abstract
The retrograde response signals mitochondrial status to the nucleus, compensating for accumulating mitochondrial dysfunction during Saccharomyces cerevisiae aging and extending replicative lifespan. The histone acetylase Gcn5 is required for activation of nuclear genes and lifespan extension in the retrograde response. It is part of the transcriptional coactivators SAGA and SLIK, but it is not known which of these complexes is involved. Genetic manipulation showed that these complexes perform interchangeably in the retrograde response. These results, along with the finding that the histone deacetylase Sir2 was required for a robust retrograde response informed a bioinformatics screen that reduced to four the candidate genes causal for longevity of the 410 retrograde response target genes. Of the four, only deletion of PHO84 suppressed lifespan extension. Retrograde-response activation of PHO84 displayed some preference for SAGA. Increased PHO84 messenger RNA levels from a second copy of the gene in cells in which the retrograde response is not activated achieved >80% of the lifespan extension observed in the retrograde response. Our studies resolve questions involving the roles of SLIK and SAGA in the retrograde response, pointing to the cooperation of these complexes in gene activation. They also finally pinpoint the gene that is both necessary and sufficient to extend replicative lifespan in the retrograde response. The finding that this gene is PHO84 opens up a new set of questions about the mechanisms involved, as this gene is known to have pleiotropic effects.
Collapse
|
25
|
C. elegans screening strategies to identify pro-longevity interventions. Mech Ageing Dev 2016; 157:60-9. [PMID: 27473404 DOI: 10.1016/j.mad.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023]
Abstract
Drugs screenings in search of enhancers or suppressors of selected readout(s) are nowadays mainly carried out in single cells systems. These approaches are however limited when searching for compounds with effects at the organismal level. To overcome this drawback the use of different model organisms to carry out modifier screenings has exponentially grown in the past decade. Unique characteristics such as easy manageability, low cost, fast reproductive cycle, short lifespan, simple anatomy and genetic amenability, make the nematode Caenorhabditis elegans especially suitable for this purpose. Here we briefly review the different high-throughput and high-content screenings which exploited the nematode to identify new compounds extending healthy lifespan. In this context, we describe our recently developed screening strategy to search for pro-longevity interventions taking advantage of the very reproducible phenotypes observed in C. elegans upon different degrees of mitochondrial stress. Indeed, in Mitochondrial mutants, the processes induced to cope with mild mitochondrial alterations during development, and ultimately extending animal lifespan, lead to reduced size and induction of specific stress responses. Instead, upon strong mitochondrial dysfunction, worms arrest their development. Exploiting these automatically quantifiable phenotypic readouts, we developed a new screening approach using the Cellomics ArrayScanVTI-HCS Reader and identified a new pro-longevity drug.
Collapse
|
26
|
Munkácsy E, Khan MH, Lane RK, Borror MB, Park JH, Bokov AF, Fisher AL, Link CD, Rea SL. DLK-1, SEK-3 and PMK-3 Are Required for the Life Extension Induced by Mitochondrial Bioenergetic Disruption in C. elegans. PLoS Genet 2016; 12:e1006133. [PMID: 27420916 PMCID: PMC4946786 DOI: 10.1371/journal.pgen.1006133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction underlies numerous age-related pathologies. In an effort to uncover how the detrimental effects of mitochondrial dysfunction might be alleviated, we examined how the nematode C. elegans not only adapts to disruption of the mitochondrial electron transport chain, but in many instances responds with extended lifespan. Studies have shown various retrograde responses are activated in these animals, including the well-studied ATFS-1-dependent mitochondrial unfolded protein response (UPRmt). Such processes fall under the greater rubric of cellular surveillance mechanisms. Here we identify a novel p38 signaling cascade that is required to extend life when the mitochondrial electron transport chain is disrupted in worms, and which is blocked by disruption of the Mitochondrial-associated Degradation (MAD) pathway. This novel cascade is defined by DLK-1 (MAP3K), SEK-3 (MAP2K), PMK-3 (MAPK) and the reporter gene Ptbb-6::GFP. Inhibition of known mitochondrial retrograde responses does not alter induction of Ptbb-6::GFP, instead induction of this reporter often occurs in counterpoint to activation of SKN-1, which we show is under the control of ATFS-1. In those mitochondrial bioenergetic mutants which activate Ptbb-6::GFP, we find that dlk-1, sek-3 and pmk-3 are all required for their life extension.
Collapse
Affiliation(s)
- Erin Munkácsy
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Maruf H. Khan
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Rebecca K. Lane
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Megan B. Borror
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jae H. Park
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alex F. Bokov
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alfred L. Fisher
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas VA Health Care System, San Antonio, Texas, United States of America
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christopher D. Link
- Institute for Behavioral Genetics & Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
27
|
Lifespan-regulating genes in C. elegans. NPJ Aging Mech Dis 2016; 2:16010. [PMID: 28721266 PMCID: PMC5514992 DOI: 10.1038/npjamd.2016.10] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 01/20/2023] Open
Abstract
The molecular mechanisms underlying the aging process have garnered much attention in recent decades because aging is the most significant risk factor for many chronic diseases such as type 2 diabetes and cancer. Until recently, the aging process was not considered to be an actively regulated process; therefore, discovering that the insulin/insulin-like growth factor-1 signaling pathway is a lifespan-regulating genetic pathway in Caenorhabditis elegans was a major breakthrough that changed our understanding of the aging process. Currently, it is thought that animal lifespans are influenced by genetic and environmental factors. The genes involved in lifespan regulation are often associated with major signaling pathways that link the rate of aging to environmental factors. Although many of the major mechanisms governing the aging process have been identified from studies in short-lived model organisms such as yeasts, worms and flies, the same mechanisms are frequently observed in mammals, indicating that the genes and signaling pathways that regulate lifespan are highly conserved among different species. This review summarizes the lifespan-regulating genes, with a specific focus on studies in C. elegans.
Collapse
|
28
|
Quirós PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 2016; 17:213-26. [PMID: 26956194 DOI: 10.1038/nrm.2016.23] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria participate in crucial cellular processes such as energy harvesting and intermediate metabolism. Although mitochondria possess their own genome--a vestige of their bacterial origins and endosymbiotic evolution--most mitochondrial proteins are encoded in the nucleus. The expression of the mitochondrial proteome hence requires tight coordination between the two genomes to adapt mitochondrial function to the ever-changing cellular milieu. In this Review, we focus on the pathways that coordinate the communication between mitochondria and the nucleus during homeostasis and mitochondrial stress. These pathways include nucleus-to-mitochondria (anterograde) and mitochondria-to-nucleus (retrograde) communication, mitonuclear feedback signalling and proteostasis regulation, the integrated stress response and non-cell-autonomous communication. We discuss how mitonuclear communication safeguards cellular and organismal fitness and regulates lifespan.
Collapse
Affiliation(s)
- Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
29
|
Wang Y, Hekimi S. Mitochondrial dysfunction and longevity in animals: Untangling the knot. Science 2016; 350:1204-7. [PMID: 26785479 DOI: 10.1126/science.aac4357] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria generate adenosine 5'-triphosphate (ATP) and are a source of potentially toxic reactive oxygen species (ROS). It has been suggested that the gradual mitochondrial dysfunction that is observed to accompany aging could in fact be causal to the aging process. Here we review findings that suggest that age-dependent mitochondrial dysfunction is not sufficient to limit life span. Furthermore, mitochondrial ROS are not always deleterious and can even stimulate pro-longevity pathways. Thus, mitochondrial dysfunction plays a complex role in regulating longevity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada.
| |
Collapse
|
30
|
Finkel T. The metabolic regulation of aging. Nat Med 2015; 21:1416-23. [DOI: 10.1038/nm.3998] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
|
31
|
Hwang W, Artan M, Seo M, Lee D, Nam HG, Lee SV. Inhibition of elongin C promotes longevity and protein homeostasis via HIF-1 in C. elegans. Aging Cell 2015; 14:995-1002. [PMID: 26361075 PMCID: PMC4693473 DOI: 10.1111/acel.12390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2015] [Indexed: 01/17/2023] Open
Abstract
The transcription factor hypoxia‐inducible factor 1 (HIF‐1) is crucial for responses to low oxygen and promotes longevity in Caenorhabditis elegans. We previously performed a genomewide RNA interference screen and identified many genes that act as potential negative regulators of HIF‐1. Here, we functionally characterized these genes and found several novel genes that affected lifespan. The worm ortholog of elongin C, elc‐1, encodes a subunit of E3 ligase and transcription elongation factor. We found that knockdown of elc‐1 prolonged lifespan and delayed paralysis caused by impaired protein homeostasis. We further showed that elc‐1 RNA interference increased lifespan and protein homeostasis by upregulating HIF‐1. The roles of elongin C and HIF‐1 are well conserved in eukaryotes. Thus, our study may provide insights into the aging regulatory pathway consisting of elongin C and HIF‐1 in complex metazoans.
Collapse
Affiliation(s)
- Wooseon Hwang
- Department of Life SciencesPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
| | - Murat Artan
- Information Technology Convergence EngineeringPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
| | - Mihwa Seo
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
- Center for Plant Aging ResearchInstitute for Basic ScienceDaegu42988South Korea
| | - Dongyeop Lee
- Department of Life SciencesPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
| | - Hong Gil Nam
- Center for Plant Aging ResearchInstitute for Basic ScienceDaegu42988South Korea
- Department of New BiologyDGISTDaegu42988South Korea
| | - Seung‐Jae V. Lee
- Department of Life SciencesPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
- Information Technology Convergence EngineeringPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangGyeongbuk37673South Korea
| |
Collapse
|
32
|
Bitto A, Wang AM, Bennett CF, Kaeberlein M. Biochemical Genetic Pathways that Modulate Aging in Multiple Species. Cold Spring Harb Perspect Med 2015; 5:5/11/a025114. [PMID: 26525455 DOI: 10.1101/cshperspect.a025114] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms underlying biological aging have been extensively studied in the past 20 years with the avail of mainly four model organisms: the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, the fruitfly Drosophila melanogaster, and the domestic mouse Mus musculus. Extensive research in these four model organisms has identified a few conserved genetic pathways that affect longevity as well as metabolism and development. Here, we review how the mechanistic target of rapamycin (mTOR), sirtuins, adenosine monophosphate-activated protein kinase (AMPK), growth hormone/insulin-like growth factor 1 (IGF-1), and mitochondrial stress-signaling pathways influence aging and life span in the aforementioned models and their possible implications for delaying aging in humans. We also draw some connections between these biochemical pathways and comment on what new developments aging research will likely bring in the near future.
Collapse
Affiliation(s)
- Alessandro Bitto
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Adrienne M Wang
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | | | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
33
|
Tether mutations that restore function and suppress pleiotropic phenotypes of the C. elegans isp-1(qm150) Rieske iron-sulfur protein. Proc Natl Acad Sci U S A 2015; 112:E6148-57. [PMID: 26504246 DOI: 10.1073/pnas.1509416112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria play an important role in numerous diseases as well as normative aging. Severe reduction in mitochondrial function contributes to childhood disorders such as Leigh Syndrome, whereas mild disruption can extend the lifespan of model organisms. The Caenorhabditis elegans isp-1 gene encodes the Rieske iron-sulfur protein subunit of cytochrome c oxidoreductase (complex III of the electron transport chain). The partial loss of function allele, isp-1(qm150), leads to several pleiotropic phenotypes. To better understand the molecular mechanisms of ISP-1 function, we sought to identify genetic suppressors of the delayed development of isp-1(qm150) animals. Here we report a series of intragenic suppressors, all located within a highly conserved six amino acid tether region of ISP-1. These intragenic mutations suppress all of the evaluated isp-1(qm150) phenotypes, including developmental rate, pharyngeal pumping rate, brood size, body movement, activation of the mitochondrial unfolded protein response reporter, CO2 production, mitochondrial oxidative phosphorylation, and lifespan extension. Furthermore, analogous mutations show a similar effect when engineered into the budding yeast Rieske iron-sulfur protein Rip1, revealing remarkable conservation of the structure-function relationship of these residues across highly divergent species. The focus on a single subunit as causal both in generation and in suppression of diverse pleiotropic phenotypes points to a common underlying molecular mechanism, for which we propose a "spring-loaded" model. These observations provide insights into how gating and control processes influence the function of ISP-1 in mediating pleiotropic phenotypes including developmental rate, movement, sensitivity to stress, and longevity.
Collapse
|
34
|
Lamech LT, Haynes CM. The unpredictability of prolonged activation of stress response pathways. J Cell Biol 2015; 209:781-7. [PMID: 26101215 PMCID: PMC4477854 DOI: 10.1083/jcb.201503107] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In response to stress, cellular compartments activate signaling pathways that mediate transcriptional programs to promote survival and reestablish homeostasis. Manipulation of the magnitude and duration of the activation of stress responses has been proposed as a strategy to prevent or repair the damage associated with aging or degenerative diseases. However, as these pathways likely evolved to respond specifically to transient perturbations, the unpredictability of prolonged activation should be considered.
Collapse
Affiliation(s)
- Lilian T Lamech
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Cole M Haynes
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
35
|
Jazwinski S. Mitochondria to nucleus signaling and the role of ceramide in its integration into the suite of cell quality control processes during aging. Ageing Res Rev 2015; 23:67-74. [PMID: 25555678 DOI: 10.1016/j.arr.2014.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022]
Abstract
Mitochondria to nucleus signaling has been the most extensively studied mode of inter-organelle communication. The first signaling pathway in this category of information transfer to be discovered was the retrograde response, with its own set of signal transduction proteins. The finding that this pathway compensates for mitochondrial dysfunction to extend the replicative lifespan of yeast cells has generated additional impetus for its study. This research has demonstrated crosstalk between the retrograde response and the target of rapamycin (TOR), small GTPase RAS, and high-osmolarity glycerol (HOG) pathways in yeast, all of which are key players in replicative lifespan. More recently, the retrograde response has been implicated in the diauxic shift and survival in stationary phase, extending its operation to the yeast chronological lifespan as well. In this capacity, the retrograde response may cooperate with other, related mitochondria to nucleus signaling pathways. Counterparts of the retrograde response are found in the roundworm, the fruit fly, the mouse, and even in human cells in tissue culture. The exciting realization that the retrograde response is embedded in the network of cellular quality control processes has emerged over the past few years. Most strikingly, it is closely integrated with autophagy and the selective brand of this quality control process, mitophagy. This coordination depends on TOR, and it engages ceramide/sphingolipid signaling. The yeast LAG1 ceramide synthase gene was the first longevity gene cloned as such, and its orthologs hyl-1 and hyl-2 determine worm lifespan. Thus, the involvement of ceramide signaling in quality control gives these findings cellular context. The retrograde response and ceramide are essential components of a lifespan maintenance process that likely evolved as a cytoprotective mechanism to defend the organism from diverse stressors.
Collapse
|
36
|
Schulz AM, Haynes CM. UPR(mt)-mediated cytoprotection and organismal aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1448-56. [PMID: 25857997 DOI: 10.1016/j.bbabio.2015.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/25/2015] [Accepted: 03/28/2015] [Indexed: 12/20/2022]
Abstract
Time- or age-dependent accumulation of mitochondrial damage and dysfunction is strongly associated with aging [1]. Thus, a major biomedical goal is to identify and therapeutically manipulate those inherent programs that protect against mitochondrial dysfunction to promote cell survival and organismal health. The mitochondrial unfolded protein response (UPR(mt)) is such a protective transcriptional response mediated by mitochondrial-to-nuclear signaling that includes mitochondrial proteostasis genes to stabilize mitochondrial function, metabolic adaptations, as well as an innate immunity program. Here, we review the UPR(mt) and its role during a variety of forms of mitochondrial dysfunction including those caused by mutations in respiratory chain genes as well as upon exposure to pathogens that produce mitochondrial toxins. We also review recent data in support of and against the emerging role of the UPR(mt) during aging and longevity. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
Affiliation(s)
- Anna M Schulz
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Cole M Haynes
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
37
|
Chang HW, Shtessel L, Lee SS. Collaboration between mitochondria and the nucleus is key to long life in Caenorhabditis elegans. Free Radic Biol Med 2015; 78:168-78. [PMID: 25450327 PMCID: PMC4280335 DOI: 10.1016/j.freeradbiomed.2014.10.576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 02/07/2023]
Abstract
Recent findings in diverse organisms strongly support a conserved role for mitochondrial electron transport chain dysfunction in longevity modulation, but the underlying mechanisms are not well understood. One way cells cope with mitochondrial dysfunction is through a retrograde transcriptional reprogramming response. In this review, we primarily focus on the work that has been performed in Caenorhabditis elegans to elucidate these mechanisms. We describe several transcription factors that participate in mitochondria-to-nucleus signaling and discuss how they mediate the relationship between mitochondrial dysfunction and life span.
Collapse
Affiliation(s)
- Hsin-Wen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ludmila Shtessel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
38
|
SMAD Transcription Factor, Sma-9, Attunes TGF-β Signaling Cascade Towards Modulating Amyloid Beta Aggregation and Associated Outcome in Transgenic C. elegans. Mol Neurobiol 2014; 53:109-119. [DOI: 10.1007/s12035-014-8988-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/04/2014] [Indexed: 01/22/2023]
|
39
|
Bennett CF, Choi H, Kaeberlein M. Searching for the elusive mitochondrial longevity signal in C. elegans. WORM 2014; 3:e959404. [PMID: 26430544 DOI: 10.4161/21624046.2014.959404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022]
Abstract
There is a growing list of examples where perturbed mitochondrial function is associated with increased longevity, yet the exact mechanisms have remained elusive. This phenomenon was first documented, and has been studied most extensively, in C. elegans. One prominent model proposed that lifespan extension resulting from electron transport chain inhibition is due to induction of the mitochondrial unfolded protein response. This model requires revision in light of recent data showing that the mitochondrial unfolded protein response, as defined by the field, is neither necessary nor sufficient for lifespan extension in C. elegans. Several additional factors have been proposed to underlie this lifespan extension, which is likely to be multifactorial and complex.
Collapse
Affiliation(s)
- Christopher F Bennett
- Department of Pathology; University of Washington ; Seattle, WA USA ; Molecular and Cellular Biology Program; University of Washington ; Seattle, WA USA
| | - Haeri Choi
- Department of Pathology; University of Washington ; Seattle, WA USA
| | - Matt Kaeberlein
- Department of Pathology; University of Washington ; Seattle, WA USA
| |
Collapse
|
40
|
Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2014; 111:E4458-67. [PMID: 25288734 DOI: 10.1073/pnas.1411199111] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mild inhibition of mitochondrial respiration extends the lifespan of many species. In Caenorhabditis elegans, reactive oxygen species (ROS) promote longevity by activating hypoxia-inducible factor 1 (HIF-1) in response to reduced mitochondrial respiration. However, the physiological role and mechanism of ROS-induced longevity are poorly understood. Here, we show that a modest increase in ROS increases the immunity and lifespan of C. elegans through feedback regulation by HIF-1 and AMP-activated protein kinase (AMPK). We found that activation of AMPK as well as HIF-1 mediates the longevity response to ROS. We further showed that AMPK reduces internal levels of ROS, whereas HIF-1 amplifies the levels of internal ROS under conditions that increase ROS. Moreover, mitochondrial ROS increase resistance to various pathogenic bacteria, suggesting a possible association between immunity and long lifespan. Thus, AMPK and HIF-1 may control immunity and longevity tightly by acting as feedback regulators of ROS.
Collapse
|
41
|
Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 2014; 516:414-7. [PMID: 25274306 PMCID: PMC4270954 DOI: 10.1038/nature13818] [Citation(s) in RCA: 274] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/14/2014] [Indexed: 12/27/2022]
Abstract
Metazoans identify and eliminate bacterial pathogens in microbe-rich environments such as the intestinal lumen; however, the mechanisms are unclear. Host cells could potentially use intracellular surveillance or stress response programs to detect pathogens that target monitored cellular activities and then initiate innate immune responses. Mitochondrial function is evaluated by monitoring mitochondrial protein import efficiency of the transcription factor ATFS-1, which mediates the mitochondrial unfolded protein response (UPR(mt)). During mitochondrial stress, mitochondrial import is impaired, allowing ATFS-1 to traffic to the nucleus where it mediates a transcriptional response to re-establish mitochondrial homeostasis. Here we examined the role of ATFS-1 in Caenorhabditis elegans during pathogen exposure, because during mitochondrial stress ATFS-1 induced not only mitochondrial protective genes but also innate immune genes that included a secreted lysozyme and anti-microbial peptides. Exposure to the pathogen Pseudomonas aeruginosa caused mitochondrial dysfunction and activation of the UPR(mt). C. elegans lacking atfs-1 were susceptible to P. aeruginosa, whereas hyper-activation of ATFS-1 and the UPR(mt) improved clearance of P. aeruginosa from the intestine and prolonged C. elegans survival in a manner mainly independent of known innate immune pathways. We propose that ATFS-1 import efficiency and the UPR(mt) is a means to detect pathogens that target mitochondria and initiate a protective innate immune response.
Collapse
|
42
|
Abstract
Mitochondria play a central role in the aging process. Studies in model organisms have started to integrate mitochondrial effects on aging with the maintenance of protein homeostasis. These findings center on the mitochondrial unfolded protein response (UPR(mt)), which has been implicated in lifespan extension in worms, flies, and mice, suggesting a conserved role in the long-term maintenance of cellular homeostasis. Here, we review current knowledge of the UPR(mt) and discuss its integration with cellular pathways known to regulate lifespan. We highlight how insight into the UPR(mt) is revolutionizing our understanding of mitochondrial lifespan extension and of the aging process.
Collapse
Affiliation(s)
- Martin Borch Jensen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.
| |
Collapse
|
43
|
Mitochondrial stress extends lifespan in C. elegans through neuronal hormesis. Exp Gerontol 2014; 56:89-98. [DOI: 10.1016/j.exger.2014.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/15/2014] [Accepted: 03/25/2014] [Indexed: 12/19/2022]
|
44
|
Effects of the mitochondrial respiratory chain on longevity in C. elegans. Exp Gerontol 2014; 56:245-55. [DOI: 10.1016/j.exger.2014.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
|
45
|
Munkácsy E, Rea SL. The paradox of mitochondrial dysfunction and extended longevity. Exp Gerontol 2014; 56:221-33. [PMID: 24699406 PMCID: PMC4104296 DOI: 10.1016/j.exger.2014.03.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 01/01/2023]
Abstract
Mitochondria play numerous, essential roles in the life of eukaryotes. Disruption of mitochondrial function in humans is often pathological or even lethal. Surprisingly, in some organisms mitochondrial dysfunction can result in life extension. This paradox has been studied most extensively in the long-lived Mit mutants of the nematode Caenorhabditis elegans. In this review, we explore the major responses that are activated following mitochondrial dysfunction in these animals and how these responses potentially act to extend their life. We focus our attention on five broad areas of current research--reactive oxygen species signaling, the mitochondrial unfolded protein response, autophagy, metabolic adaptation, and the roles played by various transcription factors. Lastly, we also examine why disruption of complexes I and II differ in their ability to induce the Mit phenotype and extend lifespan.
Collapse
Affiliation(s)
- Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Cell and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Shane L Rea
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
46
|
Yee C, Yang W, Hekimi S. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 2014; 157:897-909. [PMID: 24813612 DOI: 10.1016/j.cell.2014.02.055] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/14/2014] [Accepted: 02/19/2014] [Indexed: 12/21/2022]
Abstract
The increased longevity of the C. elegans electron transport chain mutants isp-1 and nuo-6 is mediated by mitochondrial ROS (mtROS) signaling. Here we show that the mtROS signal is relayed by the conserved, mitochondria-associated, intrinsic apoptosis signaling pathway (CED-9/Bcl2, CED-4/Apaf1, and CED-3/Casp9) triggered by CED-13, an alternative BH3-only protein. Activation of the pathway by an elevation of mtROS does not affect apoptosis but protects from the consequences of mitochondrial dysfunction by triggering a unique pattern of gene expression that modulates stress sensitivity and promotes survival. In vertebrates, mtROS induce apoptosis through the intrinsic pathway to protect from severely damaged cells. Our observations in nematodes demonstrate that sensing of mtROS by the apoptotic pathway can, independently of apoptosis, elicit protective mechanisms that keep the organism alive under stressful conditions. This results in extended longevity when mtROS generation is inappropriately elevated. These findings clarify the relationships between mitochondria, ROS, apoptosis, and aging.
Collapse
Affiliation(s)
- Callista Yee
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Wen Yang
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
47
|
Khan MH, Ligon M, Hussey LR, Hufnal B, Farber R, Munkácsy E, Rodriguez A, Dillow A, Kahlig E, Rea SL. TAF-4 is required for the life extension of isp-1, clk-1 and tpk-1 Mit mutants. Aging (Albany NY) 2014; 5:741-58. [PMID: 24107417 PMCID: PMC3838777 DOI: 10.18632/aging.100604] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While numerous life-extending manipulations have been discovered in the nematode Caenorhabditis elegans, one that remains most enigmatic is disruption of oxidative phosphorylation. In order to unravel how such an ostensibly deleterious manipulation can extend lifespan, we sought to identify the ensemble of nuclear transcription factors that are activated in response to defective mitochondrial electron transport chain (ETC) function. Using a feeding RNAi approach, we targeted over 400 transcription factors and identified 15 that, when reduced in function, reproducibly and differentially altered the development, stress response, and/or fecundity of isp-1(qm150) Mit mutants relative to wild-type animals. Seven of these transcription factors – AHA-1, CEH-18, HIF-1, JUN-1, NHR-27, NHR-49 and the CREB homolog-1 (CRH-1)-interacting protein TAF-4 – were also essential for isp-1 life extension. When we tested the involvement of these seven transcription factors in the life extension of two other Mit mutants, namely clk-1(qm30) and tpk-1(qm162), TAF-4 and HIF-1 were consistently required. Our findings suggest that the Mit phenotype is under the control of multiple transcriptional responses, and that TAF-4 and HIF-1 may be part of a general signaling axis that specifies Mit mutant life extension.
Collapse
Affiliation(s)
- Maruf H Khan
- Barshop Institute for Longevity and Aging Studies and Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mitochondrial EF4 links respiratory dysfunction and cytoplasmic translation in Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1674-83. [PMID: 24837196 DOI: 10.1016/j.bbabio.2014.05.353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
How animals coordinate cellular bioenergetics in response to stress conditions is an essential question related to aging, obesity and cancer. Elongation factor 4 (EF4/LEPA) is a highly conserved protein that promotes protein synthesis under stress conditions, whereas its function in metazoans remains unknown. Here, we show that, in Caenorhabditis elegans, the mitochondria-localized CeEF4 (referred to as mtEF4) affects mitochondrial functions, especially at low temperature (15°C). At worms' optimum growing temperature (20°C), mtef4 deletion leads to self-brood size reduction, growth delay and mitochondrial dysfunction. Transcriptomic analyses show that mtef4 deletion induces retrograde pathways, including mitochondrial biogenesis and cytoplasmic translation reorganization. At low temperature (15°C), mtef4 deletion reduces mitochondrial translation and disrupts the assembly of respiratory chain supercomplexes containing complex IV. These observations are indicative of the important roles of mtEF4 in mitochondrial functions and adaptation to stressful conditions.
Collapse
|
49
|
Bennett CF, Wende HV, Simko M, Klum S, Barfield S, Choi H, Pineda VV, Kaeberlein M. Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nat Commun 2014; 5:3483. [PMID: 24662282 PMCID: PMC3984390 DOI: 10.1038/ncomms4483] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/20/2014] [Indexed: 01/08/2023] Open
Abstract
Recent studies have propagated the model that the mitochondrial unfolded protein response (UPR(mt)) is causal for lifespan extension from inhibition of the electron transport chain (ETC) in Caenorhabditis elegans. Here we report a genome-wide RNAi screen for negative regulators of the UPR(mt). Lifespan analysis of nineteen RNAi clones that induce the hsp-6p::gfp reporter demonstrate differential effects on longevity. Deletion of atfs-1, which is required for induction of the UPR(mt), fails to prevent lifespan extension from knockdown of two genes identified in our screen or following knockdown of the ETC gene cco-1. RNAi knockdown of atfs-1 also has no effect on lifespan extension caused by mutation of the ETC gene isp-1. Constitutive activation of the UPR(mt) by gain of function mutations in atfs-1 fails to extend lifespan. These observations identify several new factors that promote mitochondrial homoeostasis and demonstrate that the UPR(mt), as currently defined, is neither necessary nor sufficient for lifespan extension.
Collapse
Affiliation(s)
| | | | - Marissa Simko
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Shannon Klum
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Sarah Barfield
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Haeri Choi
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Victor V. Pineda
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
50
|
Schiavi A, Ventura N. The interplay between mitochondria and autophagy and its role in the aging process. Exp Gerontol 2014; 56:147-53. [PMID: 24607515 DOI: 10.1016/j.exger.2014.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 01/07/2023]
Abstract
Mitochondria are highly dynamic organelles which play a central role in cellular homeostasis. Mitochondrial dysfunction leads to life-threatening disorders and accelerates the aging process. Surprisingly, on the other hand, a mild reduction of mitochondria functionality can have pro-longevity effects in organisms spanning from yeast to mammals. Autophagy is a fundamental cellular housekeeping process that needs to be finely regulated for proper cell and organism survival, as underlined by the fact that both its over- and its defective activation have been associated with diseases and accelerated aging. A reciprocal interplay exists between mitochondria and autophagy, which is needed to constantly adjust cellular energy metabolism in different pathophysiological conditions. Here we review general features of mitochondrial function and autophagy with particular focus on their crosstalk and its possible implication in the aging process.
Collapse
Affiliation(s)
- Alfonso Schiavi
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Natascia Ventura
- Institute for Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany; IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|