1
|
He F, Nichols RM, Agosto MA, Wensel TG. Roles of class III phosphatidylinositol 3-kinase, Vps34, in phagocytosis, autophagy, and endocytosis in retinal pigmented epithelium. iScience 2025; 28:112371. [PMID: 40330883 PMCID: PMC12052997 DOI: 10.1016/j.isci.2025.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Phosphatidylinositol-3-phosphate (PI(3)P) is important for multiple functions of retinal pigmented epithelial (RPE) cells, but its functions in RPE have not been studied. In RPE from mouse eyes and in cultured human RPE cells, PI(3)P-enriched membranes include endosomes, the trans-Golgi network, phagosomes, and autophagophores. Mouse RPE cells lacking activity of the PI-3 kinase, Vps34, lack detectable PI(3)P and die prematurely. Phagosomes containing rod discs accumulate, as do membrane aggregates positive for autophagosome markers. These autophagy-related membranes recruit LC3/Atg8 without Vps34, but phagosomes do not. Vps34 loss leads to accumulation of lysosomes which do not fuse with phagosomes or membranes with autophagy markers. Thus, Vps34-derived PI(3)P is not needed for initiation of phagocytosis or endocytosis, nor for formation of membranes containing autophagy markers. In contrast, Vps34 and PI(3)P are essential for intermediate and later stages, including membrane fusion with lysosomes.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Ralph M. Nichols
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Theodore G. Wensel
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Swords SB, Jia N, Norris A, Modi J, Cai Q, Grant BD. A conserved requirement for RME-8/DNAJC13 in neuronal autophagic lysosome reformation. Autophagy 2024; 20:792-808. [PMID: 37942902 PMCID: PMC11062384 DOI: 10.1080/15548627.2023.2269028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autophagic lysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease. The DNA-J domain HSC70 co-chaperone RME-8/DNAJC13 has been linked to endosomal coat protein regulation and to neurological disease. We report new analysis of the requirements for the RME-8/DNAJC13 protein in neurons, focusing on intact C. elegans mechanosensory neurons, and primary mouse cortical neurons in culture. Loss of RME-8/DNAJC13 in both systems results in accumulation of grossly elongated autolysosomal tubules. Further C. elegans analysis revealed a similar autolysosome tubule accumulation defect in mutants known to be required for ALR in mammals, including mutants lacking bec-1/BECN1/Beclin1 and vps-15/PIK3R4/p150 that regulate the class III phosphatidylinositol 3-kinase (PtdIns3K) VPS-34, and dyn-1/dynamin that severs ALR tubules. Clathrin is also an important ALR regulator implicated in autolysosome tubule formation and release. In C. elegans we found that loss of RME-8 causes severe depletion of clathrin from neuronal autolysosomes, a phenotype shared with bec-1 and vps-15 mutants. We conclude that RME-8/DNAJC13 plays a previously unrecognized role in ALR, likely affecting autolysosome tubule severing. Additionally, in both systems, loss of RME-8/DNAJC13 reduced macroautophagic/autophagic flux, suggesting feedback regulation from ALR to autophagy. Our results connecting RME-8/DNAJC13 to ALR and autophagy provide a potential mechanism by which RME-8/DNAJC13 could influence neuronal health and the progression of neurodegenerative disease.Abbreviation: ALR, autophagic lysosome reformation; ATG-13/EPG-1, AuTophaGy (yeast Atg homolog)-13; ATG-18, AuTophaGy (yeast Atg homolog)-18; AV, autophagic vacuole; CLIC-1, Clathrin Light Chain-1; EPG-3, Ectopic P Granules-3; EPG-6, Ectopic P Granules-6; LGG-1, LC3, GABARAP and GATE-16 family-1; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; PD, Parkinson disease; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns(4,5)P2, phosphatidylinositol-4,5-bisphosphate; RME-8, Receptor Mediated Endocytosis-8; SNX-1, Sorting NeXin-1; VPS-34, related to yeast Vacuolar Protein Sorting factor-34.
Collapse
Affiliation(s)
- Sierra B. Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Nuo Jia
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Anne Norris
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Jil Modi
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
- Center for Lipid Research, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Derkaczew M, Martyniuk P, Hofman R, Rutkowski K, Osowski A, Wojtkiewicz J. The Genetic Background of Abnormalities in Metabolic Pathways of Phosphoinositides and Their Linkage with the Myotubular Myopathies, Neurodegenerative Disorders, and Carcinogenesis. Biomolecules 2023; 13:1550. [PMID: 37892232 PMCID: PMC10605126 DOI: 10.3390/biom13101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Myo-inositol belongs to one of the sugar alcohol groups known as cyclitols. Phosphatidylinositols are one of the derivatives of Myo-inositol, and constitute important mediators in many intracellular processes such as cell growth, cell differentiation, receptor recycling, cytoskeletal organization, and membrane fusion. They also have even more functions that are essential for cell survival. Mutations in genes encoding phosphatidylinositols and their derivatives can lead to many disorders. This review aims to perform an in-depth analysis of these connections. Many authors emphasize the significant influence of phosphatidylinositols and phosphatidylinositols' phosphates in the pathogenesis of myotubular myopathies, neurodegenerative disorders, carcinogenesis, and other less frequently observed diseases. In our review, we have focused on three of the most often mentioned groups of disorders. Inositols are the topic of many studies, and yet, there are no clear results of successful clinical trials. Analysis of the available literature gives promising results and shows that further research is still needed.
Collapse
Affiliation(s)
- Maria Derkaczew
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Martyniuk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Robert Hofman
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Krzysztof Rutkowski
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- The Nicolaus Copernicus Municipal Polyclinical Hospital in Olsztyn, 10-045 Olsztyn, Poland
| | - Adam Osowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
4
|
Szabó Á, Vincze V, Chhatre AS, Jipa A, Bognár S, Varga KE, Banik P, Harmatos-Ürmösi A, Neukomm LJ, Juhász G. LC3-associated phagocytosis promotes glial degradation of axon debris after injury in Drosophila models. Nat Commun 2023; 14:3077. [PMID: 37248218 DOI: 10.1038/s41467-023-38755-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Glial engulfment of neuron-derived debris after trauma, during development, and in neurodegenerative diseases supports nervous system functions. However, mechanisms governing the efficiency of debris degradation in glia have remained largely unexplored. Here we show that LC3-associated phagocytosis (LAP), an engulfment pathway assisted by certain autophagy factors, promotes glial phagosome maturation in the Drosophila wing nerve. A LAP-specific subset of autophagy-related genes is required in glia for axon debris clearance, encoding members of the Atg8a (LC3) conjugation system and the Vps34 lipid kinase complex including UVRAG and Rubicon. Phagosomal Rubicon and Atg16 WD40 domain-dependent conjugation of Atg8a mediate proper breakdown of internalized axon fragments, and Rubicon overexpression in glia accelerates debris elimination. Finally, LAP promotes survival following traumatic brain injury. Our results reveal a role of glial LAP in the clearance of neuronal debris in vivo, with potential implications for the recovery of the injured nervous system.
Collapse
Affiliation(s)
- Áron Szabó
- Biological Research Center, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary.
| | - Virág Vincze
- Biological Research Center, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - Aishwarya Sanjay Chhatre
- Biological Research Center, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - András Jipa
- Biological Research Center, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - Sarolta Bognár
- Biological Research Center, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - Katalin Eszter Varga
- Biological Research Center, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - Poulami Banik
- Biological Research Center, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - Adél Harmatos-Ürmösi
- Biological Research Center, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary
| | - Lukas J Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland
| | - Gábor Juhász
- Biological Research Center, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, H-6726, Hungary.
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, H-1117, Hungary.
| |
Collapse
|
5
|
Wang Y, Arnold ML, Smart AJ, Wang G, Androwski RJ, Morera A, Nguyen KCQ, Schweinsberg PJ, Bai G, Cooper J, Hall DH, Driscoll M, Grant BD. Large vesicle extrusions from C. elegans neurons are consumed and stimulated by glial-like phagocytosis activity of the neighboring cell. eLife 2023; 12:e82227. [PMID: 36861960 PMCID: PMC10023159 DOI: 10.7554/elife.82227] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
Caenorhabditis elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor-associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Meghan Lee Arnold
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Anna Joelle Smart
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Rebecca J Androwski
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Andres Morera
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ken CQ Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Peter J Schweinsberg
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Jason Cooper
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
- Rutgers Center for Lipid ResearchNew BrunswickUnited States
| |
Collapse
|
6
|
Swords S, Jia N, Norris A, Modi J, Cai Q, Grant BD. A Conserved Requirement for RME-8/DNAJC13 in Neuronal Autolysosome Reformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530319. [PMID: 36909501 PMCID: PMC10002637 DOI: 10.1101/2023.02.27.530319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Autophagosomes fuse with lysosomes, forming autolysosomes that degrade engulfed cargo. To maintain lysosomal capacity, autolysosome reformation (ALR) must regenerate lysosomes from autolysosomes using a membrane tubule-based process. Maintaining lysosomal capacity is required to maintain proteostasis and cellular health, especially in neurons where lysosomal dysfunction has been repeatedly implicated in neurodegenerative disease. Cell biological studies have linked the DNA-J domain Hsc70 co-chaperone RME-8/DNAJC13 to endosomal coat protein regulation, while human genetics studies have linked RME-8/DNAJC13 to neurological disease, including Parkinsonism and Essential Tremor. We report new analysis of the requirements for the RME-8/DNAJC13 protein in neurons, focusing on C. elegans mechanosensory neurons in the intact animal, and in primary mouse cortical neurons in culture. We find that loss of RME-8/DNAJC13 in both systems results in accumulation of grossly elongated autolysosomal tubules. Further C. elegans analysis revealed a similar autolysosome tubule accumulation defect in mutants known to be required for ALR in mammals, including bec-1/beclin and vps-15/PIK3R4/p150 that regulate type-III PI3-kinase VPS-34, and dyn-1/dynamin that severs ALR tubules. Clathrin is also an important ALR regulator implicated in autolysosome tubule formation and release. In C. elegans we found that loss of RME-8 causes severe depletion of clathrin from neuronal autolysosomes, a phenotype shared with bec-1 and vps-15 mutants. We conclude that RME-8/DNAJC13 plays a conserved but previously unrecognized role in autolysosome reformation, likely affecting ALR tubule initiation and/or severing. Additionally, in both systems, we found that loss of RME-8/DNAJC13 appeared to reduce autophagic flux, suggesting feedback regulation from ALR to autophagy. Our results connecting RME-8/DNAJC13 to ALR and autophagy provide a potential mechanism by which RME-8/DNAJC13 could influence neuronal health and the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Sierra Swords
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Nuo Jia
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ USA, 08854
| | - Anne Norris
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Jil Modi
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ USA, 08854
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry Rutgers University, Piscataway, NJ USA, 08854
- Center for Lipid Research, New Brunswick, NJ USA 08901
| |
Collapse
|
7
|
Peña-Martinez C, Rickman AD, Heckmann BL. Beyond autophagy: LC3-associated phagocytosis and endocytosis. SCIENCE ADVANCES 2022; 8:eabn1702. [PMID: 36288309 PMCID: PMC9604515 DOI: 10.1126/sciadv.abn1702] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/26/2022] [Indexed: 05/08/2023]
Abstract
Noncanonical functions of the autophagy machinery in pathways including LC3-associated phagocytosis and LC3-associated endocytosis have garnered increasing interest in both normal physiology and pathobiology. New discoveries over the past decade of noncanonical uses of the autophagy machinery in these distinct molecular mechanisms have led to robust investigation into the roles of single-membrane LC3 lipidation. Noncanonical autophagy pathways have now been implicated in the regulation of multiple processes ranging from debris clearance, cellular signaling, and immune regulation and inflammation. Accumulating evidence is demonstrating roles in a variety of disease states including host-pathogen responses, autoimmunity, cancer, and neurological and neurodegenerative pathologies. Here, we broadly summarize the differences in the mechanistic regulation between autophagy and LAP and LANDO and highlight some of the key roles of LAP and LANDO in innate immune function, inflammation, and disease pathology.
Collapse
Affiliation(s)
- Carolina Peña-Martinez
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Alexis D. Rickman
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Bradlee L. Heckmann
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| |
Collapse
|
8
|
Hu F, Peng Y, Chang S, Luo X, Yuan Y, Zhu X, Xu Y, Du K, Chen Y, Deng S, Yu F, Feng X, Fan X, Ashktorab H, Smoot D, Meltzer SJ, Li S, Wei Y, Zhang X, Jin Z. Vimentin binds to a novel tumor suppressor protein, GSPT1-238aa, encoded by circGSPT1 with a selective encoding priority to halt autophagy in gastric carcinoma. Cancer Lett 2022; 545:215826. [PMID: 35839920 DOI: 10.1016/j.canlet.2022.215826] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are covalently closed, endogenous molecules that are widespread in eukaryotes. Recent evidence indicates that circRNAs play important roles in carcinogenesis. Several circRNAs have been reported to comprise translatable RNA; however, whether circRNAs encode functional proteins remains unknown. In our study, circRNA sequencing was carried out using five pathologically diagnosed gastric carcinoma (GC) samples and their paired adjacent normal tissues, we characterized the circRNA GSPT1 (circGSPT1), which is expressed at low levels in GC. Antibody detections, and mass spectrometry were used to validate active circRNA translation. The spanning junction open reading frame in circGSPT1, driven by an internal ribosome entry site (IRES), encodes a functional peptide, termed GSPT1-238aa. Interestingly, GSPT1-238aa tends to select the start codon used to initiate translation. This is the first finding of selective translation driven by IRES. CircGSPT1 and GSPT1-238aa halted the proliferation, migration, and invasion in GC cells in vitro. We also confirmed that the vimentin/Beclin1/14-3-3 complex interacts with GSPT1-238aa and modulates autophagy via the PI3K/AKT/mTOR signaling pathway in GC cells. Our study reveals that GSPT1-238aa, a novel protein encoded by circGSPT1, halts GC tumorigenesis. We also provide insights into the function and underlying molecular mechanisms of GSPT1-238aa in GC and suggest that this protein represents a novel target for GC treatment.
Collapse
Affiliation(s)
- Fan Hu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Yin Peng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Shanshan Chang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Xiaonuan Luo
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Yuan Yuan
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Xiaohui Zhu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Yidan Xu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Kaining Du
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Shiqi Deng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Fan Yu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Xianling Feng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Xinmin Fan
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC, 20060, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN, 37208, USA
| | - Stephen J Meltzer
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Ki-mel Comprehensive Cancer Center, Baltimore, MD, 21287, USA
| | - Song Li
- Shenzhen Science & Technology Development Exchange Center, Shenzhen Science and Technology Building, Shenzhen, Guangdong, 518055, PR China
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, 518000, PR China
| | - Xiaojing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China.
| | - Zhe Jin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
9
|
Laurella LC, Mirakian NT, Garcia MN, Grasso DH, Sülsen VP, Papademetrio DL. Sesquiterpene Lactones as Promising Candidates for Cancer Therapy: Focus on Pancreatic Cancer. Molecules 2022; 27:3492. [PMID: 35684434 PMCID: PMC9182036 DOI: 10.3390/molecules27113492] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease which confers to patients a poor prognosis at short term. PDAC is the fourth leading cause of death among cancers in the Western world. The rate of new cases of pancreatic cancer (incidence) is 10 per 100,000 but present a 5-year survival of less than 10%, highlighting the poor prognosis of this pathology. Furthermore, 90% of advanced PDAC tumor present KRAS mutations impacting in several oncogenic signaling pathways, many of them associated with cell proliferation and tumor progression. Different combinations of chemotherapeutic agents have been tested over the years without an improvement of significance in its treatment. PDAC remains as one the more challenging biomedical topics thus far. The lack of a proper early diagnosis, the notable mortality statistics and the poor outcome with the available therapies urge the entire scientific community to find novel approaches against PDAC with real improvements in patients' survival and life quality. Natural compounds have played an important role in the process of discovery and development of new drugs. Among them, terpenoids, such as sesquiterpene lactones, stand out due to their biological activities and pharmacological potential as antitumor agents. In this review, we will describe the sesquiterpene lactones with in vitro and in vivo activity against pancreatic tumor cells. We will also discuss the mechanism of action of the compounds as well as the signaling pathways associated with their activity.
Collapse
Affiliation(s)
- Laura Cecilia Laurella
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires CP 1113, Argentina;
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Nadia Talin Mirakian
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Maria Noé Garcia
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
| | - Daniel Héctor Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina
| | - Valeria Patricia Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET-Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires CP 1113, Argentina;
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
| | - Daniela Laura Papademetrio
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires CP 1113, Argentina;
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-Universidad de Buenos Aires, Junín 956, Piso 4, Buenos Aires CP 1113, Argentina;
| |
Collapse
|
10
|
Peña-Ramos O, Chiao L, Liu X, Yu X, Yao T, He H, Zhou Z. Autophagosomes fuse to phagosomes and facilitate the degradation of apoptotic cells in Caenorhabditis elegans. eLife 2022; 11:72466. [PMID: 34982028 PMCID: PMC8769646 DOI: 10.7554/elife.72466] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
Autophagosomes are double-membrane intracellular vesicles that degrade protein aggregates, intracellular organelles, and other cellular components. During the development of the nematode Caenorhabditis elegans, many somatic and germ cells undergo apoptosis. These cells are engulfed and degraded by their neighboring cells. We discovered a novel role of autophagosomes in facilitating the degradation of apoptotic cells using a real-time imaging technique. Specifically, the double-membrane autophagosomes in engulfing cells are recruited to the surfaces of phagosomes containing apoptotic cells and subsequently fuse to phagosomes, allowing the inner vesicle to enter the phagosomal lumen. Mutants defective in the production of autophagosomes display significant defects in the degradation of apoptotic cells, demonstrating the importance of autophagosomes to this process. The signaling pathway led by the phagocytic receptor CED-1, the adaptor protein CED-6, and the large GTPase dynamin (DYN-1) promotes the recruitment of autophagosomes to phagosomes. Moreover, the subsequent fusion of autophagosomes with phagosomes requires the functions of the small GTPase RAB-7 and the HOPS complex. Further observations suggest that autophagosomes provide apoptotic cell-degradation activities in addition to and in parallel of lysosomes. Our findings reveal that, unlike the single-membrane, LC3-associated phagocytosis (LAP) vesicles reported to facilitate phagocytosis in mammals, it is the canonical double-membrane autophagosomes that facilitate the clearance of C. elegans apoptotic cells. These findings add autophagosomes to the collection of intracellular organelles that contribute to phagosome maturation, identify novel crosstalk between the autophagy and phagosome maturation pathways, and discover the upstream signaling molecules that initiate this crosstalk.
Collapse
Affiliation(s)
- Omar Peña-Ramos
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Lucia Chiao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Xianghua Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Xiaomeng Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Tianyou Yao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Henry He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
11
|
Lebo DPV, Chirn A, Taylor JD, Levan A, Doerre Torres V, Agreda E, Serizier SB, Lord AK, Jenkins VK, McCall K. An RNAi screen of the kinome in epithelial follicle cells of the Drosophila melanogaster ovary reveals genes required for proper germline death and clearance. G3-GENES GENOMES GENETICS 2021; 11:6080751. [PMID: 33693600 PMCID: PMC8022946 DOI: 10.1093/g3journal/jkaa066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Programmed cell death and cell corpse clearance are an essential part of organismal health and development. Cell corpses are often cleared away by professional phagocytes such as macrophages. However, in certain tissues, neighboring cells known as nonprofessional phagocytes can also carry out clearance functions. Here, we use the Drosophila melanogaster ovary to identify novel genes required for clearance by nonprofessional phagocytes. In the Drosophila ovary, germline cells can die at multiple time points. As death proceeds, the epithelial follicle cells act as phagocytes to facilitate the clearance of these cells. We performed an unbiased kinase screen to identify novel proteins and pathways involved in cell clearance during two death events. Of 224 genes examined, 18 demonstrated severe phenotypes during developmental death and clearance while 12 demonstrated severe phenotypes during starvation-induced cell death and clearance, representing a number of pathways not previously implicated in phagocytosis. Interestingly, it was found that several genes not only affected the clearance process in the phagocytes, but also non-autonomously affected the process by which germline cells died. This kinase screen has revealed new avenues for further exploration and investigation.
Collapse
Affiliation(s)
- Diane P V Lebo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Alice Chirn
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jeffrey D Taylor
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Andre Levan
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Biochemistry and Molecular Biology, Boston University, Boston, MA 02215, USA
| | | | - Emily Agreda
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sandy B Serizier
- Department of Biology, Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Allison K Lord
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
12
|
Class II phosphatidylinositol 3-kinase isoforms in vesicular trafficking. Biochem Soc Trans 2021; 49:893-901. [PMID: 33666217 PMCID: PMC8106491 DOI: 10.1042/bst20200835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/14/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are critical regulators of many cellular processes including cell survival, proliferation, migration, cytoskeletal reorganization, and intracellular vesicular trafficking. They are a family of lipid kinases that phosphorylate membrane phosphoinositide lipids at the 3′ position of their inositol rings, and in mammals they are divided into three classes. The role of the class III PI3K Vps34 is well-established, but recent evidence suggests the physiological significance of class II PI3K isoforms in vesicular trafficking. This review focuses on the recently discovered functions of the distinct PI3K-C2α and PI3K-C2β class II PI3K isoforms in clathrin-mediated endocytosis and consequent endosomal signaling, and discusses recently reported data on class II PI3K isoforms in different physiological contexts in comparison with class I and III isoforms.
Collapse
|
13
|
Perez MA, Watts JL. Worms, Fat, and Death: Caenorhabditis elegans Lipid Metabolites Regulate Cell Death. Metabolites 2021; 11:metabo11020125. [PMID: 33672292 PMCID: PMC7926963 DOI: 10.3390/metabo11020125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is well-known as the model organism used to elucidate the genetic pathways underlying the first described form of regulated cell death, apoptosis. Since then, C. elegans investigations have contributed to the further understanding of lipids in apoptosis, especially the roles of phosphatidylserines and phosphatidylinositols. More recently, studies in C. elegans have shown that dietary polyunsaturated fatty acids can induce the non-apoptotic, iron-dependent form of cell death, ferroptosis. In this review, we examine the roles of various lipids in specific aspects of regulated cell death, emphasizing recent work in C. elegans.
Collapse
|
14
|
Ghose P, Wehman AM. The developmental and physiological roles of phagocytosis in Caenorhabditis elegans. Curr Top Dev Biol 2020; 144:409-432. [PMID: 33992160 DOI: 10.1016/bs.ctdb.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phagocytosis is an essential process by which cellular debris and pathogens are cleared from the environment. Cells extend their plasma membrane to engulf objects and contain them within a limiting membrane for isolation from the cytosol or for intracellular degradation in phagolysosomes. The basic mechanisms of phagocytosis and intracellular clearance are well conserved between animals. Indeed, much of our understanding is derived from studies on the nematode worm, Caenorhabditis elegans. Here, we review the latest progress in understanding the mechanisms and functions of phagocytic clearance from C. elegans studies. In particular, we highlight new insights into phagocytic signaling pathways, phagosome formation and phagolysosome resolution, as well as the challenges in studying these cyclic processes.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, University of Texas, Arlington, TX, United States.
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, United States.
| |
Collapse
|
15
|
Sheffield DA, Jepsen MR, Feeney SJ, Bertucci MC, Sriratana A, Naughtin MJ, Dyson JM, Coppel RL, Mitchell CA. The myotubularin MTMR4 regulates phagosomal phosphatidylinositol 3-phosphate turnover and phagocytosis. J Biol Chem 2019; 294:16684-16697. [PMID: 31543504 DOI: 10.1074/jbc.ra119.009133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/11/2019] [Indexed: 01/31/2023] Open
Abstract
Macrophage phagocytosis is required for effective clearance of invading bacteria and other microbes. Coordinated phosphoinositide signaling is critical both for phagocytic particle engulfment and subsequent phagosomal maturation to a degradative organelle. Phosphatidylinositol 3-phosphate (PtdIns(3)P) is a phosphoinositide that is rapidly synthesized and degraded on phagosomal membranes, where it recruits FYVE domain- and PX motif-containing proteins that promote phagosomal maturation. However, the molecular mechanisms that regulate PtdIns(3)P removal from the phagosome have remained unclear. We report here that a myotubularin PtdIns(3)P 3-phosphatase, myotubularin-related protein-4 (MTMR4), regulates macrophage phagocytosis. MTMR4 overexpression reduced and siRNA-mediated Mtmr4 silencing increased levels of cell-surface immunoglobulin receptors (i.e. Fcγ receptors (FcγRs)) on RAW 264.7 macrophages, associated with altered pseudopodal F-actin. Furthermore, MTMR4 negatively regulated the phagocytosis of IgG-opsonized particles, indicating that MTMR4 inhibits FcγR-mediated phagocytosis, and was dynamically recruited to phagosomes of macrophages during phagocytosis. MTMR4 overexpression decreased and Mtmr4-specific siRNA expression increased the duration of PtdIns(3)P on phagosomal membranes. Macrophages treated with Mtmr4-specific siRNA were more resistant to Mycobacterium marinum-induced phagosome arrest, associated with increased maturation of mycobacterial phagosomes, indicating that extended PtdIns(3)P signaling on phagosomes in the Mtmr4-knockdown cells permitted trafficking of phagosomes to acidic late endosomal and lysosomal compartments. In conclusion, our findings indicate that MTMR4 regulates PtdIns(3)P degradation in macrophages and thereby controls phagocytosis and phagosomal maturation.
Collapse
Affiliation(s)
- David A Sheffield
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Malene R Jepsen
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Sandra J Feeney
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Micka C Bertucci
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Absorn Sriratana
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Monica J Naughtin
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jennifer M Dyson
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Christina A Mitchell
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
Haley R, Zhou Z. The small GTPase RAB-35 facilitates the initiation of phagosome maturation and acts as a robustness factor for apoptotic cell clearance. Small GTPases 2019; 12:188-201. [PMID: 31607221 DOI: 10.1080/21541248.2019.1680066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We recently identified the novel function of the small GTPase RAB-35 in apoptotic cell clearance in Caenorhabditis elegans, a process in which dying cells are engulfed and degraded inside phagosomes. We have found that RAB-35 functions in two separate steps of cell corpse clearance, cell corpse recognition and the initiation of phagosome maturation. During the latter process, RAB-35 facilitates the removal of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) from the membranes of nascent phagosomes and the simultaneous production of phosphatidylinositol-3-P (PI(3)P) on these same membranes, a process that we have coined the PI(4,5)P2 to PI(3)P shift. RAB-35 also promotes the recruitment of the small GTPase RAB-5 to the phagosomal surface. During these processes, the activity of RAB-35 is controlled by the candidate GTPase-activating protein (GAP) TBC-10 and the candidate guanine nucleotide exchange factor (GEF) FLCN-1. Overall, RAB-35 leads a third pathway during cell corpse clearance that functions in parallel to the two known pathways, one led by the phagocytic receptor CED-1 and the other led by the CED-10/Rac1 GTPase. Here, we further report that RAB-35 acts as a robustness factor that maintains the clearance activity and embryonic viability under conditions of heat stress. Moreover, we obtained additional evidence suggesting that RAB-35 acts upstream of RAB-5 and RAB-7. To establish a precise temporal pattern for its own dissociation from phagosomal surfaces, RAB-35 controls the removal of its own GAP. We propose that RAB-35 defines a largely unexplored initial phase of phagosome maturation.
Collapse
Affiliation(s)
- Ryan Haley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Farkas Z, Petric M, Liu X, Herit F, Rajnavölgyi É, Szondy Z, Budai Z, Orbán TI, Sándor S, Mehta A, Bajtay Z, Kovács T, Jung SY, Afaq Shakir M, Qin J, Zhou Z, Niedergang F, Boissan M, Takács-Vellai K. The nucleoside diphosphate kinase NDK-1/NME1 promotes phagocytosis in concert with DYN-1/Dynamin. FASEB J 2019; 33:11606-11614. [PMID: 31242766 PMCID: PMC6819981 DOI: 10.1096/fj.201900220r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phagocytosis of various targets, such as apoptotic cells or opsonized pathogens, by macrophages is coordinated by a complex signaling network initiated by distinct phagocytic receptors. Despite the different initial signaling pathways, each pathway ends up regulating the actin cytoskeletal network, phagosome formation and closure, and phagosome maturation leading to degradation of the engulfed particle. Herein, we describe a new phagocytic function for the nucleoside diphosphate kinase 1 (NDK-1), the nematode counterpart of the first identified metastasis inhibitor NM23-H1 (nonmetastatic clone number 23) nonmetastatic clone number 23 or nonmetastatic isoform 1 (NME1). We reveal by coimmunoprecipitation, Duolink proximity ligation assay, and mass spectrometry that NDK-1/NME1 works in a complex with DYN-1/Dynamin (Caenorhabditis elegans/human homolog proteins), which is essential for engulfment and phagosome maturation. Time-lapse microscopy shows that NDK-1 is expressed on phagosomal surfaces during cell corpse clearance in the same time window as DYN-1. Silencing of NM23-M1 in mouse bone marrow–derived macrophages resulted in decreased phagocytosis of apoptotic thymocytes. In human macrophages, NM23-H1 and Dynamin are corecruited at sites of phagosome formation in F-actin–rich cups. In addition, NM23-H1 was required for efficient phagocytosis. Together, our data demonstrate that NDK-1/NME1 is an evolutionarily conserved element of successful phagocytosis.—Farkas, Z., Petric, M., Liu, X., Herit, F., Rajnavölgyi, É., Szondy, Z., Budai, Z., Orbán, T. I., Sándor, S., Mehta, A., Bajtay, Z., Kovács, T., Jung, S. Y., Afaq Shakir, M., Qin, J., Zhou, Z., Niedergang, F., Boissan, M., Takács-Vellai, K. The nucleoside diphosphate kinase NDK-1/NME1 promotes phagocytosis in concert with DYN-1/dynamin.
Collapse
Affiliation(s)
- Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Metka Petric
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Xianghua Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Floriane Herit
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Éva Rajnavölgyi
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Zsófia Budai
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sára Sándor
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anil Mehta
- Division of Medical Sciences, Ninewells Hospital Medical School, Dundee, United Kingdom
| | - Zsuzsa Bajtay
- Department of Immunology and MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.,Verna and Marrs McLean Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Muhammed Afaq Shakir
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.,Verna and Marrs McLean Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Florence Niedergang
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Boissan
- Sorbonne Université, University Pierre and Marie Curie (UPMC) Paris 06, INSERM, Unité Mixte de Recherche (UMR) S938, Saint-Antoine Research Center, Paris, France; and.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hospital Tenon, Service de Biochimie et Hormonologie, Paris, France
| | | |
Collapse
|
18
|
Restoration of cytosolic calcium inhibits Mycobacterium tuberculosis intracellular growth: Theoretical evidence and experimental observation. J Theor Biol 2019; 472:110-123. [DOI: 10.1016/j.jtbi.2019.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
|
19
|
Gulluni F, De Santis MC, Margaria JP, Martini M, Hirsch E. Class II PI3K Functions in Cell Biology and Disease. Trends Cell Biol 2019; 29:339-359. [DOI: 10.1016/j.tcb.2019.01.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
|
20
|
Margaria JP, Ratto E, Gozzelino L, Li H, Hirsch E. Class II PI3Ks at the Intersection between Signal Transduction and Membrane Trafficking. Biomolecules 2019; 9:E104. [PMID: 30884740 PMCID: PMC6468456 DOI: 10.3390/biom9030104] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation of inositol phospholipids by the family of phosphoinositide 3-kinases (PI3Ks) is crucial in controlling membrane lipid composition and regulating a wide range of intracellular processes, which include signal transduction and vesicular trafficking. In spite of the extensive knowledge on class I PI3Ks, recent advances in the study of the three class II PI3Ks (PIK3C2A, PIK3C2B and PIK3C2G) reveal their distinct and non-overlapping cellular roles and localizations. By finely tuning membrane lipid composition in time and space among different cellular compartments, this class of enzymes controls many cellular processes, such as proliferation, survival and migration. This review focuses on the recent developments regarding the coordination of membrane trafficking and intracellular signaling of class II PI3Ks through the confined phosphorylation of inositol phospholipids.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Edoardo Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Luca Gozzelino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Huayi Li
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
21
|
Palmisano NJ, Meléndez A. Autophagy in C. elegans development. Dev Biol 2019; 447:103-125. [PMID: 29709599 PMCID: PMC6204124 DOI: 10.1016/j.ydbio.2018.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development.
Collapse
Affiliation(s)
- Nicholas J Palmisano
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA
| | - Alicia Meléndez
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA; Biochemistry Ph.D. Program, The Graduate Center of the City University of New York, NY, USA.
| |
Collapse
|
22
|
Ulicna L, Rohozkova J, Hozak P. Multiple Aspects of PIP2 Involvement in C. elegans Gametogenesis. Int J Mol Sci 2018; 19:ijms19092679. [PMID: 30201859 PMCID: PMC6163852 DOI: 10.3390/ijms19092679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most studied phosphoinositides is phosphatidylinositol 4,5-bisphosphate (PIP2), which localizes to the plasma membrane, nuclear speckles, small foci in the nucleoplasm, and to the nucleolus in mammalian cells. Here, we show that PIP2 also localizes to the nucleus in prophase I, during the gametogenesis of C. elegans hermaphrodite. The depletion of PIP2 by type I PIP kinase (PPK-1) kinase RNA interference results in an altered chromosome structure and leads to various defects during meiotic progression. We observed a decreased brood size and aneuploidy in progeny, defects in synapsis, and crossover formation. The altered chromosome structure is reflected in the increased transcription activity of a tightly regulated process in prophase I. To elucidate the involvement of PIP2 in the processes during the C. elegans development, we identified the PIP2-binding partners, leucine-rich repeat (LRR-1) protein and proteasome subunit beta 4 (PBS-4), pointing to its involvement in the ubiquitin–proteasome pathway.
Collapse
Affiliation(s)
- Livia Ulicna
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prague 142 20, Czech Republic.
| | - Jana Rohozkova
- Department of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Division BIOCEV, Vestec 252 50, Czech Republic.
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prague 142 20, Czech Republic.
- Department of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Division BIOCEV, Vestec 252 50, Czech Republic.
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prague 142 20, Czech Republic.
| |
Collapse
|
23
|
Haley R, Wang Y, Zhou Z. The small GTPase RAB-35 defines a third pathway that is required for the recognition and degradation of apoptotic cells. PLoS Genet 2018; 14:e1007558. [PMID: 30138370 PMCID: PMC6107108 DOI: 10.1371/journal.pgen.1007558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023] Open
Abstract
In metazoans, apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Multiple small GTPases in the Rab family are known to function in phagosome maturation by regulating vesicle trafficking. We discovered rab-35 as a new gene important for apoptotic cell clearance from a genetic screen targeting putative Rab GTPases in Caenorhabditis elegans. We further identified TBC-10 as a putative GTPase-activating protein (GAP), and FLCN-1 and RME-4 as two putative Guanine Nucleotide Exchange Factors (GEFs), for RAB-35. We found that RAB-35 was required for the efficient incorporation of early endosomes to phagosomes and for the timely degradation of apoptotic cell corpses. More specifically, RAB-35 promotes two essential events that initiate phagosome maturation: the switch of phagosomal membrane phosphatidylinositol species from PtdIns(4,5)P2 to PtdIns(3)P, and the recruitment of the small GTPase RAB-5 to phagosomal surfaces. These functions of RAB-35 were previously unknown. Remarkably, although the phagocytic receptor CED-1 regulates these same events, RAB-35 and CED-1 appear to function independently. Upstream of degradation, RAB-35 also facilitates the recognition of apoptotic cells independently of the known CED-1 and CED-5 pathways. RAB-35 localizes to extending pseudopods and is further enriched on nascent phagosomes, consistent with its dual roles in regulating apoptotic cell-recognition and phagosome maturation. Epistasis analyses indicate that rab-35 acts in parallel to both of the canonical ced-1/6/7 and ced-2/5/10/12 clearance pathways. We propose that RAB-35 acts as a robustness factor, defining a novel pathway that aids these canonical pathways in both the recognition and degradation of apoptotic cells.
Collapse
Affiliation(s)
- Ryan Haley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Ying Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
24
|
Rocheleau CE. C. elegans RAB-35: Dual roles in apoptotic cell clearance. PLoS Genet 2018; 14:e1007534. [PMID: 30138327 PMCID: PMC6107104 DOI: 10.1371/journal.pgen.1007534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Christian E. Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Program in Metabolic Disorders and Complications, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
25
|
A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe 2018; 24:285-295.e8. [PMID: 30057173 DOI: 10.1016/j.chom.2018.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/11/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022]
Abstract
Many pathogenic intracellular bacteria manipulate the host phago-endosomal system to establish and maintain a permissive niche. The fate and identity of these intracellular compartments is controlled by phosphoinositide lipids. By mechanisms that have remained undefined, a Francisella pathogenicity island-encoded secretion system allows phagosomal escape and replication of bacteria within host cell cytoplasm. Here we report the discovery that a substrate of this system, outside pathogenicity island A (OpiA), represents a family of wortmannin-resistant bacterial phosphatidylinositol (PI) 3-kinase enzymes with members found in a wide range of intracellular pathogens, including Rickettsia and Legionella spp. We show that OpiA acts on the Francisella-containing phagosome and promotes bacterial escape into the cytoplasm. Furthermore, we demonstrate that the phenotypic consequences of OpiA inactivation are mitigated by endosomal maturation arrest. Our findings suggest that Francisella, and likely other intracellular bacteria, override the finely tuned dynamics of phagosomal PI(3)P in order to promote intracellular survival and pathogenesis.
Collapse
|
26
|
Liu J, Li M, Li L, Chen S, Wang X. Ubiquitination of the PI3-kinase VPS-34 promotes VPS-34 stability and phagosome maturation. J Cell Biol 2018; 217:347-360. [PMID: 29092895 PMCID: PMC5748982 DOI: 10.1083/jcb.201705116] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
Apoptotic cells generated by programmed cell death are engulfed by phagocytes and enclosed within membrane-bound phagosomes. Maturation of apoptotic cell-containing phagosomes leads to formation of phagolysosomes where cell corpses are degraded. The class III phosphatidylinositol 3-kinase (PI3-kinase) VPS-34 coordinates with PIKI-1, a class II PI3-kinase, to produce PtdIns3P on phagosomes, thus promoting phagosome closure and maturation. Here, we identified UBC-13, an E2 ubiquitin-conjugating enzyme that functions in the same pathway with VPS-34 but in parallel to PIKI-1 to regulate PtdIns3P generation on phagosomes. Loss of ubc-13 affects early steps of phagosome maturation, causing accumulation of cell corpses. We found that UBC-13 functions with UEV-1, a noncatalytic E2 variant, and CHN-1, a U-box-containing E3 ubiquitin ligase, to catalyze K63-linked poly-ubiquitination on VPS-34 both in vitro and in Caenorhabditis elegans Loss of ubc-13, uev-1, or chn-1 disrupts ubiquitin modification of VPS-34 and causes significantly reduced VPS-34 protein levels. Our data suggest that K63-linked ubiquitin modification serves as a general mechanism to modulate VPS-34 stability in multiple processes.
Collapse
Affiliation(s)
- Jinchao Liu
- National Institute of Biological Sciences, Beijing, China
- Chinese Academy of Medical Sciences, Beijing, China
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Peking Union Medical College, Beijing, China
| | - Meijiao Li
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xiaochen Wang
- National Institute of Biological Sciences, Beijing, China
- Chinese Academy of Medical Sciences, Beijing, China
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Heckmann BL, Boada-Romero E, Cunha LD, Magne J, Green DR. LC3-Associated Phagocytosis and Inflammation. J Mol Biol 2017; 429:3561-3576. [PMID: 28847720 DOI: 10.1016/j.jmb.2017.08.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
LC3-associated phagocytosis (LAP) is a novel form of non-canonical autophagy where LC3 (microtubule-associated protein 1A/1B-light chain 3) is conjugated to phagosome membranes using a portion of the canonical autophagy machinery. The impact of LAP to immune regulation is best characterized in professional phagocytes, in particular macrophages, where LAP has instrumental roles in the clearance of extracellular particles including apoptotic cells and pathogens. Binding of dead cells via receptors present on the macrophage surface results in the translocation of the autophagy machinery to the phagosome and ultimately LC3 conjugation. These events promote a rapid form of phagocytosis that produces an "immunologically silent" clearance of the apoptotic cells. Consequences of LAP deficiency include a decreased capacity to clear dying cells and the establishment of a lupus-like autoimmune disease in mice. The ability of LAP to attenuate autoimmunity likely occurs through the dampening of pro-inflammatory signals upon engulfment of dying cells and prevention of autoantigen presentation to other immune cells. However, it remains unclear how LAP shapes both the activation and outcome of the immune response at the molecular level. Herein, we provide a detailed review of LAP and its known roles in the immune response and provide further speculation on the putative mechanisms by which LAP may regulate immune function, perhaps through the metabolic reprogramming and polarization of macrophages.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Larissa D Cunha
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Joelle Magne
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
28
|
The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem J 2017; 473:2251-71. [PMID: 27470591 DOI: 10.1042/bcj20160170] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/30/2016] [Indexed: 11/17/2022]
Abstract
The Class III phosphoinositide 3-kinase Vps34 (vacuolar protein sorting 34) plays important roles in endocytic trafficking, macroautophagy, phagocytosis, cytokinesis and nutrient sensing. Recent studies have provided exciting new insights into the structure and regulation of this lipid kinase, and new cellular functions for Vps34 have emerged. This review critically examines the wealth of new data on this important enzyme, and attempts to integrate these findings with current models of Vps34 signalling.
Collapse
|
29
|
Programmed Cell Death During Caenorhabditis elegans Development. Genetics 2017; 203:1533-62. [PMID: 27516615 DOI: 10.1534/genetics.115.186247] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general.
Collapse
|
30
|
Law F, Seo JH, Wang Z, DeLeon JL, Bolis Y, Brown A, Zong WX, Du G, Rocheleau CE. The VPS34 PI3K negatively regulates RAB-5 during endosome maturation. J Cell Sci 2017; 130:2007-2017. [PMID: 28455411 DOI: 10.1242/jcs.194746] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/25/2017] [Indexed: 12/20/2022] Open
Abstract
The GTPase Rab5 and phosphatidylinositol-3 phosphate [PI(3)P] coordinately regulate endosome trafficking. Rab5 recruits Vps34, the class III phosphoinositide 3-kinase (PI3K), to generate PI(3)P and recruit PI(3)P-binding proteins. Loss of Rab5 and loss of Vps34 have opposite effects on endosome size, suggesting that our understanding of how Rab5 and PI(3)P cooperate is incomplete. Here, we report a novel regulatory loop whereby Caenorhabditis elegans VPS-34 inactivates RAB-5 via recruitment of the TBC-2 Rab GTPase-activating protein. We found that loss of VPS-34 caused a phenotype with large late endosomes, as with loss of TBC-2, and that Rab5 activity (mice have two Rab5 isoforms, Rab5a and Rab5b) is increased in Vps34-knockout mouse embryonic fibroblasts (Vps34 is also known as PIK3C3 in mammals). We found that VPS-34 is required for TBC-2 endosome localization and that the pleckstrin homology (PH) domain of TBC-2 bound PI(3)P. Deletion of the PH domain enhanced TBC-2 localization to endosomes in a VPS-34-dependent manner. Thus, PI(3)P binding of the PH domain might be permissive for another PI(3)P-regulated interaction that recruits TBC-2 to endosomes. Therefore, VPS-34 recruits TBC-2 to endosomes to inactivate RAB-5 to ensure the directionality of endosome maturation.
Collapse
Affiliation(s)
- Fiona Law
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Jung Hwa Seo
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer L DeLeon
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yousstina Bolis
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Ashley Brown
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| |
Collapse
|
31
|
Cheng S, Liu K, Yang C, Wang X. Dissecting Phagocytic Removal of Apoptotic Cells in Caenorhabditis elegans. Methods Mol Biol 2017; 1519:265-284. [PMID: 27815886 DOI: 10.1007/978-1-4939-6581-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The unique features of programmed cell death during C. elegans development provide an outstanding system to decipher the mechanisms governing phagocytic removal of apoptotic cells. Like in many other organisms, phagocytosis in C. elegans involves several essential events, including exposure of eat-me signals on the cell corpse surface, cell corpse recognition and engulfment by phagocytes, and maturation of phagosomes for cell corpse destruction. Forward or reverse genetic approaches, microscopy-based cell biological methods, and biochemical assays have successfully been employed to identify key factors that control different steps of phagocytosis and to understand their functions in these cellular events. In this chapter, we mainly describe how to apply genetic and cell biological approaches to dissect cell corpse removal by phagocytosis in C. elegans.
Collapse
Affiliation(s)
- Shiya Cheng
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Kai Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| | - Xiaochen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| |
Collapse
|
32
|
Fazeli G, Trinkwalder M, Irmisch L, Wehman AM. C. elegans midbodies are released, phagocytosed and undergo LC3-dependent degradation independent of macroautophagy. J Cell Sci 2016; 129:3721-3731. [PMID: 27562069 PMCID: PMC5087666 DOI: 10.1242/jcs.190223] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023] Open
Abstract
In animals, the midbody coordinates the end of cytokinesis when daughter cells separate through abscission. The midbody was thought to be sequestered by macroautophagy, but recent evidence suggests that midbodies are primarily released and phagocytosed. It was unknown, however, whether autophagy proteins play a role in midbody phagosome degradation. Using a protein degradation assay, we show that midbodies are released in Caenorhabditiselegans. Released midbodies are known to be internalized by actin-driven phagocytosis, which we show requires the RAB-5 GTPase to localize the class III phosphoinositide 3-kinase (PI3K) complex at the cortex. Autophagy-associated proteins, including the Beclin 1 homolog BEC-1 and the Atg8/LC3-family members LGG-1 and LGG-2, localize around the midbody phagosome and are required for midbody degradation. In contrast, proteins required specifically for macroautophagy, such as UNC-51 and EPG-8 (homologous to ULK1/Atg1 and Atg14, respectively) are not required for midbody degradation. These data suggest that the C. elegans midbody is degraded by LC3-associated phagocytosis (LAP), not macroautophagy. Our findings reconcile the two prevailing models on the role of phagocytic and autophagy proteins, establishing a new non-canonical role for autophagy proteins in midbody degradation. Summary: Autophagy proteins are required for the degradation of midbodies. In C. elegans, Atg8/LC3-family proteins act during phagosome maturation rather than during macroautophagy.
Collapse
Affiliation(s)
- Gholamreza Fazeli
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| | - Michaela Trinkwalder
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| | - Linda Irmisch
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| | - Ann Marie Wehman
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
33
|
Sabha N, Volpatti JR, Gonorazky H, Reifler A, Davidson AE, Li X, Eltayeb NM, Dall'Armi C, Di Paolo G, Brooks SV, Buj-Bello A, Feldman EL, Dowling JJ. PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models. J Clin Invest 2016; 126:3613-25. [PMID: 27548528 DOI: 10.1172/jci86841] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022] Open
Abstract
Myotubular myopathy (MTM) is a devastating pediatric neuromuscular disorder of phosphoinositide (PIP) metabolism resulting from mutations of the PIP phosphatase MTM1 for which there are no treatments. We have previously shown phosphatidylinositol-3-phosphate (PI3P) accumulation in animal models of MTM. Here, we tested the hypothesis that lowering PI3P levels may prevent or reverse the MTM disease process. To test this, we targeted class II and III PI3 kinases (PI3Ks) in an MTM1-deficient mouse model. Muscle-specific ablation of Pik3c2b, but not Pik3c3, resulted in complete prevention of the MTM phenotype, and postsymptomatic targeting promoted a striking rescue of disease. We confirmed this genetic interaction in zebrafish, and additionally showed that certain PI3K inhibitors prevented development of the zebrafish mtm phenotype. Finally, the PI3K inhibitor wortmannin improved motor function and prolonged lifespan of the Mtm1-deficient mice. In all, we have identified Pik3c2b as a genetic modifier of Mtm1 mutation and demonstrated that PIK3C2B inhibition is a potential treatment strategy for MTM. In addition, we set the groundwork for similar reciprocal inhibition approaches for treating other PIP metabolic disorders and highlight the importance of modifier gene pathways as therapeutic targets.
Collapse
|
34
|
Meehan TL, Joudi TF, Timmons AK, Taylor JD, Habib CS, Peterson JS, Emmanuel S, Franc NC, McCall K. Components of the Engulfment Machinery Have Distinct Roles in Corpse Processing. PLoS One 2016; 11:e0158217. [PMID: 27347682 PMCID: PMC4922577 DOI: 10.1371/journal.pone.0158217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/13/2016] [Indexed: 01/10/2023] Open
Abstract
Billions of cells die in our bodies on a daily basis and are engulfed by phagocytes. Engulfment, or phagocytosis, can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification. In this study, we focus on the last two steps, which can collectively be considered corpse processing, in which the engulfed material is degraded. We use the Drosophila ovarian follicle cells as a model for engulfment of apoptotic cells by epithelial cells. We show that engulfed material is processed using the canonical corpse processing pathway involving the small GTPases Rab5 and Rab7. The phagocytic receptor Draper is present on the phagocytic cup and on nascent, phosphatidylinositol 3-phosphate (PI(3)P)- and Rab7-positive phagosomes, whereas integrins are maintained on the cell surface during engulfment. Due to the difference in subcellular localization, we investigated the role of Draper, integrins, and downstream signaling components in corpse processing. We found that some proteins were required for internalization only, while others had defects in corpse processing as well. This suggests that several of the core engulfment proteins are required for distinct steps of engulfment. We also performed double mutant analysis and found that combined loss of draper and αPS3 still resulted in a small number of engulfed vesicles. Therefore, we investigated another known engulfment receptor, Crq. We found that loss of all three receptors did not inhibit engulfment any further, suggesting that Crq does not play a role in engulfment by the follicle cells. A more complete understanding of how the engulfment and corpse processing machinery interact may enable better understanding and treatment of diseases associated with defects in engulfment by epithelial cells.
Collapse
Affiliation(s)
- Tracy L. Meehan
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (KM); (TM)
| | - Tony F. Joudi
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Allison K. Timmons
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Jeffrey D. Taylor
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Corey S. Habib
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Jeanne S. Peterson
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Shanan Emmanuel
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Nathalie C. Franc
- The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, California, United States of America
| | - Kimberly McCall
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (KM); (TM)
| |
Collapse
|
35
|
Wang X, Yang C. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans. Cell Mol Life Sci 2016; 73:2221-36. [PMID: 27048817 PMCID: PMC11108496 DOI: 10.1007/s00018-016-2196-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/01/2023]
Abstract
Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans.
Collapse
Affiliation(s)
- Xiaochen Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.
| | - Chonglin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
36
|
Cheng S, Wang K, Zou W, Miao R, Huang Y, Wang H, Wang X. PtdIns(4,5)P₂ and PtdIns3P coordinate to regulate phagosomal sealing for apoptotic cell clearance. J Cell Biol 2016; 210:485-502. [PMID: 26240185 PMCID: PMC4523610 DOI: 10.1083/jcb.201501038] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A coincidence detection mechanism regulates phagosomal sealing and couples it with phosphoinositide conversion from PtdIns(4,5)P2 enrichment on unsealed phagosomes to PtdIns3P enrichment on fully sealed phagosomes. Phagocytosis requires phosphoinositides (PIs) as both signaling molecules and localization cues. How PIs coordinate to control phagosomal sealing and the accompanying switch of organelle identity is unclear. In this study, we followed dynamic changes in PIs during apoptotic cell clearance in Caenorhabditis elegans. We found that phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol-3-phosphate (PtdIns3P), which accumulate transiently on unsealed and fully sealed phagosomes, respectively, are both involved in phagosome closure. We identified PtdIns3P phosphatase MTM-1 as an effector of PtdIns(4,5)P2 to promote phagosomal sealing. MTM-1 coordinates with the class II PI3 kinase PIKI-1 to control PtdIns3P levels on unsealed phagosomes. The SNX9 family protein LST-4 is required for sealing, and its association with unsealed phagosomes is regulated by PtdIns(4,5)P2, PIKI-1, and MTM-1. Loss of LST-4 or its retention on phagosomes disrupts sealing and suppresses PtdIns3P accumulation, indicating close coupling of the two events. Our findings support a coincidence detection mechanism by which phagosomal sealing is regulated and coupled with conversion from PtdIns(4,5)P2 enrichment on unsealed phagosomes to PtdIns3P enrichment on fully sealed phagosomes.
Collapse
Affiliation(s)
- Shiya Cheng
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China National Institute of Biological Sciences, Beijing 102206, China
| | - Kun Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Zou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Miao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yaling Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Haibin Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaochen Wang
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
37
|
Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis. Commun Integr Biol 2016; 9:e1174798. [PMID: 27489580 PMCID: PMC4951175 DOI: 10.1080/19420889.2016.1174798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Professional phagocytes engulf microbial invaders into plasma membrane-derived phagosomes. These mature into microbicidal phagolysosomes, leading to killing of the ingested microbe. Phagosome maturation involves sequential fusion of the phagosome with early endosomes, late endosomes, and the main degradative compartments in cells, lysosomes. Some bacterial pathogens manipulate the phosphoinositide (PIP) composition of phagosome membranes and are not delivered to phagolysosomes, pointing at a role of PIPs in phagosome maturation. This hypothesis is supported by comprehensive microscopic studies. Recently, cell-free reconstitution of fusion between phagosomes and endo(lyso)somes identified phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidylinositol 3-phosphate [PI(3)P] as key regulators of phagolysosome biogenesis. Here, we describe the emerging roles of PIPs in phagosome maturation and we present tools to study PIP involvement in phagosome trafficking using intact cells or purified compartments.
Collapse
|
38
|
Abstract
Programmed cell death (PCD) is essential for health and development. Generally, the last step of PCD is clearance, or engulfment, by phagocytes. Engulfment can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification of the engulfed material. The Drosophila melanogaster ovary serves as an excellent model to study diverse types of PCD and engulfment by epithelial cells. Here, we describe several methods to detect and analyze multiple steps of engulfment in the Drosophila ovary: recognition, vesicle uptake, phagosome maturation, and acidification. Annexin V detects phosphatidylserine, which is flipped to the outer leaflet of the plasma membrane of apoptotic cells, serving as an "eat me" signal. Several germline markers including tral-GFP, Orb, and cleaved Dcp-1 can all be used to label the germline and visualize its uptake into engulfing follicle cells. Drosophila strains expressing GFP and mCherry protein fusions can enable a detailed analysis of phagosome maturation. LysoTracker labels highly acidified compartments, marking phagolysosomes. Together these labels can be used to mark the progression of engulfment in Drosophila follicle cells.
Collapse
|
39
|
PI3K-C2α: One enzyme for two products coupling vesicle trafficking and signal transduction. FEBS Lett 2015; 589:1552-8. [DOI: 10.1016/j.febslet.2015.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
|
40
|
Abstract
Cellular debris created by developmental processes or injury must be cleared by phagocytic cells to maintain and repair tissues. Cutaneous injuries damage not only epidermal cells but also the axonal endings of somatosensory (touch-sensing) neurons, which must be repaired to restore the sensory function of the skin. Phagocytosis of neuronal debris is usually performed by macrophages or other blood-derived professional phagocytes, but we have found that epidermal cells phagocytose somatosensory axon debris in zebrafish. Live imaging revealed that epidermal cells rapidly internalize debris into dynamic phosphatidylinositol 3-monophosphate-positive phagosomes that mature into phagolysosomes using a pathway similar to that of professional phagocytes. Epidermal cells phagocytosed not only somatosensory axon debris but also debris created by injury to other peripheral axons that were mislocalized to the skin, neighboring skin cells, and macrophages. Together, these results identify vertebrate epidermal cells as broad-specificity phagocytes that likely contribute to neural repair and wound healing.
Collapse
|
41
|
Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. Proc Natl Acad Sci U S A 2015; 112:4636-41. [PMID: 25825728 DOI: 10.1073/pnas.1423456112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Professional phagocytic cells ingest microbial intruders by engulfing them into phagosomes, which subsequently mature into microbicidal phagolysosomes. Phagosome maturation requires sequential fusion of the phagosome with early endosomes, late endosomes, and lysosomes. Although various phosphoinositides (PIPs) have been detected on phagosomes, it remained unclear which PIPs actually govern phagosome maturation. Here, we analyzed the involvement of PIPs in fusion of phagosomes with various endocytic compartments and identified phosphatidylinositol 4-phosphate [PI(4)P], phosphatidylinositol 3-phosphate [PI(3)P], and the lipid kinases that generate these PIPs, as mediators of phagosome-lysosome fusion. Phagosome-early endosome fusion required PI(3)P, yet did not depend on PI(4)P. Thus, PI(3)P regulates phagosome maturation at early and late stages, whereas PI(4)P is selectively required late in the pathway.
Collapse
|
42
|
Yeo JC, Wall AA, Luo L, Stow JL. Rab31 and APPL2 enhance FcγR-mediated phagocytosis through PI3K/Akt signaling in macrophages. Mol Biol Cell 2015; 26:952-65. [PMID: 25568335 PMCID: PMC4342030 DOI: 10.1091/mbc.e14-10-1457] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rab31 recruits APPL2 to regulate phagocytic cup closure and FcγR signaling pathways via production of PI(3,4,5)P3 in macrophages. APPL2 is poised to activate macrophages and act as a counterpoint to APPL1 in FcγR-mediated PI3K/Akt signaling. New locations and roles are found for Rab31 and APPL2 by which they contribute to innate immune functions. Membrane remodeling in the early stages of phagocytosis enables the engulfment of particles or pathogens and receptor signaling to activate innate immune responses. Members of the Rab GTPase family and their disparate effectors are recruited sequentially to regulate steps throughout phagocytosis. Rab31 (Rab22b) is known for regulating post-Golgi trafficking, and here we show in macrophages that Rab31-GTP is additionally and specifically recruited to early-stage phagosomes. At phagocytic cups, Rab31 is first recruited during the phosphoinositide transition from PI(4,5)P2 to PI(3,4,5)P3, and it persists on PI(3)P-enriched phagosomes. During early phagocytosis, we find that Rab31 recruits the signaling adaptor APPL2. siRNA depletion of either Rab31 or APPL2 reduces FcγR-mediated phagocytosis. Mechanistically, this corresponds with a delay in the transition to PI(3,4,5)P3 and phagocytic cup closure. APPL2 depletion also reduced PI3K/Akt signaling and enhanced p38 signaling from FcγR. We thus conclude that Rab31/APPL2 is required for key roles in phagocytosis and prosurvival responses of macrophages. Of interest, in terms of localization and function, this Rab31/APPL2 complex is distinct from the Rab5/APPL1 complex, which is also involved in phagocytosis and signaling.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Adam A Wall
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
43
|
Yu X, Long YC, Shen HM. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy 2015; 11:1711-28. [PMID: 26018563 PMCID: PMC4824607 DOI: 10.1080/15548627.2015.1043076] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases.
Collapse
Affiliation(s)
- Xinlei Yu
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Yun Chau Long
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Han-Ming Shen
- b Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| |
Collapse
|
44
|
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15:7-24. [PMID: 25533673 PMCID: PMC4384662 DOI: 10.1038/nrc3860] [Citation(s) in RCA: 1038] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are crucial coordinators of intracellular signalling in response to extracellular stimuli. Hyperactivation of PI3K signalling cascades is one of the most common events in human cancers. In this Review, we discuss recent advances in our knowledge of the roles of specific PI3K isoforms in normal and oncogenic signalling, the different ways in which PI3K can be upregulated, and the current state and future potential of targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Lauren M. Thorpe
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haluk Yuzugullu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Correspondence to J.J.Z. by
| |
Collapse
|
45
|
Shisheva A, Sbrissa D, Ikonomov O. Plentiful PtdIns5P from scanty PtdIns(3,5)P2 or from ample PtdIns? PIKfyve-dependent models: Evidence and speculation (response to: DOI 10.1002/bies.201300012). Bioessays 2014; 37:267-77. [PMID: 25404370 DOI: 10.1002/bies.201400129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recently, we have presented data supporting the notion that PIKfyve not only produces the majority of constitutive phosphatidylinositol 5-phosphate (PtdIns5P) in mammalian cells but that it does so through direct synthesis from PtdIns. Another group, albeit obtaining similar data, suggests an alternative pathway whereby the low-abundance PtdIns(3,5)P2 undergoes hydrolysis by unidentified 3-phosphatases, thereby serving as a precursor for most of PtdIns5P. Here, we review the experimental evidence supporting constitutive synthesis of PtdIns5P from PtdIns by PIKfyve. We further emphasize that the experiments presented in support of the alternative pathway are also compatible with a direct mechanism for PIKfyve-catalyzed synthesis of PtdIns5P. While agreeing with the authors that constitutive PtdIns5P could theoretically be produced from PtdIns(3,5)P2 by 3-dephosphorylation, we argue that until direct evidence for such an alternative pathway is obtained, we should adhere to the existing experimental evidence and quantitative considerations, which favor direct PIKfyve-catalyzed synthesis for most constitutive PtdIns5P.
Collapse
Affiliation(s)
- Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | |
Collapse
|
46
|
Abstract
The phosphoinositide 3-kinase (PI3K) family is important to nearly all aspects of cell and tissue biology and central to human cancer, diabetes and aging. PI3Ks are spatially regulated and multifunctional, and together, act at nearly all membranes in the cell to regulate a wide range of signaling, membrane trafficking and metabolic processes. There is a broadening recognition of the importance of distinct roles for each of the three different PI3K classes (I, II and III), as well as for the different isoforms within each class. Ongoing issues include the need for a better understanding of the in vivo complexity of PI3K regulation and cellular functions. This Cell Science at a Glance article and the accompanying poster summarize the biochemical activities, cellular roles and functional requirements for the three classes of PI3Ks. In doing so, we aim to provide an overview of the parallels, the key differences and crucial interplays between the regulation and roles of the three PI3K classes.
Collapse
Affiliation(s)
- Steve Jean
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | |
Collapse
|
47
|
Zhu H, Han M. Exploring developmental and physiological functions of fatty acid and lipid variants through worm and fly genetics. Annu Rev Genet 2014; 48:119-48. [PMID: 25195508 DOI: 10.1146/annurev-genet-041814-095928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipids are more than biomolecules for energy storage and membrane structure. With ample structural variation, lipids critically participate in nearly all aspects of cellular function. Lipid homeostasis and metabolism are closely related to major human diseases and health problems. However, lipid functional studies have been significantly underdeveloped, partly because of the difficulty in applying genetics and common molecular approaches to tackle the complexity associated with lipid biosynthesis, metabolism, and function. In the past decade, a number of laboratories began to analyze the roles of lipid metabolism in development and other physiological functions using animal models and combining genetics, genomics, and biochemical approaches. These pioneering efforts have not only provided valuable insights regarding lipid functions in vivo but have also established feasible methodology for future studies. Here, we review a subset of these studies using Caenorhabditis elegans and Drosophila melanogaster.
Collapse
Affiliation(s)
- Huanhu Zhu
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309;
| | | |
Collapse
|
48
|
Yang P, Zhang H. You are what you eat: multifaceted functions of autophagy during C. elegans development. Cell Res 2014; 24:80-91. [PMID: 24296782 PMCID: PMC3879703 DOI: 10.1038/cr.2013.154] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Autophagy involves the sequestration of a portion of the cytosolic contents in an enclosed double-membrane autophagosomal structure and its subsequent delivery to lysosomes for degradation. Autophagy activity functions in multiple biological processes during Caenorhabditis elegans development. The basal level of autophagy in embryos removes aggregate-prone proteins, paternal mitochondria and spermatid-specific membranous organelles (MOs). Autophagy also contributes to the efficient removal of embryonic apoptotic cell corpses by promoting phagosome maturation. During larval development, autophagy modulates miRNA-mediated gene silencing by selectively degrading AIN-1, a component of miRNA-induced silencing complex, and thus participates in the specification of multiple cell fates controlled by miRNAs. During development of the hermaphrodite germline, autophagy acts coordinately with the core apoptotic machinery to execute genotoxic stress-induced germline cell death and also cell death when caspase activity is partially compromised. Autophagy is also involved in the utilization of lipid droplets in the aging process in adult animals. Studies in C. elegans provide valuable insights into the physiological functions of autophagy in the development of multicellular organisms.
Collapse
Affiliation(s)
- Peiguo Yang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Hong Zhang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
49
|
Cheng S, Wu Y, Lu Q, Yan J, Zhang H, Wang X. Autophagy genes coordinate with the class II PI/PtdIns 3-kinase PIKI-1 to regulate apoptotic cell clearance in C. elegans. Autophagy 2013; 9:2022-32. [PMID: 24165672 DOI: 10.4161/auto.26323] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phagocytosis and autophagy are two lysosome-mediated cellular degradation pathways designed to eliminate extracellular and intracellular constituents, respectively. Recent studies suggest that these two processes intersect. Several autophagy proteins have been shown to participate in clearance of apoptotic cells, but whether and how the autophagy pathway is involved is unclear. Here we showed that loss of function mutations in 19 genes acting at overlapping or distinct stages of autophagy caused increased numbers of cell corpses in C. elegans embryos. In contrast, genes that mediate specific clearance of P granules or protein aggregates through autophagy are dispensable for cell corpse removal. We showed that defective autophagy impairs phagosome maturation and that autophagy genes act in parallel to the class II phosphoinositide (PI)/phosphatidylinositol (PtdIns) 3-kinase PIKI-1 to regulate phagosomal PtdIns3P in a similar manner as VPS-34. Our data indicate that autophagy may coordinate with PIKI-1 to promote phagosome maturation, thus ensuring efficient clearance of apoptotic cells.
Collapse
Affiliation(s)
- Shiya Cheng
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing, China; National Institute of Biological Sciences; Beijing, China
| | | | | | | | | | | |
Collapse
|
50
|
Devereaux K, Dall’Armi C, Alcazar-Roman A, Ogasawara Y, Zhou X, Wang F, Yamamoto A, De Camilli P, Di Paolo G. Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLoS One 2013; 8:e76405. [PMID: 24098492 PMCID: PMC3789715 DOI: 10.1371/journal.pone.0076405] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
Synthesis of phosphatidylinositol-3-phosphate (PI3P) by Vps34, a class III phosphatidylinositol 3-kinase (PI3K), is critical for the initial steps of autophagosome (AP) biogenesis. Although Vps34 is the sole source of PI3P in budding yeast, mammalian cells can produce PI3P through alternate pathways, including direct synthesis by the class II PI3Ks; however, the physiological relevance of these alternate pathways in the context of autophagy is unknown. Here we generated Vps34 knockout mouse embryonic fibroblasts (MEFs) and using a higher affinity 4x-FYVE finger PI3P-binding probe found a Vps34-independent pool of PI3P accounting for (~)35% of the total amount of this lipid species by biochemical analysis. Importantly, WIPI-1, an autophagy-relevant PI3P probe, still formed some puncta upon starvation-induced autophagy in Vps34 knockout MEFs. Additional characterization of autophagy by electron microscopy as well as protein degradation assays showed that while Vps34 is important for starvation-induced autophagy there is a significant component of functional autophagy occurring in the absence of Vps34. Given these findings, class II PI3Ks (α and β isoforms) were examined as potential positive regulators of autophagy. Depletion of class II PI3Ks reduced recruitment of WIPI-1 and LC3 to AP nucleation sites and caused an accumulation of the autophagy substrate, p62, which was exacerbated upon the concomitant ablation of Vps34. Our studies indicate that while Vps34 is the main PI3P source during autophagy, class II PI3Ks also significantly contribute to PI3P generation and regulate AP biogenesis.
Collapse
Affiliation(s)
- Kelly Devereaux
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Claudia Dall’Armi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Abel Alcazar-Roman
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yuta Ogasawara
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Xiang Zhou
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Fan Wang
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Akitsugu Yamamoto
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|