1
|
Gaete-Loyola J, Olivares F, Saavedra GM, Zúñiga T, Mora R, Ríos I, Valdovinos G, Barrera M, Almeida AM, Prieto H. Artificial Sweet Cherry miRNA 396 Promotes Early Flowering in Vernalization-Dependent Arabidopsis Edi-0 Ecotype. PLANTS (BASEL, SWITZERLAND) 2025; 14:899. [PMID: 40265858 PMCID: PMC11945767 DOI: 10.3390/plants14060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The flowering and fruiting of sweet cherry (Prunus avium L.) depend on precise synchronization with seasonal events. During harsh autumn and winter conditions, floral buds enter dormancy to protect and prepare for the productive season. Dormancy release occurs after exposure to genotype-specific chilling temperatures, an event in which epigenetic reprogramming triggers further metabolic and gene expression activation. Similarly, several Arabidopsis ecotypes require chilling (vernalization) to transition from vegetative to floral states. At vernalization's end, the decrease in the repressor complex formed by SHORT VEGETATIVE PHASE (SVP) and FLOWERING LOCUS C (FLC) allows FLOWERING LOCUS T (FT) to induce flowering. However, this alone does not fully explain the process. MicroRNAs (miRNAs) play a crucial role in gene regulation during plant development and environmental interactions, and miR396's role during flower development and vernalization has been described in some plant species, although not for sweet cherry dormancy. We used 'Regina', a high-chill sweet cherry variety, to identify candidate small RNA molecules throughout dormancy, resulting in the detection of miR396. The transcript expression levels of the putative miRNA target genes were evaluated through quantitative PCR analyses of dormant buds. Additionally, an artificial sweet cherry miR396 was used to transform Arabidopsis Edi-0, a vernalization-requiring ecotype. Ectopic expression of this artificial molecule partially mirrored the effect on target genes observed in dormant buds and, more importantly, led to vernalization-independent flowering. Artificial miR396 expression also resulted in decreased FLC and increased SVP and FT transcript levels. These results could pave the way for future studies on the involvement of miR396 in the regulation of dormancy and flowering, with potential applications in improving crop resilience and productivity.
Collapse
Affiliation(s)
- José Gaete-Loyola
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (J.G.-L.); (G.M.S.)
| | - Felipe Olivares
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| | - Gabriela M. Saavedra
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (J.G.-L.); (G.M.S.)
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Huechuraba, Santiago 8580745, Chile
| | - Tiare Zúñiga
- Natural Sciences, Mathematics, and Environment Faculty, Metropolitan Technological University (UTEM), Macul, Santiago 8330526, Chile;
| | - Roxana Mora
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| | - Ignacio Ríos
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| | - Gonzalo Valdovinos
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| | - Marion Barrera
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| | - Andrea Miyasaka Almeida
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (J.G.-L.); (G.M.S.)
- Escuela de Agronomía, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Huechuraba, Santiago 8580745, Chile
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture (INIA), La Pintana, Santiago 8831314, Chile; (F.O.)
| |
Collapse
|
2
|
Wang Q, Si C, Tang Q, Zhai Y, He Y, Li J, Feng X, Wang L, Zhou L, Wang L, Chen S, Chen F, Jiang J. The B-box protein CmBBX8 recruits chromatin modifiers CmFDM2/CmSWI3B to induce flowering in summer chrysanthemum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17182. [PMID: 39630875 DOI: 10.1111/tpj.17182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
The transition from vegetative to reproductive growth is essential for the flowering process of plants. In summer chrysanthemum, CmBBX8 exploits prominence function in floral transition by activating the expression of CmFTL1. However, how CmBBX8 induces CmFTL1 during the photoperiod inductive cycles remains unknown. Here, we show that CmBBX8 interacts with the SGS3-like protein CmFDM2, and the CmFDM2 overexpression strains presented early flowering, while knockdown strains delayed flowering. Additionally, CmFDM2 could bind to the CmFTL1 promoter and activate the expression of CmFTL1, and associate with chromatin remodeling factor CmSWI3B, and CmBBX8 induces flowering dependent on CmFDM2 and CmSWI3B. CmFDM2 also partially depends on CmSWI3B. The CmSWI3B knockdown strains exhibited a significant late flowering phenotype. Interestingly, CmBBX8 also interacts with CmSWI3B. Moreover, the level of H3K27me3 at the CmFTL1 locus was reduced when CmBBX8 and CmFDM2/CmSWI3B occupied the locus to promote chrysanthemum flowering during the photoperiod inductive cycles, which was accompanied by the increasing level of CmFTL1 transcripts. Thus, our work provides novel insights into the gradually increasing level of CmFTL1 for the floral transition through CmBBX8 recruiting chromatin modifiers CmFDM2/CmSWI3B.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chaona Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qingling Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yiwen Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuhua He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiayu Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilisation, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Zhongshan Biological Breeding Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Sanjuan-Badillo A, P. Martínez-Castilla L, García-Sandoval R, Ballester P, Ferrándiz C, Sanchez MDLP, García-Ponce B, Garay-Arroyo A, R. Álvarez-Buylla E. HDACs MADS-domain protein interaction: a case study of HDA15 and XAL1 in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2024; 19:2353536. [PMID: 38771929 PMCID: PMC11110687 DOI: 10.1080/15592324.2024.2353536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
Cellular behavior, cell differentiation and ontogenetic development in eukaryotes result from complex interactions between epigenetic and classic molecular genetic mechanisms, with many of these interactions still to be elucidated. Histone deacetylase enzymes (HDACs) promote the interaction of histones with DNA by compacting the nucleosome, thus causing transcriptional repression. MADS-domain transcription factors are highly conserved in eukaryotes and participate in controlling diverse developmental processes in animals and plants, as well as regulating stress responses in plants. In this work, we focused on finding out putative interactions of Arabidopsis thaliana HDACs and MADS-domain proteins using an evolutionary perspective combined with bioinformatics analyses and testing the more promising predicted interactions through classic molecular biology tools. Through bioinformatic analyses, we found similarities between HDACs proteins from different organisms, which allowed us to predict a putative protein-protein interaction between the Arabidopsis thaliana deacetylase HDA15 and the MADS-domain protein XAANTAL1 (XAL1). The results of two-hybrid and Bimolecular Fluorescence Complementation analysis demonstrated in vitro and in vivo HDA15-XAL1 interaction in the nucleus. Likely, this interaction might regulate developmental processes in plants as is the case for this type of interaction in animals.
Collapse
Affiliation(s)
- Andrea Sanjuan-Badillo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Programa de Doctorado en Ciencias Biomédicas, de la Universidad Nacional Autónoma de México, Ciudad de México, México
| | - León P. Martínez-Castilla
- Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | | | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, Valencia, España
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, Valencia, España
| | - Maria de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Wu L, Li G, Li D, Dong C, Zhang X, Zhang L, Yang Z, Kong X, Xia C, Chen J, Liu X. Identification and functional analysis of a chromosome 2D fragment harboring TaFPF1 gene with the potential for yield improvement using a late heading wheat mutant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:92. [PMID: 38568320 DOI: 10.1007/s00122-024-04593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
KEY MESSAGE A chromosome fragment influencing wheat heading and grain size was identified using mapping of m406 mutant. The study of TaFPF1 in this fragment provides more insights into wheat yield improvement. In recent years, wheat production has faced formidable challenges driven by rapid population growth and climate change, emphasizing the importance of improving specific agronomic traits such as heading date, spike length, and grain size. To identify potential genes for improving these traits, we screened a wheat EMS mutant library and identified a mutant, designated m406, which exhibited a significantly delayed heading date compared to the wild-type. Intriguingly, the mutant also displayed significantly longer spike and larger grain size. Genetic analysis revealed that a single recessive gene was responsible for the delayed heading. Surprisingly, a large 46.58 Mb deletion at the terminal region of chromosome arm 2DS in the mutant was identified through fine mapping and fluorescence in situ hybridization. Thus, the phenotypes of the mutant m406 are controlled by a group of linked genes. This deletion encompassed 917 annotated high-confidence genes, including the previously studied wheat genes Ppd1 and TaDA1, which could affect heading date and grain size. Multiple genes in this region probably contribute to the phenotypes of m406. We further investigated the function of TaFPF1 using gene editing. TaFPF1 knockout mutants showed delayed heading and increased grain size. Moreover, we identified the direct upstream gene of TaFPF1 and investigated its relationship with other important flowering genes. Our study not only identified more genes affecting heading and grain development within this deleted region but also highlighted the potential of combining these genes for improvement of wheat traits.
Collapse
Affiliation(s)
- Lifen Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, Sichuan, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhao Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueying Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jingtang Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Xu Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Mahmood T, He S, Abdullah M, Sajjad M, Jia Y, Ahmar S, Fu G, Chen B, Du X. Epigenetic insight into floral transition and seed development in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111926. [PMID: 37984609 DOI: 10.1016/j.plantsci.2023.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Seasonal changes are crucial in shifting the developmental stages from the vegetative phase to the reproductive phase in plants, enabling them to flower under optimal conditions. Plants grown at different latitudes sense and interpret these seasonal variations, such as changes in day length (photoperiod) and exposure to cold winter temperatures (vernalization). These environmental factors influence the expression of various genes related to flowering. Plants have evolved to stimulate a rapid response to environmental conditions through genetic and epigenetic mechanisms. Multiple epigenetic regulation systems have emerged in plants to interpret environmental signals. During the transition to the flowering phase, changes in gene expression are facilitated by chromatin remodeling and small RNAs interference, particularly in annual and perennial plants. Key flowering regulators, such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT), interact with various factors and undergo chromatin remodeling in response to seasonal cues. The Polycomb silencing complex (PRC) controls the expression of flowering-related genes in photoperiodic flowering regulation. Under vernalization-dependent flowering, FLC acts as a potent flowering suppressor by downregulating the gene expression of various flower-promoting genes. Eventually, PRCs are critically involved in the regulation of FLC and FT locus interacting with several key genes in photoperiod and vernalization. Subsequently, PRCs also regulate Epigenetical events during gametogenesis and seed development as a driving force. Furthermore, DNA methylation in the context of CHG, CG, and CHH methylation plays a critical role in embryogenesis. DNA glycosylase DME (DEMETER) is responsible for demethylation during seed development. Thus, the review briefly discusses flowering regulation through light signaling, day length variation, temperature variation and seed development in plants.
Collapse
Affiliation(s)
- Tahir Mahmood
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Muhammad Abdullah
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Sajjad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Guoyong Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China.
| |
Collapse
|
6
|
Zhao H, Tian Z, Song G, Xiang S, Wang Y, He Y, Lv X, Wang J, Yang Z, Liu Y, Wang D, Li W. Natural variation in the promoter of FLOWERING LOCUS T-LIKE 2 in pumpkin (Cucurbita moschata Duch.) is associated with flowering time under short-day conditions. PLANT, CELL & ENVIRONMENT 2024; 47:442-459. [PMID: 37969013 DOI: 10.1111/pce.14766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023]
Abstract
Late flowering is a serious bottleneck in pumpkin (Cucurbita moschata Duch.) agriculture production. Although key genes governing flowering time have been reported in many species, the regulatory network of flowering in pumpkin remains largely obscure, thereby impeding the resolution of industry-wide challenges associated with delayed fruit ripening in pumpkin cultivation. Here, we report an early flowering pumpkin germplasm accession (LXX-4). Using LXX-4 and a late flowering germplasm accession (HYM-9), we constructed an F2 segregation population. A significant difference in FLOWERING LOCUS T-LIKE 2 (FTL2) expression level was identified to be the causal factor of the flowering time trait discrepancy in LXX-4 and HYM-9. Moreover, we have shown that a 21 bp InDel in the FTL2 promoter was the key reason for the waxing and waning of its transcript level. The 21 bp deletion excluded a repressor-AGL19 and recruited activators-BBX7, WRKY40 and SVP to the FTL2 promoter in LXX-4. Together, our data add a useful element to our knowledge which could be used to simplify breeding efforts for early-maturing pumpkin.
Collapse
Affiliation(s)
- Hang Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Zhiyu Tian
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Guoyi Song
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Shuanglu Xiang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Yi Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Yan He
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xiaoran Lv
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jie Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Zhongzhou Yang
- Anhui Jianghuai Horticulture Seeds Co., Ltd., Hefei, China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Dongliang Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Li
- School of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Yang Y, Tian H, Xu C, Li H, Li Y, Zhang H, Zhang B, Yuan W. Arabidopsis SEC13B Interacts with Suppressor of Frigida 4 to Repress Flowering. Int J Mol Sci 2023; 24:17248. [PMID: 38139079 PMCID: PMC10744139 DOI: 10.3390/ijms242417248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
SECRETORY13 (SEC13) is an essential member of the coat protein complex II (COPII), which was reported to mediate vesicular-specific transport from the endoplasmic reticulum (ER) to the Golgi apparatus and plays a crucial role in early secretory pathways. In Arabidopsis, there are two homologous proteins of SEC13: SEC13A and SEC13B. SUPPRESSOR OF FRIGIDA 4 (SUF4) encodes a C2H2-type zinc finger protein that inhibits flowering by transcriptionally activating the FLOWERING LOCUS C (FLC) through the FRIGIDA (FRI) pathway in Arabidopsis. However, it remains unclear whether SEC13 proteins are involved in Arabidopsis flowering. In this study, we first identified that the sec13b mutant exhibited early flowering under both long-day and short-day conditions. Quantitative real-time PCR (qRT-PCR) analysis showed that both SEC13A and SEC13B were expressed in all the checked tissues, and transient expression assays indicated that SEC13A and SEC13B were localized not only in the ER but also in the nucleus. Then, we identified that SEC13A and SEC13B could interact with SUF4 in vitro and in vivo. Interestingly, both sec13b and suf4 single mutants flowered earlier than the wild type (Col-0), whereas the sec13b suf4 double mutant flowered even earlier than all the others. In addition, the expression of flowering inhibitor FLC was down-regulated, and the expressions of flowering activator FLOWERING LOCUS T (FT), CONSTANS (CO), and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) were up-regulated in sec13b, suf4, and sec13b suf4 mutants, compared with Col-0. Taken together, our results indicated that SEC13B interacted with SUF4, and they may co-regulate the same genes in flowering-regulation pathways. These results also suggested that the COPII component could function in flowering in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.Y.); (H.T.); (C.X.); (H.L.); (Y.L.); (H.Z.)
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.Y.); (H.T.); (C.X.); (H.L.); (Y.L.); (H.Z.)
| |
Collapse
|
8
|
Liu S, He M, Lin X, Kong F. Epigenetic regulation of photoperiodic flowering in plants. THE PLANT GENOME 2023; 16:e20320. [PMID: 37013370 DOI: 10.1002/tpg2.20320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
Abstract
In response to changeable season, plants precisely control the initiation of flowering in appropriate time of the year to ensure reproductive success. Day length (photoperiod) acts as the most important external cue to determine flowering time. Epigenetics regulates many major developmental stages in plant life, and emerging molecular genetics and genomics researches reveal their essential roles in floral transition. Here, we summarize the recent advances in epigenetic regulation of photoperiod-mediated flowering in Arabidopsis and rice, and discuss the potential of epigenetic regulation in crops improvement, and give the brief prospect for future study trends.
Collapse
Affiliation(s)
- Shuangrong Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Milan He
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaoya Lin
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
9
|
Lee Z, Kim S, Choi SJ, Joung E, Kwon M, Park HJ, Shim JS. Regulation of Flowering Time by Environmental Factors in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3680. [PMID: 37960036 PMCID: PMC10649094 DOI: 10.3390/plants12213680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The timing of floral transition is determined by both endogenous molecular pathways and external environmental conditions. Among these environmental conditions, photoperiod acts as a cue to regulate the timing of flowering in response to seasonal changes. Additionally, it has become clear that various environmental factors also control the timing of floral transition. Environmental factor acts as either a positive or negative signal to modulate the timing of flowering, thereby establishing the optimal flowering time to maximize the reproductive success of plants. This review aims to summarize the effects of environmental factors such as photoperiod, light intensity, temperature changes, vernalization, drought, and salinity on the regulation of flowering time in plants, as well as to further explain the molecular mechanisms that link environmental factors to the internal flowering time regulation pathway.
Collapse
Affiliation(s)
- Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Eui Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea; (Z.L.); (S.K.); (S.J.C.); (E.J.)
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
10
|
Chen Z, Li Z. Adaptation and integration of environmental cues to internal flowering network in Arabidopsis thaliana. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Jaudal M, Mayo‐Smith M, Poulet A, Whibley A, Peng Y, Zhang L, Thomson G, Trimborn L, Jacob Y, van Wolfswinkel JC, Goldstone DC, Wen J, Mysore KS, Putterill J. MtING2 encodes an ING domain PHD finger protein which affects Medicago growth, flowering, global patterns of H3K4me3, and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1029-1050. [PMID: 36178149 PMCID: PMC9828230 DOI: 10.1111/tpj.15994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Flowering of the reference legume Medicago truncatula is promoted by winter cold (vernalization) followed by long-day photoperiods (VLD) similar to winter annual Arabidopsis. However, Medicago lacks FLC and CO, key regulators of Arabidopsis VLD flowering. Most plants have two INHIBITOR OF GROWTH (ING) genes (ING1 and ING2), encoding proteins with an ING domain with two anti-parallel alpha-helices and a plant homeodomain (PHD) finger, but their genetic role has not been previously described. In Medicago, Mting1 gene-edited mutants developed and flowered normally, but an Mting2-1 Tnt1 insertion mutant and gene-edited Mting2 mutants had developmental abnormalities including delayed flowering particularly in VLD, compact architecture, abnormal leaves with extra leaflets but no trichomes, and smaller seeds and barrels. Mting2 mutants had reduced expression of activators of flowering, including the FT-like gene MtFTa1, and increased expression of the candidate repressor MtTFL1c, consistent with the delayed flowering of the mutant. MtING2 overexpression complemented Mting2-1, but did not accelerate flowering in wild type. The MtING2 PHD finger bound H3K4me2/3 peptides weakly in vitro, but analysis of gene-edited mutants indicated that it was dispensable to MtING2 function in wild-type plants. RNA sequencing experiments indicated that >7000 genes are mis-expressed in the Mting2-1 mutant, consistent with its strong mutant phenotypes. Interestingly, ChIP-seq analysis identified >5000 novel H3K4me3 locations in the genome of Mting2-1 mutants compared to wild type R108. Overall, our mutant study has uncovered an important physiological role of a plant ING2 gene in development, flowering, and gene expression, which likely involves an epigenetic mechanism.
Collapse
Affiliation(s)
- Mauren Jaudal
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Matthew Mayo‐Smith
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Axel Poulet
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Annabel Whibley
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Yongyan Peng
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Lulu Zhang
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Geoffrey Thomson
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Laura Trimborn
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
- Institute for Plant Sciences, BiocenterUniversity of CologneZülpicher Str. 47b50674CologneGermany
| | - Yannick Jacob
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Josien C. van Wolfswinkel
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - David C. Goldstone
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jiangqi Wen
- Institute for Agricultural BiosciencesOklahoma State University3210 Sam Noble ParkwayArdmoreOK73401USA
| | - Kirankumar S. Mysore
- Institute for Agricultural BiosciencesOklahoma State University3210 Sam Noble ParkwayArdmoreOK73401USA
| | - Joanna Putterill
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| |
Collapse
|
12
|
Identification and Comparative Analysis of Genes and MicroRNAs Involved in the Floral Transition of the Xinjiang Early-Flowering Walnut (Juglans regia L.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For tree crops, shortening the juvenile phase is a vital strategy to advance fruit bearing and enhance the breeding efficiency. Walnut (Juglans regia L.) seedlings usually take at least eight to 10 years to flower, but early-flowering (EF) types can flower one or two years after planting. In this study, RNA sequencing (RNA-Seq) and microRNA sequencing (miRNA-Seq) were used for a transcriptome-wide analysis of gene and miRNA expression in hybrids of the Xinjiang EF walnut variety ‘Xinwen 81’ and later-flowering (LF) walnut. Based on a high-quality chromosome-scale reference genome, a total of 3009 differentially expressed genes (DEGs) were identified, of which 933 were upregulated (accounting for 31%) and 2076 were downregulated (accounting for 69%). DEGs were functionally annotated, and the flowering-related genes FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), and LEAFY (LFY) showed remarkable upregulation in EF compared with in the LF walnut. In addition, miRNAs associated with floral transition were screened as candidates for flowering time regulation in the walnut. This work provides new insights into walnut floral transition, which may ultimately contribute to genetic improvement of the walnut.
Collapse
|
13
|
Luo X, Yin M, He Y. Molecular Genetic Understanding of Photoperiodic Regulation of Flowering Time in Arabidopsis and Soybean. Int J Mol Sci 2021; 23:466. [PMID: 35008892 PMCID: PMC8745532 DOI: 10.3390/ijms23010466] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
The developmental switch from a vegetative phase to reproduction (flowering) is essential for reproduction success in flowering plants, and the timing of the floral transition is regulated by various environmental factors, among which seasonal day-length changes play a critical role to induce flowering at a season favorable for seed production. The photoperiod pathways are well known to regulate flowering time in diverse plants. Here, we summarize recent progresses on molecular mechanisms underlying the photoperiod control of flowering in the long-day plant Arabidopsis as well as the short-day plant soybean; furthermore, the conservation and diversification of photoperiodic regulation of flowering in these two species are discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Mengnan Yin
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China;
| | - Yuehui He
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Zhang P, Li X, Wang Y, Guo W, Chachar S, Riaz A, Geng Y, Gu X, Yang L. PRMT6 physically associates with nuclear factor Y to regulate photoperiodic flowering in Arabidopsis. ABIOTECH 2021; 2:403-414. [PMID: 36304422 PMCID: PMC9590495 DOI: 10.1007/s42994-021-00065-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/12/2021] [Indexed: 05/14/2023]
Abstract
UNLABELLED The timing of floral transition is critical for reproductive success in flowering plants. In long-day (LD) plant Arabidopsis, the floral regulator gene FLOWERING LOCUS T (FT) is a major component of the mobile florigen. FT expression is rhythmically activated by CONSTANS (CO), and specifically accumulated at dusk of LDs. However, the underlying mechanism of adequate regulation of FT transcription in response to day-length cues to warrant flowering time still remains to be investigated. Here, we identify a homolog of human protein arginine methyltransferases 6 (HsPRMT6) in Arabidopsis, and confirm AtPRMT6 physically interacts with three positive regulators of flowering Nuclear Factors YC3 (NF-YC3), NF-YC9, and NF-YB3. Further investigations find that AtPRMT6 and its encoding protein accumulate at dusk of LDs. PRMT6-mediated H3R2me2a modification enhances the promotion of NF-YCs on FT transcription in response to inductive LD signals. Moreover, AtPRMT6 and its homologues proteins AtPRMT4a and AtPRMT4b coordinately inhibit the expression of FLOWERING LOCUS C, a suppressor of FT. Taken together, our study reveals the role of arginine methylation in photoperiodic pathway and how the PRMT6-mediating H3R2me2a system interacts with NF-CO module to dynamically control FT expression and facilitate flowering time. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00065-y.
Collapse
Affiliation(s)
- Pingxian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiulan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Yifan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Sadaruddin Chachar
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Yuke Geng
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081 China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| | - Liwen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing, 100081 China
| |
Collapse
|
15
|
Rodrigues VL, Dolde U, Sun B, Blaakmeer A, Straub D, Eguen T, Botterweg-Paredes E, Hong S, Graeff M, Li MW, Gendron JM, Wenkel S. A microProtein repressor complex in the shoot meristem controls the transition to flowering. PLANT PHYSIOLOGY 2021; 187:187-202. [PMID: 34015131 PMCID: PMC8418433 DOI: 10.1093/plphys/kiab235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/01/2021] [Indexed: 05/12/2023]
Abstract
MicroProteins are potent post-translational regulators. In Arabidopsis (Arabidopsis thaliana), the miP1a/b microProteins delay floral transition by forming a complex with CONSTANS (CO) and the co-repressor protein TOPLESS. To better understand the function of the miP1a microProtein in floral repression, we performed a genetic suppressor screen to identify suppressors of miP1a (sum) function. One mutant, sum1, exhibited strong suppression of the miP1a-induced late-flowering phenotype. Mapping of sum1 identified another allele of the gene encoding the histone H3K4 demethylase JUMONJI14 (JMJ14), which is required for miP1a function. Plants carrying mutations in JMJ14 exhibit an early flowering phenotype that is largely dependent on CO activity, supporting an additional role for CO in the repressive complex. We further investigated whether miP1a function involves chromatin modification, performed whole-genome methylome sequencing studies with plants ectopically expressing miP1a, and identified differentially methylated regions (DMRs). Among these DMRs is the promoter of FLOWERING LOCUS T (FT), the prime target of miP1a that is ectopically methylated in a JMJ14-dependent manner. Moreover, when aberrantly expressed at the shoot apex, CO induces early flowering, but only when JMJ14 is mutated. Detailed analysis of the genetic interaction among CO, JMJ14, miP1a/b, and TPL revealed a potential role for CO as a repressor of flowering in the shoot apical meristem (SAM). Altogether, our results suggest that a repressor complex operates in the SAM, likely to maintain it in an undifferentiated state until leaf-derived florigen signals induce SAM conversion into a floral meristem.
Collapse
Affiliation(s)
- Vandasue L. Rodrigues
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ulla Dolde
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bin Sun
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Anko Blaakmeer
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Daniel Straub
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Tenai Eguen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Esther Botterweg-Paredes
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Shinyoung Hong
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Moritz Graeff
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Man-Wah Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT 06511, USA
| | - Joshua M. Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT 06511, USA
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- NovoCrops Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Author for communication:
| |
Collapse
|
16
|
Zhang P, Zhu C, Geng Y, Wang Y, Yang Y, Liu Q, Guo W, Chachar S, Riaz A, Yan S, Yang L, Yi K, Wu C, Gu X. Rice and Arabidopsis homologs of yeast CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4 commonly interact with Polycomb complexes but exert divergent regulatory functions. THE PLANT CELL 2021; 33:1417-1429. [PMID: 33647940 PMCID: PMC8254485 DOI: 10.1093/plcell/koab047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/29/2021] [Indexed: 05/02/2023]
Abstract
Both genetic and epigenetic information must be transferred from mother to daughter cells during cell division. The mechanisms through which information about chromatin states and epigenetic marks like histone 3 lysine 27 trimethylation (H3K27me3) are transferred have been characterized in animals; these processes are less well understood in plants. Here, based on characterization of a dwarf rice (Oryza sativa) mutant (dwarf-related wd40 protein 1, drw1) deficient for yeast CTF4 (CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4), we discovered that CTF4 orthologs in plants use common cellular machinery yet accomplish divergent functional outcomes. Specifically, drw1 exhibited no flowering-related phenotypes (as in the putatively orthologous Arabidopsis thaliana eol1 mutant), but displayed cell cycle arrest and DNA damage responses. Mechanistically, we demonstrate that DRW1 sustains normal cell cycle progression by modulating the expression of cell cycle inhibitors KIP-RELATED PROTEIN 1 (KRP1) and KRP5, and show that these effects are mediated by DRW1 binding their promoters and increasing H3K27me3 levels. Thus, although CTF4 orthologs ENHANCER OF LHP1 1 (EOL1) in Arabidopsis and DRW1 in rice are both expressed uniquely in dividing cells, commonly interact with several Polycomb complex subunits, and promote H3K27me3 deposition, we now know that their regulatory functions diverged substantially during plant evolution. Moreover, our work experimentally illustrates specific targets of CTF4/EOL1/DRW1, their protein-proteininteraction partners, and their chromatin/epigenetic effects in plants.
Collapse
Affiliation(s)
- Pingxian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunmei Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuke Geng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yifan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sadaruddin Chachar
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Liwen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for correspondence: (K.Y.), (C.W.), (X.G.)
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Author for correspondence: (K.Y.), (C.W.), (X.G.)
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for correspondence: (K.Y.), (C.W.), (X.G.)
| |
Collapse
|
17
|
Yruela I, Moreno-Yruela C, Olsen CA. Zn 2+-Dependent Histone Deacetylases in Plants: Structure and Evolution. TRENDS IN PLANT SCIENCE 2021; 26:741-757. [PMID: 33461867 DOI: 10.1016/j.tplants.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Zn2+-dependent histone deacetylases are widely distributed in archaea, bacteria, and eukaryotes. Through deacetylation of histones and other biomolecules, these enzymes regulate mammalian gene expression, microtubule stability, and polyamine metabolism. In plants, they play essential roles in development and stress response, but little is known about their biochemistry. We provide here a holistic revision of plant histone deacetylase (HDA) phylogeny and translate recent lessons from other organisms. HDA evolution correlates with a gain of structural ductility/disorder, as observed for other proteins. We also highlight two recently identified Brassicaceae-specific HDAs, as well as unprecedented key mutations that would affect the catalytic activity of individual HDAs. This revised phylogeny will contextualize future studies and illuminate research on plant development and adaptation.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Group of Biochemistry, Biophysics, and Computational Biology (GBsC), Institute for Biocomputation and Physics of Complex Systems (BIFI) and Universidad de Zaragoza (UNIZAR) Joint Unit to CSIC, Zaragoza, Spain.
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
de Rooij PGH, Perrella G, Kaiserli E, van Zanten M. The diverse and unanticipated roles of histone deacetylase 9 in coordinating plant development and environmental acclimation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6211-6225. [PMID: 32687569 PMCID: PMC7586748 DOI: 10.1093/jxb/eraa335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
Plants tightly control gene transcription to adapt to environmental conditions and steer growth and development. Different types of epigenetic modifications are instrumental in these processes. In recent years, an important role for the chromatin-modifying RPD3/HDA1 class I HDAC HISTONE DEACETYLASE 9 (HDA9) emerged in the regulation of a multitude of plant traits and responses. HDACs are widely considered transcriptional repressors and are typically part of multiprotein complexes containing co-repressors, DNA, and histone-binding proteins. By catalyzing the removal of acetyl groups from lysine residues of histone protein tails, HDA9 negatively controls gene expression in many cases, in concert with interacting proteins such as POWERDRESS (PWR), HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 15 (HOS15), WRKY53, ELONGATED HYPOCOTYL 5 (HY5), ABA INSENSITIVE 4 (ABI4), and EARLY FLOWERING 3 (ELF3). However, HDA9 activity has also been directly linked to transcriptional activation. In addition, following the recent breakthrough discovery of mutual negative feedback regulation between HDA9 and its interacting WRKY-domain transcription factor WRKY53, swift progress in gaining understanding of the biology of HDA9 is expected. In this review, we summarize knowledge on this intriguing versatile-and long under-rated-protein and propose novel leads to further unravel HDA9-governed molecular networks underlying plant development and environmental biology.
Collapse
Affiliation(s)
- Peter G H de Rooij
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Giorgio Perrella
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- ENEA - Trisaia Research Centre 75026, Rotondella (Matera), Italy
| | - Eirini Kaiserli
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan, CH Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
19
|
Guo Z, Li Z, Liu Y, An Z, Peng M, Shen WH, Dong A, Yu Y. MRG1/2 histone methylation readers and HD2C histone deacetylase associate in repression of the florigen gene FT to set a proper flowering time in response to day-length changes. THE NEW PHYTOLOGIST 2020; 227:1453-1466. [PMID: 32315442 DOI: 10.1111/nph.16616] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 05/26/2023]
Abstract
Day-length changes represent an important cue for modulating flowering time. In Arabidopsis, the expression of the florigen gene FLOWERING LOCUS T (FT) exhibits a 24-h circadian rhythm under long-day (LD) conditions. Here we focus on the chromatin-based mechanism regarding the control of FT expression. We conducted co-immunoprecipitation assays along with LC-MS/MS analysis and identified HD2C histone deacetylase as the binding protein of the H3K4/H3K36 methylation reader MRG2. HD2C and MRG1/2 regulate flowering time under LD conditions, but not under short-day conditions. Moreover, HD2C functions as an effective deacetylase in planta, mainly targeting H3K9ac, H3K23ac and H3K27ac. At dusk, HD2C is recruited to FT to deacetylate histones and repress transcription in an MRG1/2-dependent manner. More importantly, HD2C competes with CO for the binding of MRG2, and the accumulation of HD2C at the FT locus occurs at the end of the day. Our findings not only reveal a histone deacetylation mechanism contributing to prevent FT overexpression and precocious flowering, but also support the model in which the histone methylation readers MRG1/2 provide a platform on chromatin for connecting regulatory factors involved in activating FT expression in response to daylight and decreasing FT expression around dusk under long days.
Collapse
Affiliation(s)
- Zhihao Guo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zepeng Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, F-67000, France
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Maolin Peng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, F-67000, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
20
|
Zhang X, Guo W, Du D, Pu L, Zhang C. Overexpression of a maize BR transcription factor ZmBZR1 in Arabidopsis enlarges organ and seed size of the transgenic plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110378. [PMID: 32005383 DOI: 10.1016/j.plantsci.2019.110378] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 05/18/2023]
Abstract
In plants, the organ size is one of the most important features and regulated by an elaborate developmental program involving both internal and external signals. The steroidal hormone brassinosteroid (BR) plays an important role in regulating the organ size. BRASSINAZOLE RESISTANT 1 (BZR1) is one of important transcription factors that regulate organ size in BR signal pathway in Arabidopsis. The function of BZR1 on organ size is well characterized in Arabidopsis, but poorly understood in maize (Zea mays). To understand the mechanism of intrinsic organ size regulated by BZR1 during organogenesis, we identified the maize BZR1 and examined its function in Arabidopsis. Overexpression of ZmBZR1 displayed phenotypes of enlarged cotyledons, rosette leaves, floral organ and seed size in Arabidopsis. The cells in rosette leaves as well as other organs in transgenic ZmBZR1 lines were dramatically larger and longer than those in Col-0. ChIP and RNA-seq analysis showed ZmBZR1 can directly bind to the promoter region of organ size related genes, Germination Repression and Cell Expansion receptor-like kinase (GRACE) and KIP-RELATED PROTEIN6 (KRP6) to regulate their expression, suggesting ZmBZR1 is required for the progressive increase in cells during Arabidopsis development. Collectively, our findings provide significant insights into the mechanisms underlying regulation of organ size mediated by maize BZR1.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Danyao Du
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
21
|
Geng Y, Zhang P, Liu Q, Wei Z, Riaz A, Chachar S, Gu X. Rice homolog of Sin3-associated polypeptide 30, OsSFL1, mediates histone deacetylation to regulate flowering time during short days. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:325-327. [PMID: 31446676 PMCID: PMC6953189 DOI: 10.1111/pbi.13235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 05/18/2023]
Affiliation(s)
- Yuke Geng
- Biotechnology Research InstituteChinese Academy of Agricultural ScienceBeijingChina
| | - Pingxian Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural ScienceBeijingChina
| | - Qing Liu
- Biotechnology Research InstituteChinese Academy of Agricultural ScienceBeijingChina
| | - Ziwei Wei
- Biotechnology Research InstituteChinese Academy of Agricultural ScienceBeijingChina
| | - Adeel Riaz
- Biotechnology Research InstituteChinese Academy of Agricultural ScienceBeijingChina
| | - Sadaruddin Chachar
- Biotechnology Research InstituteChinese Academy of Agricultural ScienceBeijingChina
| | - Xiaofeng Gu
- Biotechnology Research InstituteChinese Academy of Agricultural ScienceBeijingChina
| |
Collapse
|
22
|
He Y, Chen T, Zeng X. Genetic and Epigenetic Understanding of the Seasonal Timing of Flowering. PLANT COMMUNICATIONS 2020; 1:100008. [PMID: 33404547 PMCID: PMC7747966 DOI: 10.1016/j.xplc.2019.100008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The developmental transition to flowering in many plants is timed by changing seasons, which enables plants to flower at a season that is favorable for seed production. Many plants grown at high latitudes perceive the seasonal cues of changing day length and/or winter cold (prolonged cold exposure), to regulate the expression of flowering-regulatory genes through the photoperiod pathway and/or vernalization pathway, and thus align flowering with a particular season. Recent studies in the model flowering plant Arabidopsis thaliana have revealed that diverse transcription factors engage various chromatin modifiers to regulate several key flowering-regulatory genes including FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT) in response to seasonal signals. Here, we summarize the current understanding of molecular and chromatin-regulatory or epigenetic mechanisms underlying the vernalization response and photoperiodic control of flowering in Arabidopsis. Moreover, the conservation and divergence of regulatory mechanisms for seasonal flowering in crops and other plants are briefly discussed.
Collapse
|
23
|
Amini S, Rosli K, Abu-Bakar MF, Alias H, Mat-Isa MN, Juhari MAA, Haji-Adam J, Goh HH, Wan KL. Transcriptome landscape of Rafflesia cantleyi floral buds reveals insights into the roles of transcription factors and phytohormones in flower development. PLoS One 2019; 14:e0226338. [PMID: 31851702 PMCID: PMC6919626 DOI: 10.1371/journal.pone.0226338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
Rafflesia possesses unique biological features and known primarily for producing the world’s largest and existing as a single flower. However, to date, little is known about key regulators participating in Rafflesia flower development. In order to further understand the molecular mechanism that regulates Rafflesia cantleyi flower development, RNA-seq data from three developmental stages of floral bud, representing the floral organ primordia initiation, floral organ differentiation, and floral bud outgrowth, were analysed. A total of 89,890 transcripts were assembled of which up to 35% could be annotated based on homology search. Advanced transcriptome analysis using K-mean clustering on the differentially expressed genes (DEGs) was able to identify 12 expression clusters that reflect major trends and key transitional states, which correlate to specific developmental stages. Through this, comparative gene expression analysis of different floral bud stages identified various transcription factors related to flower development. The members of WRKY, NAC, bHLH, and MYB families are the most represented among the DEGs, suggesting their important function in flower development. Furthermore, pathway enrichment analysis also revealed DEGs that are involved in various phytohormone signal transduction events such as auxin and auxin transport, cytokinin and gibberellin biosynthesis. Results of this study imply that transcription factors and phytohormone signalling pathways play major role in Rafflesia floral bud development. This study provides an invaluable resource for molecular studies of the flower development process in Rafflesia and other plant species.
Collapse
Affiliation(s)
- Safoora Amini
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Khadijah Rosli
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | | | - Halimah Alias
- Malaysia Genome Institute, Jalan Bangi, Kajang, Selangor, Malaysia
| | | | - Mohd-Afiq-Aizat Juhari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Jumaat Haji-Adam
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Kiew-Lian Wan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
24
|
HISTONE DEACETYLASE 9 stimulates auxin-dependent thermomorphogenesis in Arabidopsis thaliana by mediating H2A.Z depletion. Proc Natl Acad Sci U S A 2019; 116:25343-25354. [PMID: 31767749 DOI: 10.1073/pnas.1911694116] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis.
Collapse
|
25
|
Su Y, Liu J, Liang W, Dou Y, Fu R, Li W, Feng C, Gao C, Zhang D, Kang Z, Li H. Wheat AGAMOUS LIKE 6 transcription factors function in stamen development by regulating the expression of Ta APETALA3. Development 2019; 146:dev.177527. [PMID: 31540915 DOI: 10.1242/dev.177527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/11/2019] [Indexed: 11/20/2022]
Abstract
Previous studies have revealed the functions of rice and maize AGAMOUS LIKE 6 (AGL6) genes OsMADS6 and ZAG3, respectively, in floral development; however, the functions of three wheat (Triticum aestivum) AGL6 genes are still unclear. Here, we report the main functions of wheat AGL6 homoeologous genes in stamen development. In RNAi plants, stamens showed abnormality in number and morphology, and a tendency to transform into carpels. Consistently, the expression of the B-class gene TaAPETALA3 (AP3) and the auxin-responsive gene TaMGH3 was downregulated, whereas the wheat ortholog of the rice carpel identity gene DROOPING LEAF was ectopically expressed in RNAi stamens. TaAGL6 proteins bind to the promoter of TaAP3 directly. Yeast one-hybrid and transient expression assays further showed that TaAGL6 positively regulates the expression of TaAP3 in vivo. Wheat AGL6 transcription factors interact with TaAP3, TaAGAMOUS and TaMADS13. Our findings indicate that TaAGL6 transcription factors play an essential role in stamen development through transcriptional regulation of TaAP3 and other related genes. We propose a model to illustrate the function and probable mechanism of this regulation. This study extends our understanding of AGL6 genes.
Collapse
Affiliation(s)
- Yali Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jinxing Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanhua Dou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ruifeng Fu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Cuizhu Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Caixia Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
26
|
Huang F, Yuan W, Tian S, Zheng Q, He Y. SIN3 LIKE genes mediate long-day induction of flowering but inhibit the floral transition in short days through histone deacetylation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:101-113. [PMID: 31168864 DOI: 10.1111/tpj.14430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/27/2023]
Abstract
Day length or photoperiod changes are crucial for plants to align the timing of the floral transition with seasonal changes. Through the photoperiod pathway, day length changes induce the expression of the florigenic FLOWERING LOCUS T (FT) to promote flowering. In the facultative long days (LDs) plant Arabidopsis thaliana, LD signals induce flowering, whereas short days (SDs) inhibit flowering. Here, we show that in Arabidopsis SIN3 LIKE (SNL) family genes, encoding a scaffold protein for assembly of histone deacetylase complexes, directly repress the expression of an FT activator and three FT repressors to regulate the transition to flowering in SDs and LDs, respectively. Under inductive LDs, SNLs including SIN3 LIKE 1 (SNL1) to SNL5, function in partial redundancy to repress the expression of three AP2 family transcription factors that repress FT expression, and therefore mediate LD induction of FT expression and promote the transition to flowering. In contrast, under non-inductive SDs SNLs act to inhibit the floral transition, partly through direct repression of a MADS box transcriptional factor that promotes FT expression. Therefore, our results reveal that SNLs, through histone deacetylation, play a dual role for the control of flowering in the LD plant Arabidopsis: inhibiting flowering when the day length is shorter and promoting the floral transition when days become longer than a threshold length.
Collapse
Affiliation(s)
- Fei Huang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenya Yuan
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 201602, China
| | - Shu Tian
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qijie Zheng
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 201602, China
| |
Collapse
|
27
|
Jing Y, Guo Q, Zha P, Lin R. The chromatin-remodelling factor PICKLE interacts with CONSTANS to promote flowering in Arabidopsis. PLANT, CELL & ENVIRONMENT 2019; 42:2495-2507. [PMID: 30965386 DOI: 10.1111/pce.13557] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 05/22/2023]
Abstract
In many flowering plants, successful reproductive development depends on the plant's ability to sense seasonal photoperiodic changes and adjust its vegetative growth accordingly. In Arabidopsis thaliana, the day-length-dependent accumulation of CONSTANS (CO) is crucial for the rhythmic activation of FLOWERING LOCUS T (FT) expression at dusk under long days. However, the regulation of photoperiod-dependent changes of the diurnal FT expression pattern at the chromatin level is largely unknown. In this study, we show that the ATPase-dependent chromatin-remodelling factor PICKLE (PKL) acts through the CO-FT regulatory module and contributes to FT activation in leaf vasculature. PKL physically interacts with CO, and this interaction facilitates their binding to the common regions of FT chromatin in response to photoperiod. Long-day signal triggers the FT chromatin switch between the active state at dusk and the inactive state at night, and PKL is responsible for the diurnal state switch. Thus, our study reveals that PKL activates FT transcription likely through facilitating access of CO to FT chromatin at dusk to synchronize flowering time in response to environmental cues.
Collapse
Affiliation(s)
- Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qiang Guo
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Zha
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Collani S, Neumann M, Yant L, Schmid M. FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD. PLANT PHYSIOLOGY 2019; 180:367-380. [PMID: 30770462 PMCID: PMC6501114 DOI: 10.1104/pp.18.01505] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/05/2019] [Indexed: 05/02/2023]
Abstract
The transition to flowering is a crucial step in the plant life cycle that is controlled by multiple endogenous and environmental cues, including hormones, sugars, temperature, and photoperiod. Permissive photoperiod induces the expression of FLOWERING LOCUS T (FT) in the phloem companion cells of leaves. The FT protein then acts as a florigen that is transported to the shoot apical meristem, where it physically interacts with the Basic Leucine Zipper Domain transcription factor FD and 14-3-3 proteins. However, despite the importance of FD in promoting flowering, its direct transcriptional targets are largely unknown. Here, we combined chromatin immunoprecipitation sequencing and RNA sequencing to identify targets of FD at the genome scale and assessed the contribution of FT to DNA binding. We further investigated the ability of FD to form protein complexes with FT and TERMINAL FLOWER1 through interaction with 14-3-3 proteins. Importantly, we observed direct binding of FD to targets involved in several aspects of plant development. These target genes were previously unknown to be directly related to the regulation of flowering time. Our results confirm FD as a central regulator of floral transition at the shoot meristem and provide evidence for crosstalk between the regulation of flowering and other signaling pathways, such as pathways involved in hormone signaling.
Collapse
Affiliation(s)
- Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Manuela Neumann
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Levi Yant
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
29
|
Lee K, Mas P, Seo PJ. The EC-HDA9 complex rhythmically regulates histone acetylation at the TOC1 promoter in Arabidopsis. Commun Biol 2019; 2:143. [PMID: 31044168 PMCID: PMC6478914 DOI: 10.1038/s42003-019-0377-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Circadian clocks are conserved time-keeper mechanisms in some prokaryotes and higher eukaryotes. Chromatin modification is emerging as key regulatory mechanism for refining core clock gene expression. Rhythmic changes in histone marks are closely associated to the TIMING OF CAB EXPRESSION 1 (TOC1) Arabidopsis clock gene. However, the chromatin-related modifiers responsible for these marks remain largely unknown. Here, we uncover that the chromatin modifier HISTONE DEACETYLASE 9 (HDA9) and the Evening complex (EC) component EARLY FLOWERING 3 (ELF3) directly interact to regulate the declining phase of TOC1 after its peak expression. We found that HDA9 specifically binds to the TOC1 promoter through the interaction with ELF3. The EC-HDA9 complex promotes H3 deacetylation at the TOC1 locus, contributing to suppressing TOC1 expression during the night, the time of EC function. Therefore, we have identified the mechanism by which the circadian clock intertwines with chromatin-related components to shape the circadian waveforms of gene expression in Arabidopsis.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Paloma Mas
- Center for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB-UB, Parc de Recerca Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419 Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826 Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
30
|
Lee HG, Hong C, Seo PJ. The Arabidopsis Sin3-HDAC Complex Facilitates Temporal Histone Deacetylation at the CCA1 and PRR9 Loci for Robust Circadian Oscillation. FRONTIERS IN PLANT SCIENCE 2019; 10:171. [PMID: 30833956 PMCID: PMC6387943 DOI: 10.3389/fpls.2019.00171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
The circadian clock synchronizes endogenous rhythmic processes with environmental cycles and maximizes plant fitness. Multiple regulatory layers shape circadian oscillation, and chromatin modification is emerging as an important scheme for precise circadian waveforms. Here, we report the role of an evolutionarily conserved Sin3-histone deacetylase complex (HDAC) in circadian oscillation in Arabidopsis. SAP30 FUNCTION-RELATED 1 (AFR1) and AFR2, which are key components of Sin3-HDAC complex, are circadianly-regulated and possibly facilitate the temporal formation of the Arabidopsis Sin3-HDAC complex at dusk. The evening-expressed AFR proteins bind directly to the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) promoters and catalyze histone 3 (H3) deacetylation at the cognate regions to repress expression, allowing the declining phase of their expression at dusk. In support, the CCA1 and PRR9 genes were de-repressed around dusk in the afr1-1afr2-1 double mutant. These findings indicate that periodic histone deacetylation at the morning genes by the Sin3-HDAC complex contributes to robust circadian maintenance in higher plants.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Cheljong Hong
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
31
|
Chang G, Yang W, Zhang Q, Huang J, Yang Y, Hu X. ABI5-BINDING PROTEIN2 Coordinates CONSTANS to Delay Flowering by Recruiting the Transcriptional Corepressor TPR2. PLANT PHYSIOLOGY 2019; 179:477-490. [PMID: 30514725 PMCID: PMC6426417 DOI: 10.1104/pp.18.00865] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/27/2018] [Indexed: 05/23/2023]
Abstract
ABI5-BINDING PROTEIN2 (AFP2) negatively regulates the abscisic acid signal by accelerating ABI5 degradation during seed germination in Arabidopsis (Arabidopsis thaliana). The abscisic acid signal is reported to delay flowering by up-regulating Flowering Locus C expression, but the role of AFP2 in regulating flowering time is unknown. Here, we found that flowering time was markedly delayed and CONSTANS (CO) expression was reduced in a transgenic Arabidopsis line overexpressing AFP2 under LD conditions. Conversely, the loss-of-function afp2 mutant showed slightly earlier flowering, with higher CO expression. These data suggest that AFP2 negatively regulates photoperiod-dependent flowering time by modulating the CO signal. We then found that AFP2 exhibited circadian expression rhythms that peaked during the night. Furthermore, the C-terminus of AFP2 interacted with CO, while its N-terminal ethylene response factor-associated amphiphilic repression motif interacted with the transcriptional corepressor TOPLESS-related protein2 (TPR2). Thus, AFP2 bridges CO and TPR2 to form the CO-AFP2-TPR2 complex. Biochemical and genetic analyses showed that AFP2 mediated CO degradation during the night. AFP2 also recruited histone deacetylase activity at Flowering Locus T chromatin through its interaction with TPR2. Taken together, our results reveal an elaborate mechanism by which AFP2 modulates flowering time through coordinating the activity and stability of CO.
Collapse
Affiliation(s)
- Guanxiao Chang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenjuan Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qili Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jinling Huang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
- Department of Biology, East Carolina University, Greenville, North Carolina 27858
| | - Yongping Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangyang Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
32
|
You Y, Sawikowska A, Lee JE, Benstein RM, Neumann M, Krajewski P, Schmid M. Phloem Companion Cell-Specific Transcriptomic and Epigenomic Analyses Identify MRF1, a Regulator of Flowering. THE PLANT CELL 2019; 31:325-345. [PMID: 30670485 PMCID: PMC6447005 DOI: 10.1105/tpc.17.00714] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/14/2019] [Indexed: 05/20/2023]
Abstract
The phloem plays essential roles in the source-to-sink relationship and in long-distance communication, and thereby coordinates growth and development throughout the plant. Here we employed isolation of nuclei tagged in specific cell types coupled with low-input, high-throughput sequencing approaches to analyze the changes of the chromatin modifications H3K4me3 and H3K27me3 and their correlation with gene expression in the phloem companion cells (PCCs) of Arabidopsis(Arabidopsis thaliana) shoots in response to changes in photoperiod. We observed a positive correlation between changes in expression and H3K4me3 levels of genes that are involved in essential PCC functions, including regulation of metabolism, circadian rhythm, development, and epigenetic modifications. By contrast, changes in H3K27me3 signal appeared to contribute little to gene expression changes. These genomic data illustrate the complex gene-regulatory networks that integrate plant developmental and physiological processes in the PCCs. Emphasizing the importance of cell-specific analyses, we identified a previously uncharacterized MORN-motif repeat protein, MORN-MOTIF REPEAT PROTEIN REGULATING FLOWERING1 (MRF1), that was strongly up-regulated in the PCCs in response to inductive photoperiod. The mrf1 mutation delayed flowering, whereas MRF1 overexpression had the opposite effect, indicating that MRF1 acts as a floral promoter.
Collapse
Affiliation(s)
- Yuan You
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
- Center for Plant Molecular Biology (ZMBP), Department of General Genetics, University Tübingen, 72076 Tübingen, Germany
| | - Aneta Sawikowska
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - Joanne E Lee
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ruben M Benstein
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Manuela Neumann
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Markus Schmid
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tübingen, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
33
|
Sun L, Song G, Guo W, Wang W, Zhao H, Gao T, Lv Q, Yang X, Xu F, Dong Y, Pu L. Dynamic Changes in Genome-Wide Histone3 Lysine27 Trimethylation and Gene Expression of Soybean Roots in Response to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1031. [PMID: 31552061 PMCID: PMC6746917 DOI: 10.3389/fpls.2019.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/23/2019] [Indexed: 05/14/2023]
Abstract
Soybean is an important economic crop for human diet, animal feeds and biodiesel due to high protein and oil content. Its productivity is significantly hampered by salt stress, which impairs plant growth and development by affecting gene expression, in part, through epigenetic modification of chromatin status. However, little is known about epigenetic regulation of stress response in soybean roots. Here, we used RNA-seq and ChIP-seq technologies to study the dynamics of genome-wide transcription and histone methylation patterns in soybean roots under salt stress. Eight thousand seven hundred ninety eight soybean genes changed their expression under salt stress treatment. Whole-genome ChIP-seq study of an epigenetic repressive mark, histone H3 lysine 27 trimethylation (H3K27me3), revealed the changes in H3K27me3 deposition during the response to salt stress. Unexpectedly, we found that most of the inactivation of genes under salt stress is strongly correlated with the de novo establishment of H3K27me3 in various parts of the promoter or coding regions where there is no H3K27me3 in control plants. In addition, the soybean histone modifiers were identified which may contribute to de novo histone methylation and gene silencing under salt stress. Thus, dynamic chromatin regulation, switch between active and inactive modes, occur at target loci in order to respond to salt stress in soybean. Our analysis demonstrates histone methylation modifications are correlated with the activation or inactivation of salt-inducible genes in soybean roots.
Collapse
Affiliation(s)
- Lei Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongkun Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tingting Gao
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Qingxue Lv
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xue Yang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingshan Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Yingshan Dong, ; Li Pu,
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yingshan Dong, ; Li Pu,
| |
Collapse
|
34
|
Yan K, Li CC, Wang Y, Wang XQ, Wang ZM, Wei DY, Tang QL. AGL18-1 delays flowering time through affecting expression of flowering-related genes in Brassica juncea. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:357-363. [PMID: 31892823 PMCID: PMC6905224 DOI: 10.5511/plantbiotechnology.18.0824a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Brassica juncea is an important vegetable and condiment crop widely grown in Asia, and the yield and quality of its product organs are affected by flowering time. AGAMOUS-LIKE18-1 (AGL18-1) belongs to a member of MADS-domain transcription factors, which play vital roles in flowering time control, but the biological role of AGL18-1 in B. juncea (BjuAGL18-1) has not been thoroughly revealed in flowering regulatory network. In this study, BjuAGL18-1 expressed highly in inflorescence and flower, but slightly in root, stem and leaf. The sense and anti-sense transgenic lines of BjuAGL18-1 were generated and showed that BjuAGL18-1 functioned as a flowering inhibitor and depressed growth of lateral branching. During the vegetative phase, BjuAGL18-1 induced another flowering repressor AGAMOUS-LIKE15 (BjuAGL15) but inhibited the flowering signal integrator of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (BjuSOC1) in Brassica juncea. Whereas, during the flower developmental phase, both SOC1 and AGAMOUS-LIKE24 (AGL24) were down-regulated by BjuAGL18-1. By contrast, AGL15 was promoted by BjuAGL18-1, while SHORT VEGETATIVE PHASE (SVP) was independent of BjuAGL18-1. Additionally, HISTONE DEACETYLASE 9 (HDA9) was highly induced by BjuAGL18-1. These results will provide valuable information for clarifying the molecular mechanism of BjuAGL18-1 in mediating flowering time.
Collapse
Affiliation(s)
- Kai Yan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Chao-Chuang Li
- College of Biotechnology, Chongqing University, Chongqing 401331, China
| | - Yu Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Xiao-Quan Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Zhi-Min Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
| | - Da-Yong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
- E-mail: Tel: +86-23-6825-0974 Fax: +86-6825-1274
| | - Qing-Lin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing 400715, China
- E-mail: Tel: +86-23-6825-0974 Fax: +86-6825-1274
| |
Collapse
|
35
|
Duan CG, Zhu JK, Cao X. Retrospective and perspective of plant epigenetics in China. J Genet Genomics 2018; 45:621-638. [PMID: 30455036 DOI: 10.1016/j.jgg.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 01/21/2023]
Abstract
Epigenetics refers to the study of heritable changes in gene function that do not involve changes in the DNA sequence. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors or be part of normal developmental program. In eukaryotes, DNA wraps on a histone octamer (two copies of H2A, H2B, H3 and H4) to form nucleosome, the fundamental unit of chromatin. The structure of chromatin is subjected to a dynamic regulation through multiple epigenetic mechanisms, including DNA methylation, histone posttranslational modifications (PTMs), chromatin remodeling and noncoding RNAs. As conserved regulatory mechanisms in gene expression, epigenetic mechanisms participate in almost all the important biological processes ranging from basal development to environmental response. Importantly, all of the major epigenetic mechanisms in mammalians also occur in plants. Plant studies have provided numerous important contributions to the epigenetic research. For example, gene imprinting, a mechanism of parental allele-specific gene expression, was firstly observed in maize; evidence of paramutation, an epigenetic phenomenon that one allele acts in a single locus to induce a heritable change in the other allele, was firstly reported in maize and tomato. Moreover, some unique epigenetic mechanisms have been evolved in plants. For example, the 24-nt siRNA-involved RNA-directed DNA methylation (RdDM) pathway is plant-specific because of the involvements of two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V. A thorough study of epigenetic mechanisms is of great significance to improve crop agronomic traits and environmental adaptability. In this review, we make a brief summary of important progress achieved in plant epigenetics field in China over the past several decades and give a brief outlook on future research prospects. We focus our review on DNA methylation and histone PTMs, the two most important aspects of epigenetic mechanisms.
Collapse
Affiliation(s)
- Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
36
|
Luo X, Gao Z, Wang Y, Chen Z, Zhang W, Huang J, Yu H, He Y. The NUCLEAR FACTOR-CONSTANS complex antagonizes Polycomb repression to de-repress FLOWERING LOCUS T expression in response to inductive long days in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:17-29. [PMID: 29667247 DOI: 10.1111/tpj.13926] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 05/07/2023]
Abstract
Many plants sense the seasonal cues, day length or photoperiod changes, to align the timing of the developmental transition to flowering with changing seasons for reproductive success. Inductive day lengths through the photoperiod pathway induce the expression of FLOWERING LOCUS T (FT) or FT relatives that encode a major mobile florigen to promote flowering. In Arabidopsis thaliana, under inductive long days the photoperiod pathway output CONSTANS (CO) accumulates toward the end of the day, and associates with the B and C subunits of Nuclear Factor Y (NF-Y) to form the NF-CO complex that acts to promote FT expression near dusk, whereas Polycomb group (PcG) proteins function to silence FT expression. How NF-CO acts to antagonize the function of PcG proteins to regulate FT expression remains unclear. Here, we show that the NF-CO complex bound to the proximal FT promoter, through chromatin looping, acts in concert with an NF-Y complex bound to a distal enhancer to reduce the levels of PcG proteins, including both Polycomb repressive complex 1 (PRC1) and PRC2 at the FT promoter, leading to a relieving of Polycomb silencing and thus FT de-repression near dusk. Thus, our study provides molecular insights on how the 'active' photoperiod pathway and the 'repressive' Polycomb silencing system interact to control temporal FT expression, conferring the long-day induction of flowering in Arabidopsis.
Collapse
Affiliation(s)
- Xiao Luo
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 201602, China
| | - Zheng Gao
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yizhong Wang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 201602, China
| | - Zhijuan Chen
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenju Zhang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jirong Huang
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hao Yu
- Department of Biological Sciences & Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 201602, China
| |
Collapse
|
37
|
Xu F, Kuo T, Rosli Y, Liu MS, Wu L, Chen LFO, Fletcher JC, Sung ZR, Pu L. Trithorax Group Proteins Act Together with a Polycomb Group Protein to Maintain Chromatin Integrity for Epigenetic Silencing during Seed Germination in Arabidopsis. MOLECULAR PLANT 2018; 11:659-677. [PMID: 29428247 DOI: 10.1016/j.molp.2018.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/01/2018] [Accepted: 01/29/2018] [Indexed: 05/02/2023]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins have been shown to act antagonistically to epigenetically regulate gene expression in eukaryotes. The trxG proteins counteract PcG-mediated floral repression in Arabidopsis, but their roles in other developmental processes are poorly understood. We investigated the interactions between the trxG genes, ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) and ULTRAPETALA1 (ULT1), and the PcG gene EMBRYONIC FLOWER 1 (EMF1) during early development. Unexpectedly, we found that mutations in the trxG genes failed to rescue the early-flowering phenotype of emf1 mutants. Instead, emf1 atx1 ult1 seedlings showed a novel swollen root phenotype and massive deregulation of gene expression. Greater ectopic expression of seed master regulatory genes in emf1 atx1 ult1 triple than in emf1 single mutants indicates that PcG and trxG factors together repress seed gene expression after germination. Furthermore, we found that the widespread gene derepression is associated with reduced levels of H3K27me3, an epigenetic repressive mark of gene expression, and with globally altered chromatin organization. EMF1, ATX1, and ULT1 are able to bind the chromatin of seed genes and ULT1 can physically interact with ATX1 and EMF1, suggesting that the trxG and EMF1 proteins directly associate at target gene loci for EMF1-mediated gene silencing. Thus, while ATX1, ULT1, and EMF1 interact antagonistically to regulate flowering, they work together to maintain chromatin integrity and prevent precocious seed gene expression after germination.
Collapse
Affiliation(s)
- Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tony Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan, China
| | - Yenny Rosli
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mao-Sen Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Long-Fang Oliver Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan, China
| | - Jennifer C Fletcher
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Zinmay Renee Sung
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Liu X, Yang Y, Hu Y, Zhou L, Li Y, Hou X. Temporal-Specific Interaction of NF-YC and CURLY LEAF during the Floral Transition Regulates Flowering. PLANT PHYSIOLOGY 2018; 177:105-114. [PMID: 29599268 PMCID: PMC5933130 DOI: 10.1104/pp.18.00296] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/19/2018] [Indexed: 05/04/2023]
Abstract
The flowering time of higher plants is controlled by environmental cues and intrinsic signals. In Arabidopsis (Arabidopsis thaliana), flowering is accelerated by exposure to long-day conditions via the key photoperiod-induced factor FLOWERING LOCUS T (FT). Nuclear Factor-Y subunit C (NF-YC) proteins function as important mediators of epigenetic marks in different plant developmental stages and play an important role in the regulation of FT transcription, but the mechanistic details of this remain unknown. In this study, we show that Arabidopsis NF-YC homologs temporally interact with the histone methyltransferase CURLY LEAF (CLF) during the flowering transition. The binding of NF-YC antagonizes the association of CLF with chromatin and the CLF-dependent deposition of H3 lysine-27 trimethylation, thus relieving the repression of FT transcription and facilitating flowering under long-day conditions. Our findings reveal a novel mechanism of NF-YC/CLF-mediated epigenetic regulation of FT activation in photoperiod-induced flowering and, consequently, contribute to our understanding of how plants control developmental events in a temporal-specific regulatory manner.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuhua Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yilong Hu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Limeng Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
39
|
Agliassa C, Narayana R, Bertea CM, Rodgers CT, Maffei ME. Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes. Bioelectromagnetics 2018; 39:361-374. [PMID: 29709075 PMCID: PMC6032911 DOI: 10.1002/bem.22123] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
Variations in magnetic field (MF) intensity are known to induce plant morphological and gene expression changes. In Arabidopsis thaliana Col‐0, near‐null magnetic field (NNMF, i.e., <100 nT MF) causes a delay in the transition to flowering, but the expression of genes involved in this response has been poorly studied. Here, we showed a time‐course quantitative analysis of the expression of both leaf (including clock genes, photoperiod pathway, GA20ox, SVP, and vernalization pathway) and floral meristem (including GA2ox, SOC1, AGL24, LFY, AP1, FD, and FLC) genes involved in the transition to flowering in A. thaliana under NNMF. NNMF induced a delayed flowering time and a significant reduction of leaf area index and flowering stem length, with respect to controls under geomagnetic field. Generation experiments (F1‐ and F2‐NNMF) showed retention of flowering delay. The quantitative expression (qPCR) of some A. thaliana genes expressed in leaves and floral meristem was studied during transition to flowering. In leaves and flowering meristem, NNMF caused an early downregulation of clock, photoperiod, gibberellin, and vernalization pathways and a later downregulation of TSF, AP1, and FLC. In the floral meristem, the downregulation of AP1, AGL24, FT, and FLC in early phases of floral development was accompanied by a downregulation of the gibberellin pathway. The progressive upregulation of AGL24 and AP1 was also correlated to the delayed flowering by NNMF. The flowering delay is associated with the strong downregulation of FT, FLC, and GA20ox in the floral meristem and FT, TSF, FLC, and GA20ox in leaves. Bioelectromagnetics. 39:361–374, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Agliassa
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Cinzia M Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Christopher T Rodgers
- The Wolfson Brain Imaging Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Massimo E Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
40
|
Lee T, Lee I. araGWAB: Network-based boosting of genome-wide association studies in Arabidopsis thaliana. Sci Rep 2018; 8:2925. [PMID: 29440686 PMCID: PMC5811503 DOI: 10.1038/s41598-018-21301-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/01/2018] [Indexed: 11/23/2022] Open
Abstract
Genome-wide association studies (GWAS) have been applied for the genetic dissection of complex phenotypes in Arabidopsis thaliana. However, the significantly associated single-nucleotide polymorphisms (SNPs) could not explain all the phenotypic variations. A major reason for missing true phenotype-associated loci is the strict P-value threshold after adjustment for multiple hypothesis tests to reduce false positives. This statistical limitation can be partly overcome by increasing the sample size, but at a much higher cost. Alternatively, weak phenotype-association signals can be boosted by integrating other types of data. Here, we present a web application for network-based Arabidopsis genome-wide association boosting-araGWAB-which augments the likelihood of association with the given phenotype by integrating GWAS summary statistics (SNP P-values) and co-functional gene network information. The integration utilized the inherent values of SNPs with subthreshold significance, thus substantially increasing the information usage of GWAS data. We found that araGWAB could more effectively retrieve genes known to be associated with various phenotypes relevant to defense against bacterial pathogens, flowering time regulation, and organ development in A. thaliana. We also found that many of the network-boosted candidate genes for the phenotypes were supported by previous publications. The araGWAB is freely available at http://www.inetbio.org/aragwab/ .
Collapse
Affiliation(s)
- Tak Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
41
|
Luxmi R, Garg R, Srivastava S, Sane AP. Expression of the SIN3 homologue from banana, MaSIN3, suppresses ABA responses globally during plant growth in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:69-82. [PMID: 28969804 DOI: 10.1016/j.plantsci.2017.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/12/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Abstract
The SIN3 family of co-repressors is a family of highly conserved eukaryotic repressor proteins that regulates diverse functions in yeasts and animals but remains largely uncharacterized functionally even in plants like Arabidopsis. The sole SIN3 homologue in banana, MaSIN3, was identified as a 1408 amino acids, nuclear localized protein conserved to other SIN3s in the PAH, HID and HCR domains. Interestingly, MaSIN3 over-expression in Arabidopsis mimics a state of reduced ABA responses throughout plant development affecting growth processes such as germination, root growth, stomatal closure and water loss, flowering and senescence. The reduction in ABA responses is not due to reduced ABA levels but due to suppression of expression of several transcription factors mediating ABA responses. Transcript levels of negative regulators of germination (ABI3, ABI5, PIL5, RGL2 and RGL3) are reduced post-imbibition while those responsible for GA biosynthesis are up-regulated in transgenic MaSIN3 over-expressers. ABA-associated transcription factors are also down-regulated in response to ABA treatment. The HDAC inhibitors, SAHA and sodium butyrate, in combination with ABA differentially suppress germination in control and transgenic lines suggesting the recruitment by MaSIN3 of HDACs involved in suppression of ABA responses in different processes. The studies provide an insight into the ability of MaSIN3 to specifically affect a subset of developmental processes governed largely by ABA.
Collapse
Affiliation(s)
- Raj Luxmi
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India
| | - Rashmi Garg
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India
| | - Sudhakar Srivastava
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Sede Boqer Campus, Ben-Gurion University, Beer Sheva 84105, Israel
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Rafi Marg, New Delhi 110001, India.
| |
Collapse
|
42
|
Structure and function of histone methylation-binding proteins in plants. Biochem J 2016; 473:1663-80. [DOI: 10.1042/bcj20160123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
Abstract
Post-translational modifications of histones play important roles in modulating many essential biological processes in both animals and plants. These covalent modifications, including methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and so on, are laid out and erased by histone-modifying enzymes and read out by effector proteins. Recent studies have revealed that a number of developmental processes in plants are under the control of histone post-translational modifications, such as floral transition, seed germination, organogenesis and morphogenesis. Therefore, it is critical to identify those protein domains, which could specifically recognize these post-translational modifications to modulate chromatin structure and regulate gene expression. In the present review, we discuss the recent progress in understanding the structure and function of the histone methylation readers in plants, by focusing on Arabidopsis thaliana proteins.
Collapse
|
43
|
Zhao XY, Hong P, Wu JY, Chen XB, Ye XG, Pan YY, Wang J, Zhang XS. The tae-miR408-Mediated Control of TaTOC1 Genes Transcription Is Required for the Regulation of Heading Time in Wheat. PLANT PHYSIOLOGY 2016; 170:1578-94. [PMID: 26768600 PMCID: PMC4775108 DOI: 10.1104/pp.15.01216] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/04/2016] [Indexed: 05/22/2023]
Abstract
Timing of flowering is not only an interesting topic in developmental biology, but it also plays a significant role in agriculture for its effects on the maturation time of seed. The hexaploid wheat (Triticum aestivum) is one of the most important crop species whose flowering time, i.e. heading time, greatly influences yield. However, it remains unclear whether and how microRNAs regulate heading time in it. In our current study, we identified the tae-miR408 in wheat and its targets in vivo, including Triticum aestivum TIMING OF CAB EXPRESSION-A1 (TaTOC-A1), TaTOC-B1, and TaTOC-D1. The tae-miR408 levels were reciprocal to those of TaTOC1s under long-day and short-day conditions. Wheat plants with a knockdown of TaTOC1s via RNA interference and overexpression of tae-miR408 showed early-heading phenotype. Furthermore, TaTOC1s expression was down-regulated by the tae-miR408 in the hexaploid wheat. In addition, other important agronomic traits in wheat, such as plant height and flag leaf angle, were regulated by both tae-miR408 and TaTOC1s. Thus, our results suggested that the tae-miR408 functions in the wheat heading time by mediating TaTOC1s expression, and the study provides important new information on the mechanism underlying heading time regulation in wheat.
Collapse
Affiliation(s)
- Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China (X.Y.Z., P.H., J.Y.W., X.B.C., Y.Y.P., J.W., X.S.Z.); andThe National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of Agricultural Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China (X.G.Y.)
| | - Po Hong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China (X.Y.Z., P.H., J.Y.W., X.B.C., Y.Y.P., J.W., X.S.Z.); andThe National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of Agricultural Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China (X.G.Y.)
| | - Ji Yun Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China (X.Y.Z., P.H., J.Y.W., X.B.C., Y.Y.P., J.W., X.S.Z.); andThe National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of Agricultural Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China (X.G.Y.)
| | - Xiang Bin Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China (X.Y.Z., P.H., J.Y.W., X.B.C., Y.Y.P., J.W., X.S.Z.); andThe National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of Agricultural Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China (X.G.Y.)
| | - Xing Guo Ye
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China (X.Y.Z., P.H., J.Y.W., X.B.C., Y.Y.P., J.W., X.S.Z.); andThe National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of Agricultural Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China (X.G.Y.)
| | - Yan You Pan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China (X.Y.Z., P.H., J.Y.W., X.B.C., Y.Y.P., J.W., X.S.Z.); andThe National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of Agricultural Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China (X.G.Y.)
| | - Jian Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China (X.Y.Z., P.H., J.Y.W., X.B.C., Y.Y.P., J.W., X.S.Z.); andThe National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of Agricultural Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China (X.G.Y.)
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China (X.Y.Z., P.H., J.Y.W., X.B.C., Y.Y.P., J.W., X.S.Z.); andThe National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of Agricultural Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China (X.G.Y.)
| |
Collapse
|
44
|
Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep 2016; 6:19444. [PMID: 26787347 PMCID: PMC4726296 DOI: 10.1038/srep19444] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWAS) have been widely used in genetic dissection of complex traits. However, common methods are all based on a fixed-SNP-effect mixed linear model (MLM) and single marker analysis, such as efficient mixed model analysis (EMMA). These methods require Bonferroni correction for multiple tests, which often is too conservative when the number of markers is extremely large. To address this concern, we proposed a random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) for GWAS. The RMLM simply treats the SNP-effect as random, but it allows a modified Bonferroni correction to be used to calculate the threshold p value for significance tests. The MRMLM is a multi-locus model including markers selected from the RMLM method with a less stringent selection criterion. Due to the multi-locus nature, no multiple test correction is needed. Simulation studies show that the MRMLM is more powerful in QTN detection and more accurate in QTN effect estimation than the RMLM, which in turn is more powerful and accurate than the EMMA. To demonstrate the new methods, we analyzed six flowering time related traits in Arabidopsis thaliana and detected more genes than previous reported using the EMMA. Therefore, the MRMLM provides an alternative for multi-locus GWAS.
Collapse
|
45
|
McClung CR, Lou P, Hermand V, Kim JA. The Importance of Ambient Temperature to Growth and the Induction of Flowering. FRONTIERS IN PLANT SCIENCE 2016; 7:1266. [PMID: 27602044 PMCID: PMC4993786 DOI: 10.3389/fpls.2016.01266] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/09/2016] [Indexed: 05/17/2023]
Abstract
Plant development is exquisitely sensitive to the environment. Light quantity, quality, and duration (photoperiod) have profound effects on vegetative morphology and flowering time. Recent studies have demonstrated that ambient temperature is a similarly potent stimulus influencing morphology and flowering. In Arabidopsis, ambient temperatures that are high, but not so high as to induce a heat stress response, confer morphological changes that resemble the shade avoidance syndrome. Similarly, these high but not stressful temperatures can accelerate flowering under short day conditions as effectively as exposure to long days. Photoperiodic flowering entails a series of external coincidences, in which environmental cycles of light and dark must coincide with an internal cycle in gene expression established by the endogenous circadian clock. It is evident that a similar model of external coincidence applies to the effects of elevated ambient temperature on both vegetative morphology and the vegetative to reproductive transition. Further study is imperative, because global warming is predicted to have major effects on the performance and distribution of wild species and strong adverse effects on crop yields. It is critical to understand temperature perception and response at a mechanistic level and to integrate this knowledge with our understanding of other environmental responses, including biotic and abiotic stresses, in order to improve crop production sufficiently to sustainably feed an expanding world population.
Collapse
Affiliation(s)
- C. R. McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NHUSA
- *Correspondence: C. R. McClung, Jin A. Kim,
| | - Ping Lou
- Department of Biological Sciences, Dartmouth College, Hanover, NHUSA
| | - Victor Hermand
- Department of Biological Sciences, Dartmouth College, Hanover, NHUSA
| | - Jin A. Kim
- Department of Biological Sciences, Dartmouth College, Hanover, NHUSA
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju-siSouth Korea
- *Correspondence: C. R. McClung, Jin A. Kim,
| |
Collapse
|
46
|
Quantification and Gene Expression Analysis of Histone Deacetylases in Common Bean during Rust Fungal Inoculation. Int J Genomics 2015; 2015:153243. [PMID: 26824033 PMCID: PMC4707378 DOI: 10.1155/2015/153243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/27/2015] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylases (HDACs) play an important role in plant growth, development, and defense processes and are one of the primary causes of epigenetic modifications in a genome. There was only one study reported on epigenetic modifications of the important legume crop, common bean, and its interaction with the fungal rust pathogen Uromyces appendiculatus prior to this project. We measured the total active HDACs levels in leaf tissues and observed expression patterns for the selected HDAC genes at 0, 12, and 84 hours after inoculation in mock inoculated and inoculated plants. Colorimetric analysis showed that the total amount of HDACs present in the leaf tissue decreased at 12 hours in inoculated plants compared to mock inoculated control plants. Gene expression analyses indicated that the expression pattern of gene PvSRT1 is similar to the trend of total active HDACs in this time course experiment. Gene PvHDA6 showed increased expression in the inoculated plants during the time points measured. This is one of the first attempts to study expression levels of HDACs in economically important legumes in the context of plant pathogen interactions. Findings from our study will be helpful to understand trends of total active HDACs and expression patterns of these genes under study during biotic stress.
Collapse
|
47
|
Mittal A, Jiang Y, Ritchie GL, Burke JJ, Rock CD. AtRAV1 and AtRAV2 overexpression in cotton increases fiber length differentially under drought stress and delays flowering. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:78-95. [PMID: 26706061 DOI: 10.1016/j.plantsci.2015.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 05/23/2023]
Abstract
There is a longstanding problem of an inverse relationship between cotton fiber qualities versus high yields. To better understand drought stress signaling and adaptation in cotton (Gossypium hirsutum) fiber development, we expressed the Arabidopsis transcription factors RELATED_TO_ABA-INSENSITIVE3/VIVIPAROUS1/(RAV1) and AtRAV2, which encode APETALA2-Basic3 domain proteins shown to repress transcription of FLOWERING_LOCUS_T (FT) and to promote stomatal opening cell-autonomously. In three years of field trials, we show that AtRAV1 and AtRAV2-overexpressing cotton had ∼5% significantly longer fibers with only marginal decreases in yields under well-watered or drought stress conditions that resulted in 40-60% yield penalties and 3-7% fiber length penalties in control plants. The longer transgenic fibers from drought-stressed transgenics could be spun into yarn which was measurably stronger and more uniform than that from well-watered control fibers. The transgenic AtRAV1 and AtRAV2 lines flowered later and retained bolls at higher nodes, which correlated with repression of endogenous GhFT-Like (FTL) transcript accumulation. Elevated expression early in development of ovules was observed for GhRAV2L, GhMYB25-Like (MYB25L) involved in fiber initiation, and GhMYB2 and GhMYB25 involved in fiber elongation. Altered expression of RAVs controlling critical nodes in developmental and environmental signaling hierarchies has the potential for phenotypic modification of crops.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Yingwen Jiang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| | - Glen L Ritchie
- Department of Plant and Soils Science, Texas Tech University, Lubbock, TX 79409-2122, United States.
| | - John J Burke
- USDA-ARS Plant Stress and Germplasm Laboratory, Lubbock, TX 79415, United States.
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States.
| |
Collapse
|
48
|
Mascheretti I, Turner K, Brivio RS, Hand A, Colasanti J, Rossi V. Florigen-Encoding Genes of Day-Neutral and Photoperiod-Sensitive Maize Are Regulated by Different Chromatin Modifications at the Floral Transition. PLANT PHYSIOLOGY 2015; 168:1351-63. [PMID: 26084920 PMCID: PMC4528754 DOI: 10.1104/pp.15.00535] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/17/2015] [Indexed: 05/04/2023]
Abstract
The activity of the maize (Zea mays) florigen gene ZEA CENTRORADIALIS8 (ZCN8) is associated with the floral transition in both day-neutral temperate maize and short-day (SD)-requiring tropical maize. We analyzed transcription and chromatin modifications at the ZCN8 locus and its nearly identical paralog ZCN7 during the floral transition. This analysis was performed with day-neutral maize (Zea mays ssp. mays), where flowering is promoted almost exclusively via the autonomous pathway through the activity of the regulatory gene indeterminate1 (id1), and tropical teosinte (Zea mays ssp. parviglumis) under floral inductive and noninductive photoperiods. Comparison of ZCN7/ZCN8 histone modification profiles in immature leaves of nonflowering id1 mutants and teosinte grown under floral inhibitory photoperiods reveals that both id1 floral inductive activity and SD-mediated induction result in histone modification patterns that are compatible with the formation of transcriptionally competent chromatin environments. Specific histone modifications are maintained during leaf development and may represent a chromatin signature that favors the production of processed ZCN7/ZCN8 messenger RNA in florigen-producing mature leaf. However, whereas id1 function promotes histone H3 hyperacetylation, SD induction is associated with increased histone H3 dimethylation and trimethylation at lysine-4. In addition, id1 and SD differently affect the production of ZCN7/ZCN8 antisense transcript. These observations suggest that distinct mechanisms distinguish florigen regulation in response to autonomous and photoperiod pathways. Finally, the identical expression and histone modification profiles of ZCN7 and ZCN8 in response to floral induction suggest that ZCN7 may represent a second maize florigen.
Collapse
Affiliation(s)
- Iride Mascheretti
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| | - Katie Turner
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| | - Roberta S Brivio
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| | - Andrew Hand
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| | - Joseph Colasanti
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| | - Vincenzo Rossi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Unità di Ricerca per la Maiscoltura, I-24126 Bergamo, Italy (I.M., R.S.B., V.R.); andDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (K.T., A.H., J.C.)
| |
Collapse
|
49
|
Mozgova I, Köhler C, Hennig L. Keeping the gate closed: functions of the polycomb repressive complex PRC2 in development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:121-32. [PMID: 25762111 DOI: 10.1111/tpj.12828] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 05/08/2023]
Abstract
Plant ontogeny relies on the correct timing and sequence of transitions between individual developmental phases. These are specified by gene expression patterns that are established by the balanced action of activators and repressors. Polycomb repressive complexes (PRCs) represent an evolutionarily conserved system of epigenetic gene repression that governs the establishment and maintenance of cell, tissue and organ identity, contributing to the correct execution of the developmental programs. PRC2 is a four-subunit histone methyltransferase complex that catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), which contributes to the change of chromatin structure and long-lasting gene repression. Here, we review the composition and molecular function of the different known PRC2 complexes in plants, and focus on the role of PRC2 in mediating the establishment of different developmental phases and transitions between them.
Collapse
Affiliation(s)
- Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| |
Collapse
|
50
|
Jarillo JA, Piñeiro M. H2A.Z mediates different aspects of chromatin function and modulates flowering responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:96-109. [PMID: 25943140 DOI: 10.1111/tpj.12873] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 05/23/2023]
Abstract
Eukaryotic organisms have canonical histones and a number of histone variants that perform specialized functions and confer particular structural properties to the nucleosomes that contain them. The histone H2A family comprises several variants, with H2A.Z being the most evolutionarily conserved. This variant is essential in eukaryotes and has emerged as a key player in chromatin function, performing an essential role in gene transcription and genome stability. During recent years, biochemical, genetic and genomic studies have begun to uncover the role of several ATP-dependent chromatin-remodeling complexes in H2A.Z deposition and removal. These ATPase complexes are widely conserved from yeast to mammals. In Arabidopsis there are homologs for most of the subunits of these complexes, and their functions are just beginning to be unveiled. In this review, we discuss the major contributions made in relation to the biology of the H2A.Z in plants, and more specifically concerning the function of this histone variant in the transition from vegetative to reproductive development. Recent advances in the understanding of the molecular mechanisms underlying the H2A.Z-mediated modulation of the floral transition, and thermosensory flowering responses in particular, are discussed. The emerging picture shows that plants contain chromatin-remodeling complexes related to those involved in modulating the dynamics of H2A.Z in other eukaryotes, but their precise biochemical nature remains elusive.
Collapse
Affiliation(s)
- José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigaciones Agrarias-Universidad Politécnica de Madrid, 28223, Madrid, Spain
| |
Collapse
|