1
|
Marecos S, Pian B, Medin SA, Schmitz A, Andrade M, Wu M, Balta JB, Gazel E, Holycross M, Reid MC, Barstow B. Direct genome-scale screening of Gluconobacter oxydans B58 for rare earth element bioleaching. Commun Biol 2025; 8:682. [PMID: 40301604 PMCID: PMC12041372 DOI: 10.1038/s42003-025-08061-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
The transition to a sustainable energy economy will require an enormous increase in the supply of rare earth elements (REEs). Bioleaching offers a promising alternative to conventional hydrometallurgical methods for REE extraction from low-grade ores. However, exploiting this potential remains challenging due to large gaps in our understanding of the genetics involved, and inadequate biological tools to address them. We generated a highly non-redundant whole-genome knockout collection for the bioleaching microbe Gluconobacter oxydans B58, reducing redundancy by 85% compared to the previous best collection. This new collection was directly screened for bioleaching neodymium from a synthetic monazite powder, identifying 89 genes important for bioleaching, 68 of which have not previously been associated with this mechanism. We conducted bench-scale experiments to validate the extraction efficiency of promising strains: 8 demonstrated significant increases in extraction by up to 111% (δGO_1598, disruption of the gene encoding the orotate phosphoribosyltransferase enzyme PyrE), and one strain significantly reduced it by 97% (δGO_1096, disruption of the gene encoding the GTP-binding protein TypA). Notable changes in pH were only observed for 3 strains, suggesting an important role for non-acid mechanisms in bioleaching. These findings provide valuable insights into further enhancing REE-bioleaching by G. oxydans through genetic engineering.
Collapse
Affiliation(s)
- Sabrina Marecos
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Brooke Pian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- REEgen Inc., Praxis Center for Venture Development, Cornell University, Ithaca, NY, USA
| | - Sean A Medin
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- REEgen Inc., Praxis Center for Venture Development, Cornell University, Ithaca, NY, USA
| | - Alexa Schmitz
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- REEgen Inc., Praxis Center for Venture Development, Cornell University, Ithaca, NY, USA
| | - Melinna Andrade
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - J Brian Balta
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
| | - Esteban Gazel
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
| | - Megan Holycross
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Das SG, Mungan M, Krug J. Epistasis-mediated compensatory evolution in a fitness landscape with adaptational tradeoffs. Proc Natl Acad Sci U S A 2025; 122:e2422520122. [PMID: 40215274 PMCID: PMC12012525 DOI: 10.1073/pnas.2422520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
The evolutionary adaptation of an organism to a stressful environment often comes at the cost of reduced fitness. For example, resistance to antimicrobial drugs frequently reduces growth rate in the drug-free environment. This cost can be compensated without loss in resistance by mutations at secondary sites when the organism evolves again in the stress-free environment. Here, we analytically and numerically study evolution on a simple model fitness landscape to show that compensatory evolution can occur even in the presence of the stress and without the need for mutations at secondary sites. Fitness in the model depends on two phenotypes-the null-fitness defined as the fitness in the absence of stress, and the resistance level to the stress. Mutations universally exhibit antagonistic pleiotropy between the two phenotypes, that is they increase resistance while decreasing the null-fitness. Initial adaptation in this model occurs in a smooth region of the landscape with a rapid accumulation of stress resistance mutations and a concurrent decrease in the null-fitness. This is followed by a second, slower phase exhibiting partial recovery of the null-fitness. The second phase occurs on the rugged part of the landscape and involves the exchange of high-cost resistance mutations for low-cost ones. This process, which we call exchange compensation, is the result of changing epistatic interactions in the genotype as evolution progresses. The model provides general lessons about the tempo and mode of evolution under universal antagonistic pleiotropy with specific implications for drug resistance evolution.
Collapse
Affiliation(s)
- Suman G. Das
- Department of Physics, Institute for Biological Physics, University of Cologne, Cologne50937, Germany
- Department of Biology, Institute of Ecology and Evolution, University of Bern, Bern3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| | - Muhittin Mungan
- Department of Physics, Institute for Biological Physics, University of Cologne, Cologne50937, Germany
| | - Joachim Krug
- Department of Physics, Institute for Biological Physics, University of Cologne, Cologne50937, Germany
| |
Collapse
|
3
|
Wang Y, Ping Y, Zhou R, Wang G, Zhang Y, Yang X, Zhao M, Liu D, Kulkarni M, Lamb H, Niu Q, Hardwick JM, Teng X. The Whi2-Psr1-Psr2 complex selectively regulates TORC1 and autophagy under low leucine conditions but not nitrogen depletion. Autophagy 2025:1-17. [PMID: 40103213 DOI: 10.1080/15548627.2025.2481014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025] Open
Abstract
Amino acids and ammonia serve as sources of nitrogen for cell growth and were previously thought to have similar effects on yeast. Consistent with this idea, depletion of either of these two nitrogen sources inhibits the target of rapamycin complex 1 (TORC1), leading to induction of macroautophagy/autophagy and inhibition of cell growth. In this study, we show that Whi2 and the haloacid dehalogenase (HAD)-type phosphatases Psr1 and Psr2 distinguish between these two nitrogen sources in Saccharomyces cerevisiae, as the Whi2-Psr1-Psr2 complex inhibits TORC1 in response to low leucine but not in the absence of nitrogen. In contrast, a parallel pathway controlled by Npr2 and Npr3, components of the Seh1-associated complex inhibiting TORC1 (SEACIT), suppress TORC1 under both low leucine- and nitrogen-depletion conditions. Co-immunoprecipitations with mutants of Whi2, Psr1, Psr2 and fragments of Tor1 support the model that Whi2 recruits Psr1 and Psr2 to TORC1. In accordance, the interaction between Whi2 and Tor1 appears to increase under low leucine but decreases under nitrogen-depletion conditions. Although the targets of Psr1 and Psr2 phosphatases are not known, mutation of their active sites abolishes their inhibitory effects on TORC1. Consistent with the conservation of HAD phosphatases across species, human HAD phosphatases CTDSP1 (CTD small phosphatase 1), CTDSP2, and CTDSPL can functionally replace Psr1 and Psr2 in yeast, restoring TORC1 inhibition and autophagy activation in response to low leucine conditions.
Collapse
Affiliation(s)
- Yitao Wang
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Yang Ping
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Rui Zhou
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Guiqin Wang
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Yu Zhang
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Xueyu Yang
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Mingjun Zhao
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Dongsheng Liu
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| | - Madhura Kulkarni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather Lamb
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Qingwei Niu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xinchen Teng
- International College of Pharmaceutical Innovation, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Malekpour SA, Kalirad A, Majidian S. Inferring the Selective History of CNVs Using a Maximum Likelihood Model. Genome Biol Evol 2025; 17:evaf050. [PMID: 40100752 PMCID: PMC11950529 DOI: 10.1093/gbe/evaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025] Open
Abstract
Copy number variations (CNVs)-structural variations generated by deletion and/or duplication that result in a change in DNA dosage-are prevalent in nature. CNVs can drastically affect the phenotype of an organism and have been shown to be both involved in genetic disorders and be used as raw material in adaptive evolution. Unlike single-nucleotide variations, the often large and varied effects of CNVs on phenotype hinders our ability to infer their selective advantage based on the population genetics data. Here, we present a likelihood-based approach, dubbed PoMoCNV (POlymorphism-aware phylogenetic MOdel for CNVs), that estimates the evolutionary parameters such as mutation rates among different copy numbers and relative fitness loss per copy deletion at a genomic locus based on population genetics data. As a case study, we analyze the genomics data of 40 strains of Caenorhabditis elegans, representing four different populations. We take advantage of the data on chromatin accessibility to interpret the mutation rate and fitness of copy numbers, as inferred by PoMoCNV, specifically in open or closed chromatin loci. We further test the reliability of PoMoCNV by estimating the evolutionary parameters of CNVs for mutation-accumulation experiments in C. elegans with varying levels of genetic drift.
Collapse
Affiliation(s)
- Seyed Amir Malekpour
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
| | - Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen 72076, Germany
| | - Sina Majidian
- SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
5
|
Worthan SB, Grant MI, Behringer MG. Rho-dependent termination: a bacterial evolutionary capacitor for stress resistance. Transcription 2025:1-14. [PMID: 40044630 DOI: 10.1080/21541264.2025.2474367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Since the Modern Synthesis, interest has grown in resolving the "black box" between genotype and phenotype. Contained within this black box are highly plastic RNA and proteins with global effects on chromosome integrity and gene expression that serve as evolutionary capacitors - elements that enable the accumulation and buffering of genetic variation in normal conditions and reveal hidden genetic variation when induced by environmental stress. Discussion of evolutionary capacitors has primarily focused on eukaryotic translation factors and chaperones, such as Hsp90 and PSI+ prion. However, due to the coupling of transcription and translation in prokaryotes, transcription factors can be equally impactful in the modulation of gene expression and phenotypes. In this review, we discuss the prokaryotic transcription terminator Rho and how mutagenesis and plasticity of Rho influence epistasis, evolvability, and adaptation to stress in bacteria. We discuss the effects of variation in Rho generated by nature, laboratory mutagenesis, and experimental evolution; and how this variation is constrained or encouraged by Rho's extensive network of protein interactors. Exploring Rho's role as an evolutionary capacitor, along with identifying additional elements that can serve this function, can significantly advance our understanding of how organisms adapt to thrive in diverse environments.
Collapse
Affiliation(s)
- Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Megan I Grant
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Macaluso F, Bos T, Chiroli E, Bonaiuti P, Apuan JC, Gross F, Pompei S, Rice LM, Ciliberto A. Evolutionary adaptation to hyperstable microtubules selectively targets tubulins and is empowered by the spindle assembly checkpoint. Cell Rep 2025; 44:115323. [PMID: 39955777 DOI: 10.1016/j.celrep.2025.115323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/15/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025] Open
Abstract
Microtubules are polymers required for chromosome segregation. Their drug-induced hyperstabilization impairs chromosome segregation and is an established anti-cancer therapy. How cells respond to microtubule hyperstabilization, however, is incompletely understood. To study this, we evolved budding yeast cells expressing a microtubule-hyperstabilizing tubulin mutant and isolated adapted strains. Aneuploidy of specific chromosomes carrying the microtubule regulators STU2 and VIK1/KAR3 was the first observable adaptation. In the longer run, aneuploidies were outcompeted by mutations in α- or β-tubulin, partially overlapping with mutations in cancer patients. Thus, compensation of microtubule hyperstabilization follows a restrained and reproducible path where new mutations combine with the original offending mutation on the same carrier. While partly compensatory, several mutations failed to re-establish fully normal microtubule dynamics. Sustained growth relied on the mitotic checkpoint, indicating that extended mitotic timing limits the genomic instability caused by reduced microtubule dynamics. Our results predict a potential vulnerability of cells resistant to microtubule-hyperstabilizing agents.
Collapse
Affiliation(s)
- Francesca Macaluso
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Tasia Bos
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elena Chiroli
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paolo Bonaiuti
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Jason C Apuan
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fridolin Gross
- ImmunoConcEpT, CNRS UMR5164, Université de Bordeaux, 33076 Bordeaux, France
| | - Simone Pompei
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrea Ciliberto
- IFOM-ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, 1083 Budapest, Hungary.
| |
Collapse
|
7
|
Jiang B, Xiao C, Liu L. Progressive transcriptomic shifts in evolved yeast strains following gene knockout. iScience 2024; 27:111219. [PMID: 39559754 PMCID: PMC11570485 DOI: 10.1016/j.isci.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Gene knockout disrupts cellular homeostasis, altering gene expression, and phenotypes. We investigated whether cells return to their pre-knockout transcriptomic state through adaptive evolution experiments on hap4Δ and ade1Δ yeast strains. Analysis revealed that genes with higher expression levels and more physical interaction partners in wild-type strains were more likely to be restored, suggesting that genes of significant functional importance have increased resilience to genetic perturbations. However, as the experiment progressed, most initially restored genes became unrestored. Over 60% of differentially expressed genes in knockout strains remained unrestored in evolved strains. Evolved strains exhibited distinct transcriptomic states, diverging from the original strain over time. Ribosome biogenesis components exhibited systematic sequential changes during the evolution. Our findings suggest the knockout strain transcriptomes struggle to return to the original state even after 28 days of culture. Instead, compensatory mechanisms lead to distinct suboptimal states, highlighting the complex transcriptomic dynamics following genetic perturbations.
Collapse
Affiliation(s)
- Bei Jiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chuyao Xiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511400, China
- Institute of Life Sciences, Fudan University, Shanghai 200433, China
| | - Li Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Natalino M, Fumasoni M. Compensatory Evolution to DNA Replication Stress is Robust to Nutrient Availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620637. [PMID: 39553989 PMCID: PMC11565888 DOI: 10.1101/2024.10.29.620637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Evolutionary repair refers to the compensatory evolution that follows perturbations in cellular processes. While evolutionary trajectories are often reproducible, other studies suggest they are shaped by genotype-by-environment (GxE) interactions. Here, we test the predictability of evolutionary repair in response to DNA replication stress-a severe perturbation impairing the conserved mechanisms of DNA synthesis, resulting in genetic instability. We conducted high-throughput experimental evolution on Saccharomyces cerevisiae experiencing constitutive replication stress, grown under different glucose availabilities. We found that glucose levels impact the physiology and adaptation rate of replication stress mutants. However, the genetics of adaptation show remarkable robustness across environments. Recurrent mutations collectively recapitulated the fitness of evolved lines and are advantageous across macronutrient availability. We also identified a novel role of the mediator complex of RNA polymerase II in adaptation to replicative stress. Our results highlight the robustness and predictability of evolutionary repair mechanisms to DNA replication stress and provide new insights into the evolutionary aspects of genome stability, with potential implications for understanding cancer development.
Collapse
Affiliation(s)
- Mariana Natalino
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| | - Marco Fumasoni
- Gulbenkian Institute for Molecular Medicine (GIMM), Lisbon, Portugal
| |
Collapse
|
9
|
Tutaj H, Tomala K, Pirog A, Marszałek M, Korona R. Extreme positive epistasis for fitness in monosomic yeast strains. eLife 2024; 12:RP87455. [PMID: 39417696 PMCID: PMC11486488 DOI: 10.7554/elife.87455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The loss of a single chromosome in a diploid organism halves the dosage of many genes and is usually accompanied by a substantial decrease in fitness. We asked whether this decrease simply reflects the joint damage caused by individual gene dosage deficiencies. We measured the fitness effects of single heterozygous gene deletions in yeast and combined them for each chromosome. This predicted a negative growth rate, that is, lethality, for multiple monosomies. However, monosomic strains remained alive and grew as if much (often most) of the damage caused by single mutations had disappeared, revealing an exceptionally large and positive epistatic component of fitness. We looked for functional explanations by analyzing the transcriptomes. There was no evidence of increased (compensatory) gene expression on the monosomic chromosomes. Nor were there signs of the cellular stress response that would be expected if monosomy led to protein destabilization and thus cytotoxicity. Instead, all monosomic strains showed extensive upregulation of genes encoding ribosomal proteins, but in an indiscriminate manner that did not correspond to their altered dosage. This response did not restore the stoichiometry required for efficient biosynthesis, which probably became growth limiting, making all other mutation-induced metabolic defects much less important. In general, the modular structure of the cell leads to an effective fragmentation of the total mutational load. Defects outside the module(s) currently defining fitness lose at least some of their relevance, producing the epiphenomenon of positive interactions between individually negative effects.
Collapse
Affiliation(s)
- Hanna Tutaj
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian UniversityCracowPoland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian UniversityCracowPoland
| | - Adrian Pirog
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian UniversityCracowPoland
| | - Marzena Marszałek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian UniversityCracowPoland
- Doctoral School of Exact and Natural Sciences, Jagiellonian UniversityCracowPoland
| | - Ryszard Korona
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian UniversityCracowPoland
| |
Collapse
|
10
|
Liu T, Liu Z, Fan J, Yuan Y, Liu H, Xian W, Xiang S, Yang X, Liu Y, Liu S, Zhang M, Jiao Y, Cheng S, Doyle JJ, Xie F, Li J, Tian Z. Loss of Lateral suppressor gene is associated with evolution of root nodule symbiosis in Leguminosae. Genome Biol 2024; 25:250. [PMID: 39350172 PMCID: PMC11441212 DOI: 10.1186/s13059-024-03393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Root nodule symbiosis (RNS) is a fascinating evolutionary event. Given that limited genes conferring the evolution of RNS in Leguminosae have been functionally validated, the genetic basis of the evolution of RNS remains largely unknown. Identifying the genes involved in the evolution of RNS will help to reveal the mystery. RESULTS Here, we investigate the gene loss event during the evolution of RNS in Leguminosae through phylogenomic and synteny analyses in 48 species including 16 Leguminosae species. We reveal that loss of the Lateral suppressor gene, a member of the GRAS-domain protein family, is associated with the evolution of RNS in Leguminosae. Ectopic expression of the Lateral suppressor (Ls) gene from tomato and its homolog MONOCULM 1 (MOC1) and Os7 from rice in soybean and Medicago truncatula result in almost completely lost nodulation capability. Further investigation shows that Lateral suppressor protein, Ls, MOC1, and Os7 might function through an interaction with NODULATION SIGNALING PATHWAY 2 (NSP2) and CYCLOPS to repress the transcription of NODULE INCEPTION (NIN) to inhibit the nodulation in Leguminosae. Additionally, we find that the cathepsin H (CTSH), a conserved protein, could interact with Lateral suppressor protein, Ls, MOC1, and Os7 and affect the nodulation. CONCLUSIONS This study sheds light on uncovering the genetic basis of the evolution of RNS in Leguminosae and suggests that gene loss plays an essential role.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shi-Jiazhuang, China
| | - Jingwei Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyue Liu
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shuaiying Xiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jeff J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, NY, USA.
| | - Fang Xie
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| |
Collapse
|
11
|
Acs-Szabo L, Papp LA, Miklos I. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:288-311. [PMID: 39104724 PMCID: PMC11299203 DOI: 10.15698/mic2024.08.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| |
Collapse
|
12
|
Tengölics R, Szappanos B, Mülleder M, Kalapis D, Grézal G, Sajben C, Agostini F, Mokochinski JB, Bálint B, Nagy LG, Ralser M, Papp B. The metabolic domestication syndrome of budding yeast. Proc Natl Acad Sci U S A 2024; 121:e2313354121. [PMID: 38457520 PMCID: PMC10945815 DOI: 10.1073/pnas.2313354121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 03/10/2024] Open
Abstract
Cellular metabolism evolves through changes in the structure and quantitative states of metabolic networks. Here, we explore the evolutionary dynamics of metabolic states by focusing on the collection of metabolite levels, the metabolome, which captures key aspects of cellular physiology. Using a phylogenetic framework, we profiled metabolites in 27 populations of nine budding yeast species, providing a graduated view of metabolic variation across multiple evolutionary time scales. Metabolite levels evolve more rapidly and independently of changes in the metabolic network's structure, providing complementary information to enzyme repertoire. Although metabolome variation accumulates mainly gradually over time, it is profoundly affected by domestication. We found pervasive signatures of convergent evolution in the metabolomes of independently domesticated clades of Saccharomyces cerevisiae. Such recurring metabolite differences between wild and domesticated populations affect a substantial part of the metabolome, including rewiring of the TCA cycle and several amino acids that influence aroma production, likely reflecting adaptation to human niches. Overall, our work reveals previously unrecognized diversity in central metabolism and the pervasive influence of human-driven selection on metabolite levels in yeasts.
Collapse
Affiliation(s)
- Roland Tengölics
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
- Metabolomics Lab, Core facilities, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Balázs Szappanos
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
- Department of Biotechnology, University of Szeged, Szeged6726, Hungary
| | - Michael Mülleder
- Charité Universitätsmedizin, Core Facility High-Throughput Mass Spectrometry, Berlin10117, Germany
| | - Dorottya Kalapis
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Gábor Grézal
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Csilla Sajben
- Metabolomics Lab, Core facilities, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Federica Agostini
- Department of Biochemistry, Charité Universitätsmedizin, Berlin10117, Germany
| | - João Benhur Mokochinski
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Balázs Bálint
- Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - László G. Nagy
- Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin10117, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, LondonNW11AT, United Kingdom
| | - Balázs Papp
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Lab, Szeged6726, Hungary
- Synthetic and System Biology Unit, National Laboratory of Biotechnology, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
- National Laboratory for Health Security, Biological Research Centre, Hungarian Research Network, Szeged6726, Hungary
| |
Collapse
|
13
|
Cheng Y, Feng J, Wang J, Zhou Y, Bai S, Tang Q, Li J, Pan F, Xu Q, Lu C, Wu W, Xia Y. Alterations in sperm DNA methylation may as a mediator of paternal air pollution exposure and offspring birth outcomes: Insight from a birth cohort study. ENVIRONMENTAL RESEARCH 2024; 244:117941. [PMID: 38103775 DOI: 10.1016/j.envres.2023.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Paternal exposure to environmental risk factors influences the offspring health. This study aimed to evaluate the association between paternal air pollution exposure mediated by sperm DNA methylation and adverse birth outcomes in offspring. We recruited 1607 fertile men and their partners from 2014 to 2016 and collected semen samples to detect sperm DNA methylation. Multivariate linear regression and weighted quantile sum regression models were used to assess the associations between paternal air pollution exposure and offspring birth outcomes. A critical exposure window was identified. Reduced representation bisulfite sequencing was used to detect sperm DNA methylation. The results demonstrated that high paternal exposure to PM2.5 (β = -211.31, 95% CI: (-386.37, -36.24)), PM10 (β = -178.20, 95% CI: (-277.13, -79.27)), and NO2 (β = -84.22, 95% CI: (-165.86, -2.57)) was negatively associated with offspring's birthweight, especially in boys. Additionally, an early exposure window of 15-69 days before fertilization was recognized to be the key exposure window, which increased the risk of low birth weight and small for gestational age. Furthermore, paternal co-exposure to six air pollutants contributed to lower birthweight (β = -51.91, 95% CI: (-92.72, -11.10)) and shorter gestational age (β = -1.72, 95% CI: (-3.26, -0.17)) and PM2.5 was the most weighted pollutant. Paternal air pollution exposure resulted in 10,328 differentially methylated regions and the IGF2R gene was the key gene involved in the epigenetic process. These differentially methylated genes were predominantly associated with protein binding, transcriptional regulation, and DNA templating. These findings indicate that spermatogenesis is a susceptible window during which paternal exposure to air pollution affects sperm DNA methylation and the birth outcomes of offspring.
Collapse
Affiliation(s)
- Yuting Cheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jialin Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yijie Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jinhui Li
- Department of Urology, Stanford Medical Center, Stanford, CA, USA
| | - Feng Pan
- Department of Urology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Lai HY, Cooper TF. Interaction with a phage gene underlie costs of a β-lactamase. mBio 2024; 15:e0277623. [PMID: 38194254 PMCID: PMC10865808 DOI: 10.1128/mbio.02776-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
The fitness cost of an antibiotic resistance gene (ARG) can differ across host strains, creating refuges that allow the maintenance of an ARG in the absence of direct selection for its resistance phenotype. Despite the importance of such ARG-host interactions for predicting ARG dynamics, the basis of ARG fitness costs and their variability between hosts are not well understood. We determined the genetic basis of a host-dependent cost of a β-lactamase, blaTEM-116*, that conferred a significant cost in one Escherichia coli strain but was close to neutral in 11 other Escherichia spp. strains. Selection of a blaTEM-116*-encoding plasmid in the strain in which it initially had a high cost resulted in rapid and parallel compensation for that cost through mutations in a P1-like phage gene, relAP1. When the wild-type relAP1 gene was added to a strain in which it was not present and in which blaTEM-116* was neutral, it caused the ARG to become costly. Thus, relAP1 is both necessary and sufficient to explain blaTEM-116* costs in at least some host backgrounds. To our knowledge, these findings represent the first demonstrated case of the cost of an ARG being influenced by a genetic interaction with a phage gene. The interaction between a phage gene and a plasmid-borne ARG highlights the complexity of selective forces determining the maintenance and spread of ARGs and, by extension, encoding phage and plasmids in natural bacterial communities.IMPORTANCEAntibiotic resistance genes (ARGs) play a major role in the increasing problem of antibiotic resistance in clinically relevant bacteria. Selection of these genes occurs in the presence of antibiotics, but their eventual success also depends on the sometimes substantial costs they impose on host bacteria in antibiotic-free environments. We evolved an ARG that confers resistance to penicillin-type antibiotics in one host in which it did confer a cost and in one host in which it did not. We found that costs were rapidly and consistently reduced through parallel genetic changes in a gene encoded by a phage that was infecting the costly host. The unmutated version of this gene was sufficient to cause the ARG to confer a cost in a host in which it was originally neutral, demonstrating an antagonism between the two genetic elements and underlining the range and complexity of pressures determining ARG dynamics in natural populations.
Collapse
Affiliation(s)
- Huei-Yi Lai
- School of Natural Sciences, Massey University, Auckland, New Zealand
| | - Tim F. Cooper
- School of Natural Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
15
|
Weghorst F, Torres Marcén M, Faridi G, Lee YCG, Cramer KS. Deep Conservation and Unexpected Evolutionary History of Neighboring lncRNAs MALAT1 and NEAT1. J Mol Evol 2024; 92:30-41. [PMID: 38189925 PMCID: PMC10869381 DOI: 10.1007/s00239-023-10151-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Long non-coding RNAs (lncRNAs) have begun to receive overdue attention for their regulatory roles in gene expression and other cellular processes. Although most lncRNAs are lowly expressed and tissue-specific, notable exceptions include MALAT1 and its genomic neighbor NEAT1, two highly and ubiquitously expressed oncogenes with roles in transcriptional regulation and RNA splicing. Previous studies have suggested that NEAT1 is found only in mammals, while MALAT1 is present in all gnathostomes (jawed vertebrates) except birds. Here we show that these assertions are incomplete, likely due to the challenges associated with properly identifying these two lncRNAs. Using phylogenetic analysis and structure-aware annotation of publicly available genomic and RNA-seq coverage data, we show that NEAT1 is a common feature of tetrapod genomes except birds and squamates. Conversely, we identify MALAT1 in representative species of all major gnathostome clades, including birds. Our in-depth examination of MALAT1, NEAT1, and their genomic context in a wide range of vertebrate species allows us to reconstruct the series of events that led to the formation of the locus containing these genes in taxa from cartilaginous fish to mammals. This evolutionary history includes the independent loss of NEAT1 in birds and squamates, since NEAT1 is found in the closest living relatives of both clades (crocodilians and tuataras, respectively). These data clarify the origins and relationships of MALAT1 and NEAT1 and highlight an opportunity to study the change and continuity in lncRNA structure and function over deep evolutionary time.
Collapse
Affiliation(s)
- Forrest Weghorst
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Martí Torres Marcén
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Garrison Faridi
- Department of Neurobiology and Behavior, University of California, Irvine, USA
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, USA.
| |
Collapse
|
16
|
Lei H, Li J, Zhao B, Kou SH, Xiao F, Chen T, Wang SM. Evolutionary origin of germline pathogenic variants in human DNA mismatch repair genes. Hum Genomics 2024; 18:5. [PMID: 38287404 PMCID: PMC10823654 DOI: 10.1186/s40246-024-00573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Mismatch repair (MMR) system is evolutionarily conserved for genome stability maintenance. Germline pathogenic variants (PVs) in MMR genes that lead to MMR functional deficiency are associated with high cancer risk. Knowing the evolutionary origin of germline PVs in human MMR genes will facilitate understanding the biological base of MMR deficiency in cancer. However, systematic knowledge is lacking to address the issue. In this study, we performed a comprehensive analysis to know the evolutionary origin of human MMR PVs. METHODS We retrieved MMR gene variants from the ClinVar database. The genomes of 100 vertebrates were collected from the UCSC genome browser and ancient human sequencing data were obtained through comprehensive data mining. Cross-species conservation analysis was performed based on the phylogenetic relationship among 100 vertebrates. Rescaled ancient sequencing data were used to perform variant calling for archeological analysis. RESULTS Using the phylogenetic approach, we traced the 3369 MMR PVs identified in modern humans in 99 non-human vertebrate genomes but found no evidence for cross-species conservation as the source for human MMR PVs. Using the archeological approach, we searched the human MMR PVs in over 5000 ancient human genomes dated from 45,045 to 100 years before present and identified a group of MMR PVs shared between modern and ancient humans mostly within 10,000 years with similar quantitative patterns. CONCLUSION Our study reveals that MMR PVs in modern humans were arisen within the recent human evolutionary history.
Collapse
Affiliation(s)
- Huijun Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Si Hoi Kou
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Fengxia Xiao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Tianhui Chen
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
17
|
Halliday C, de Liz LV, Vaughan S, Sunter JD. Disruption of Leishmania flagellum attachment zone architecture causes flagellum loss. Mol Microbiol 2024; 121:53-68. [PMID: 38010644 PMCID: PMC10953051 DOI: 10.1111/mmi.15199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Leishmania are flagellated eukaryotic parasites that cause leishmaniasis and are closely related to the other kinetoplastid parasites such as Trypanosoma brucei. In all these parasites there is a cell membrane invagination at the base of the flagellum called the flagellar pocket, which is tightly associated with and sculpted by cytoskeletal structures including the flagellum attachment zone (FAZ). The FAZ is a complex interconnected structure linking the flagellum to the cell body and has critical roles in cell morphogenesis, function and pathogenicity. However, this structure varies dramatically in size and organisation between these different parasites, suggesting changes in protein localisation and function. Here, we screened the localisation and function of the Leishmania orthologues of T. brucei FAZ proteins identified in the genome-wide protein tagging project TrypTag. We identified 27 FAZ proteins and our deletion analysis showed that deletion of two FAZ proteins in the flagellum, FAZ27 and FAZ34 resulted in a reduction in cell body size, and flagellum loss in some cells. Furthermore, after null mutant generation, we observed distinct and reproducible changes to cell shape, demonstrating the ability of the parasite to adapt to morphological perturbations resulting from gene deletion. This process of adaptation has important implications for the study of Leishmania mutants.
Collapse
Affiliation(s)
- Clare Halliday
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - Laryssa Vanessa de Liz
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Departamento de Microbiologia, Imunologia e ParasitologiaUniversidade Federal de Santa CatarinaFlorianópolisSCBrazil
| | - Sue Vaughan
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - Jack D. Sunter
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
18
|
Sanz-García F, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. The Pseudomonas aeruginosa Resistome: Permanent and Transient Antibiotic Resistance, an Overview. Methods Mol Biol 2024; 2721:85-102. [PMID: 37819517 DOI: 10.1007/978-1-0716-3473-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
One of the most concerning characteristics of Pseudomonas aeruginosa is its low susceptibility to several antibiotics of common use in clinics, as well as its facility to acquire increased resistance levels. Consequently, the study of the antibiotic resistance mechanisms of this bacterium is of relevance for human health. For such a study, different types of resistance should be distinguished. The intrinsic resistome is composed of a set of genes, present in the core genome of P. aeruginosa, which contributes to its characteristic, species-specific, phenotype of susceptibility to antibiotics. Acquired resistance refers to those genetic events, such as the acquisition of mutations or antibiotic resistance genes that reduce antibiotic susceptibility. Finally, antibiotic resistance can be transiently acquired in the presence of specific compounds or under some growing conditions. The current article provides information on methods currently used to analyze intrinsic, mutation-driven, and transient antibiotic resistance in P. aeruginosa.
Collapse
Affiliation(s)
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Dantsev IS, Parfenenko MA, Radzhabova GM, Nikolaeva EA. An FGFR2 mutation as the potential cause of a new phenotype including early-onset osteoporosis and bone fractures: a case report. BMC Med Genomics 2023; 16:329. [PMID: 38098042 PMCID: PMC10722747 DOI: 10.1186/s12920-023-01750-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Osteoporosis is a systemic, multifactorial disorder of bone mineralization. Many factors contributing to the development of osteoporosis have been identified so far, including gender, age, nutrition, lifestyle, exercise, drug use, as well as a range of comorbidities. In addition to environmental and lifestyle factors, molecular genetic factors account for 50-85% of osteoporosis cases. For example, the vitamin D receptor (VDR), collagen type I (COL1), estrogen receptor (ER), apolypoprotein Е (ApoE), bone morphogenetic protein (BMP), and Low-density lipoprotein receptor-related protein 5 (LRP5) are all involved in the pathogenesis of osteoporosis. Among the candidate genes, the pathogenic variants in which are involved in the pathogenesis of osteoporosis is FGFR2. Additionally, FGFs/FGFRs-dependent signaling has been shown to regulate skeletal development and has been linked to a plethora of heritable disorders of the musculoskeletal system. In this study we present the clinical, biochemical and radiological findings, as well as results of molecular genetic testing of a 13-year-old male proband with heritable osteoporosis, arthralgia and multiple fractures and a family history of abnormal bone mineralization and fractures. Whole exome sequencing found a heterozygous previously undescribed variant in the FGFR2 gene (NM_000141.5) (GRCh37.p13 ENSG00000066468.16: g.123298133dup; ENST00000358487.5:c.722dup; ENSP00000351276.5:p.Asn241LysfsTer43). The same variant was found in two affected relatives. These data lead us to believe that the variant in FGFR2 found in our proband and his relatives could be related to their phenotype. Therefore, modern methods of molecular genetic testing can allow us to differentiate between osteogenesis imperfecta and other bone mineralization disorders.
Collapse
Affiliation(s)
- Ilya S Dantsev
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov, Russian National Research Medical University of the Ministry of Health of the Russian Federation, 2 Taldomskaya St, Moscow, 125412, Russia
| | - Mariia A Parfenenko
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov, Russian National Research Medical University of the Ministry of Health of the Russian Federation, 2 Taldomskaya St, Moscow, 125412, Russia.
| | - Gulnara M Radzhabova
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov, Russian National Research Medical University of the Ministry of Health of the Russian Federation, 2 Taldomskaya St, Moscow, 125412, Russia
| | - Ekaterina A Nikolaeva
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov, Russian National Research Medical University of the Ministry of Health of the Russian Federation, 2 Taldomskaya St, Moscow, 125412, Russia
| |
Collapse
|
20
|
Chowdhury F, Findlay BL. Fitness Costs of Antibiotic Resistance Impede the Evolution of Resistance to Other Antibiotics. ACS Infect Dis 2023; 9:1834-1845. [PMID: 37726252 PMCID: PMC10581211 DOI: 10.1021/acsinfecdis.3c00156] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 09/21/2023]
Abstract
Antibiotic resistance is a major threat to global health, claiming the lives of millions every year. With a nearly dry antibiotic development pipeline, novel strategies are urgently needed to combat resistant pathogens. One emerging strategy is the use of sequential antibiotic therapy, postulated to reduce the rate at which antibiotic resistance evolves. Here, we use the soft agar gradient evolution (SAGE) system to carry out high-throughput in vitro bacterial evolution against antibiotic pressure. We find that evolution of resistance to the antibiotic chloramphenicol (CHL) severely affects bacterial fitness, slowing the rate at which resistance to the antibiotics nitrofurantoin and streptomycin emerges. In vitro acquisition of compensatory mutations in the CHL-resistant cells markedly improves fitness and nitrofurantoin adaptation rates but fails to restore rates to wild-type levels against streptomycin. Genome sequencing reveals distinct evolutionary paths to resistance in fitness-impaired populations, suggesting resistance trade-offs in favor of mitigation of fitness costs. We show that the speed of bacterial fronts in SAGE plates is a reliable indicator of adaptation rates and evolutionary trajectories to resistance. Identification of antibiotics whose mutational resistance mechanisms confer stable impairments may help clinicians prescribe sequential antibiotic therapies that are less prone to resistance evolution.
Collapse
Affiliation(s)
- Farhan
R. Chowdhury
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Brandon L. Findlay
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Department
of Chemistry and Biochemistry, Concordia
University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
21
|
Ünlü B, Pons C, Ho UL, Batté A, Aloy P, van Leeuwen J. Global analysis of suppressor mutations that rescue human genetic defects. Genome Med 2023; 15:78. [PMID: 37821946 PMCID: PMC10568808 DOI: 10.1186/s13073-023-01232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Genetic suppression occurs when the deleterious effects of a primary "query" mutation, such as a disease-causing mutation, are rescued by a suppressor mutation elsewhere in the genome. METHODS To capture existing knowledge on suppression relationships between human genes, we examined 2,400 published papers for potential interactions identified through either genetic modification of cultured human cells or through association studies in patients. RESULTS The resulting network encompassed 476 unique suppression interactions covering a wide spectrum of diseases and biological functions. The interactions frequently linked genes that operate in the same biological process. Suppressors were strongly enriched for genes with a role in stress response or signaling, suggesting that deleterious mutations can often be buffered by modulating signaling cascades or immune responses. Suppressor mutations tended to be deleterious when they occurred in absence of the query mutation, in apparent contrast with their protective role in the presence of the query. We formulated and quantified mechanisms of genetic suppression that could explain 71% of interactions and provided mechanistic insight into disease pathology. Finally, we used these observations to predict suppressor genes in the human genome. CONCLUSIONS The global suppression network allowed us to define principles of genetic suppression that were conserved across diseases, model systems, and species. The emerging frequency of suppression interactions among human genes and range of underlying mechanisms, together with the prevalence of suppression in model organisms, suggest that compensatory mutations may exist for most genetic diseases.
Collapse
Affiliation(s)
- Betül Ünlü
- Center for Integrative Genomics, University of Lausanne, Génopode Building, 1015, Lausanne, Switzerland
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Uyen Linh Ho
- Center for Integrative Genomics, University of Lausanne, Génopode Building, 1015, Lausanne, Switzerland
| | - Amandine Batté
- Center for Integrative Genomics, University of Lausanne, Génopode Building, 1015, Lausanne, Switzerland
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jolanda van Leeuwen
- Center for Integrative Genomics, University of Lausanne, Génopode Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
22
|
Pál C, Papp B. How selection shapes the short- and long-term dynamics of molecular evolution. Proc Natl Acad Sci U S A 2023; 120:e2311012120. [PMID: 37531373 PMCID: PMC10433269 DOI: 10.1073/pnas.2311012120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Affiliation(s)
- Csaba Pál
- Synthetic and System Biology Unit, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network, SzegedHU-6726, Hungary
| | - Balázs Papp
- Synthetic and System Biology Unit, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network, SzegedHU-6726, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre Metabolic Systems Biology Research Group, SzegedHU-6726, Hungary
- National Laboratory for Health Security, Biological Research Centre, Eötvös Loránd Research Network, SzegedHU-6726, Hungary
| |
Collapse
|
23
|
Hsu P, Cheng Y, Liao C, Litan RRR, Jhou Y, Opoc FJG, Amine AAA, Leu J. Rapid evolutionary repair by secondary perturbation of a primary disrupted transcriptional network. EMBO Rep 2023; 24:e56019. [PMID: 37009824 PMCID: PMC10240213 DOI: 10.15252/embr.202256019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
The discrete steps of transcriptional rewiring have been proposed to occur neutrally to ensure steady gene expression under stabilizing selection. A conflict-free switch of a regulon between regulators may require an immediate compensatory evolution to minimize deleterious effects. Here, we perform an evolutionary repair experiment on the Lachancea kluyveri yeast sef1Δ mutant using a suppressor development strategy. Complete loss of SEF1 forces cells to initiate a compensatory process for the pleiotropic defects arising from misexpression of TCA cycle genes. Using different selective conditions, we identify two adaptive loss-of-function mutations of IRA1 and AZF1. Subsequent analyses show that Azf1 is a weak transcriptional activator regulated by the Ras1-PKA pathway. Azf1 loss-of-function triggers extensive gene expression changes responsible for compensatory, beneficial, and trade-off phenotypes. The trade-offs can be alleviated by higher cell density. Our results not only indicate that secondary transcriptional perturbation provides rapid and adaptive mechanisms potentially stabilizing the initial stage of transcriptional rewiring but also suggest how genetic polymorphisms of pleiotropic mutations could be maintained in the population.
Collapse
Affiliation(s)
- Po‐Chen Hsu
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | - Yu‐Hsuan Cheng
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
- Present address:
Morgridge Institute for ResearchMadisonWIUSA
- Present address:
Howard Hughes Medical InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Chia‐Wei Liao
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | - Yu‐Ting Jhou
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | | | | | - Jun‐Yi Leu
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
24
|
Martínez AA, Lang GI. Identifying Targets of Selection in Laboratory Evolution Experiments. J Mol Evol 2023; 91:345-355. [PMID: 36810618 PMCID: PMC11197053 DOI: 10.1007/s00239-023-10096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Adaptive evolution navigates a balance between chance and determinism. The stochastic processes of mutation and drift generate phenotypic variation; however, once mutations reach an appreciable frequency in the population, their fate is governed by the deterministic action of selection, enriching for favorable genotypes and purging the less-favorable ones. The net result is that replicate populations will traverse similar-but not identical-pathways to higher fitness. This parallelism in evolutionary outcomes can be leveraged to identify the genes and pathways under selection. However, distinguishing between beneficial and neutral mutations is challenging because many beneficial mutations will be lost due to drift and clonal interference, and many neutral (and even deleterious) mutations will fix by hitchhiking. Here, we review the best practices that our laboratory uses to identify genetic targets of selection from next-generation sequencing data of evolved yeast populations. The general principles for identifying the mutations driving adaptation will apply more broadly.
Collapse
Affiliation(s)
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
25
|
Saeki N, Yamamoto C, Eguchi Y, Sekito T, Shigenobu S, Yoshimura M, Yashiroda Y, Boone C, Moriya H. Overexpression profiling reveals cellular requirements in the context of genetic backgrounds and environments. PLoS Genet 2023; 19:e1010732. [PMID: 37115757 PMCID: PMC10171610 DOI: 10.1371/journal.pgen.1010732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/10/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Overexpression can help life adapt to stressful environments, making an examination of overexpressed genes valuable for understanding stress tolerance mechanisms. However, a systematic study of genes whose overexpression is functionally adaptive (GOFAs) under stress has yet to be conducted. We developed a new overexpression profiling method and systematically identified GOFAs in Saccharomyces cerevisiae under stress (heat, salt, and oxidative). Our results show that adaptive overexpression compensates for deficiencies and increases fitness under stress, like calcium under salt stress. We also investigated the impact of different genetic backgrounds on GOFAs, which varied among three S. cerevisiae strains reflecting differing calcium and potassium requirements for salt stress tolerance. Our study of a knockout collection also suggested that calcium prevents mitochondrial outbursts under salt stress. Mitochondria-enhancing GOFAs were only adaptive when adequate calcium was available and non-adaptive when calcium was deficient, supporting this idea. Our findings indicate that adaptive overexpression meets the cell's needs for maximizing the organism's adaptive capacity in the given environment and genetic context.
Collapse
Affiliation(s)
- Nozomu Saeki
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Chie Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuichi Eguchi
- Biomedical Business Center, RICOH Futures BU, Kanagawa, Japan
| | - Takayuki Sekito
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | | | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Japan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hisao Moriya
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
26
|
Agrotis A, Lamoliatte F, Williams TD, Black A, Horberry R, Rousseau A. Multiple phosphorylation of the Cdc48/p97 cofactor protein Shp1/p47 occurs upon cell stress in budding yeast. Life Sci Alliance 2023; 6:e202201642. [PMID: 36693698 PMCID: PMC9874129 DOI: 10.26508/lsa.202201642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
The homohexameric p97 complex, composed of Cdc48 subunits in yeast, is a crucial component of protein quality control pathways including ER-associated degradation. The complex acts to segregate protein complexes in an ATP-dependent manner, requiring the engagement of cofactor proteins that determine substrate specificity. The function of different Cdc48 cofactors and how they are regulated remains relatively poorly understood. In this study, we assess the phosphorylation of Cdc48 adaptor proteins, revealing a unique and distinctive phosphorylation pattern of Shp1/p47 that changed in response to TORC1 inhibition. Site-directed mutagenesis confirmed that this pattern corresponded to phosphorylation at residues S108 and S315 of Shp1, with the double-phosphorylated form becoming predominant upon TORC1 inhibition, ER-stress, and oxidative stress. Finally, we assessed candidate kinases and phosphatases responsible for Shp1 phosphorylation and identified two regulators. We found that cells lacking the kinase Mpk1/Slt2 show reduced Shp1 phosphorylation, whereas impaired PP1 phosphatase catalytic subunit (Glc7) activity resulted in increased Shp1 phosphorylation. Overall, these findings identify a phosphoregulation of Shp1 at multiple sites by Mpk1 kinase and PP1 phosphatase upon various stresses.
Collapse
Affiliation(s)
- Alexander Agrotis
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas D Williams
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ailsa Black
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Rhuari Horberry
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Adrien Rousseau
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
27
|
Natalino M, Fumasoni M. Experimental approaches to study evolutionary cell biology using yeasts. Yeast 2023; 40:123-133. [PMID: 36896914 DOI: 10.1002/yea.3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
The past century has witnessed tremendous advances in understanding how cells function. Nevertheless, how cellular processes have evolved is still poorly understood. Many studies have highlighted surprising molecular diversity in how cells from diverse species execute the same processes, and advances in comparative genomics are likely to reveal much more molecular diversity than was believed possible until recently. Extant cells remain therefore the product of an evolutionary history that we vastly ignore. Evolutionary cell biology has emerged as a discipline aiming to address this knowledge gap by combining evolutionary, molecular, and cellular biology thinking. Recent studies have shown how even essential molecular processes, such as DNA replication, can undergo fast adaptive evolution under certain laboratory conditions. These developments open new lines of research where the evolution of cellular processes can be investigated experimentally. Yeasts naturally find themselves at the forefront of this research line. Not only do they allow the observation of fast evolutionary adaptation, but they also provide numerous genomic, synthetic, and cellular biology tools already developed by a large community. Here we propose that yeasts can serve as an "evolutionary cell lab" to test hypotheses, principles, and ideas in evolutionary cell biology. We discuss various experimental approaches available for this purpose, and how biology at large can benefit from them.
Collapse
|
28
|
Glazenburg MM, Laan L. Complexity and self-organization in the evolution of cell polarization. J Cell Sci 2023; 136:jcs259639. [PMID: 36691920 DOI: 10.1242/jcs.259639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cellular life exhibits order and complexity, which typically increase over the course of evolution. Cell polarization is a well-studied example of an ordering process that breaks the internal symmetry of a cell by establishing a preferential axis. Like many cellular processes, polarization is driven by self-organization, meaning that the macroscopic pattern emerges as a consequence of microscopic molecular interactions at the biophysical level. However, the role of self-organization in the evolution of complex protein networks remains obscure. In this Review, we provide an overview of the evolution of polarization as a self-organizing process, focusing on the model species Saccharomyces cerevisiae and its fungal relatives. Moreover, we use this model system to discuss how self-organization might relate to evolutionary change, offering a shift in perspective on evolution at the microscopic scale.
Collapse
Affiliation(s)
- Marieke M Glazenburg
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Liedewij Laan
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
29
|
Renne MF, Bao X, Hokken MWJ, Bierhuizen AS, Hermansson M, Sprenger RR, Ewing TA, Ma X, Cox RC, Brouwers JF, De Smet CH, Ejsing CS, de Kroon AIPM. Molecular species selectivity of lipid transport creates a mitochondrial sink for di-unsaturated phospholipids. EMBO J 2022; 41:e106837. [PMID: 34873731 PMCID: PMC8762554 DOI: 10.15252/embj.2020106837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondria depend on the import of phospholipid precursors for the biosynthesis of phosphatidylethanolamine (PE) and cardiolipin, yet the mechanism of their transport remains elusive. A dynamic lipidomics approach revealed that mitochondria preferentially import di-unsaturated phosphatidylserine (PS) for subsequent conversion to PE by the mitochondrial PS decarboxylase Psd1p. Several protein complexes tethering mitochondria to the endomembrane system have been implicated in lipid transport in yeast, including the endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES), ER-membrane complex (EMC), and the vacuole and mitochondria patch (vCLAMP). By limiting the availability of unsaturated phospholipids, we created conditions to investigate the mechanism of lipid transfer and the contributions of the tethering complexes in vivo. Under these conditions, inactivation of ERMES components or of the vCLAMP component Vps39p exacerbated accumulation of saturated lipid acyl chains, indicating that ERMES and Vps39p contribute to the mitochondrial sink for unsaturated acyl chains by mediating transfer of di-unsaturated phospholipids. These results support the concept that intermembrane lipid flow is rate-limited by molecular species-dependent lipid efflux from the donor membrane and driven by the lipid species' concentration gradient between donor and acceptor membrane.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Xue Bao
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Margriet WJ Hokken
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Adolf S Bierhuizen
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Martin Hermansson
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Tom A Ewing
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Wageningen Food & Biobased ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Xiao Ma
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Ruud C Cox
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Jos F Brouwers
- Biochemistry and Cell BiologyDepartment of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Present address:
Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Christer S Ejsing
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Anton IPM de Kroon
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
30
|
Smith CE, Smith ANH, Cooper TF, Moore FBG. Fitness of evolving bacterial populations is contingent on deep and shallow history but only shallow history creates predictable patterns. Proc Biol Sci 2022; 289:20221292. [PMID: 36100026 PMCID: PMC9470251 DOI: 10.1098/rspb.2022.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-term evolution experiments have tested the importance of genetic and environmental factors in influencing evolutionary outcomes. Differences in phylogenetic history, recent adaptation to distinct environments and chance events, all influence the fitness of a population. However, the interplay of these factors on a population's evolutionary potential remains relatively unexplored. We tracked the outcome of 2000 generations of evolution of four natural isolates of Escherichia coli bacteria that were engineered to also create differences in shallow history by adding previously identified mutations selected in a separate long-term experiment. Replicate populations started from each progenitor evolved in four environments. We found that deep and shallow phylogenetic histories both contributed significantly to differences in evolved fitness, though by different amounts in different selection environments. With one exception, chance effects were not significant. Whereas the effect of deep history did not follow any detectable pattern, effects of shallow history followed a pattern of diminishing returns whereby fitter ancestors had smaller fitness increases. These results are consistent with adaptive evolution being contingent on the interaction of several evolutionary forces but demonstrate that the nature of these interactions is not fixed and may not be predictable even when the role of chance is small.
Collapse
Affiliation(s)
- Chelsea E Smith
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Adam N H Smith
- School of Mathematical and Computational Sciences, Massey University, Auckland 0634, New Zealand
| | - Tim F Cooper
- School of Natural Sciences, Massey University, Auckland 0634, New Zealand
| | - Francisco B-G Moore
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.,Department of Biology, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
31
|
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that usually causes difficult-to-treat infections due to its low intrinsic antibiotic susceptibility and outstanding capacity for becoming resistant to antibiotics. In addition, it has a remarkable metabolic versatility, being able to grow in different habitats, from natural niches to different and changing inpatient environments. Study of the environmental conditions that shape genetic and phenotypic changes of P. aeruginosa toward antibiotic resistance supposes a novelty, since experimental evolution assays are usually performed with well-defined antibiotics in regular laboratory growth media. Therefore, in this work we address the extent to which the nutrients’ availability may constrain the evolution of antibiotic resistance. We determined that P. aeruginosa genetic trajectories toward resistance to tobramycin, ceftazidime, and ceftazidime-avibactam are different when evolving in laboratory rich medium, urine, or synthetic sputum. Furthermore, our study, linking genotype with phenotype, showed a clear impact of each analyzed environment on both the fitness and resistance level associated with particular resistance mutations. This indicates that the phenotype associated with specific resistance mutations is variable and dependent on the bacterial metabolic state in each particular habitat. Our results support that the design of evolution-based strategies to tackle P. aeruginosa infections should be based on robust patterns of evolution identified within each particular infection and body location. IMPORTANCE Predicting evolution toward antibiotic resistance (AR) and its associated trade-offs, such as collateral sensitivity, is important to design evolution-based strategies to tackle AR. However, the effect of nutrients' availability on such evolution, particularly those that can be found under in vivo infection conditions, has been barely addressed. We analyzed the evolutionary patterns of P. aeruginosa in the presence of antibiotics in different media, including urine and synthetic sputum, whose compositions are similar to the ones in infections, finding that AR evolution differs, depending on growth conditions. Furthermore, the representative mutants isolated under each condition tested render different AR levels and fitness costs, depending on nutrients’ availability, supporting the idea that environmental constraints shape the phenotypes associated with specific AR mutations. Consequently, the selection of AR mutations that render similar phenotypes is environment dependent. The analysis of evolution patterns toward AR requires studying growth conditions mimicking those that bacteria face during in vivo evolution.
Collapse
|
32
|
Gene loss and compensatory evolution promotes the emergence of morphological novelties in budding yeast. Nat Ecol Evol 2022; 6:763-773. [PMID: 35484218 DOI: 10.1038/s41559-022-01730-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Deleterious mutations are generally considered to be irrelevant for morphological evolution. However, they could be compensated by conditionally beneficial mutations, thereby providing access to new adaptive paths. Here we use high-dimensional phenotyping of laboratory-evolved budding yeast lineages to demonstrate that new cellular morphologies emerge exceptionally rapidly as a by-product of gene loss and subsequent compensatory evolution. Unexpectedly, the capacities for invasive growth, multicellular aggregation and biofilm formation also spontaneously evolve in response to gene loss. These multicellular phenotypes can be achieved by diverse mutational routes and without reactivating the canonical regulatory pathways. These ecologically and clinically relevant traits originate as pleiotropic side effects of compensatory evolution and have no obvious utility in the laboratory environment. The extent of morphological diversity in the evolved lineages is comparable to that of natural yeast isolates with diverse genetic backgrounds and lifestyles. Finally, we show that both the initial gene loss and subsequent compensatory mutations contribute to new morphologies, with their synergistic effects underlying specific morphological changes. We conclude that compensatory evolution is a previously unrecognized source of morphological diversity and phenotypic novelties.
Collapse
|
33
|
Bakerlee CW, Nguyen Ba AN, Shulgina Y, Rojas Echenique JI, Desai MM. Idiosyncratic epistasis leads to global fitness-correlated trends. Science 2022; 376:630-635. [PMID: 35511982 PMCID: PMC10124986 DOI: 10.1126/science.abm4774] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epistasis can markedly affect evolutionary trajectories. In recent decades, protein-level fitness landscapes have revealed extensive idiosyncratic epistasis among specific mutations. By contrast, other work has found ubiquitous and apparently nonspecific patterns of global diminishing-returns and increasing-costs epistasis among mutations across the genome. Here, we used a hierarchical CRISPR gene drive system to construct all combinations of 10 missense mutations from across the genome in budding yeast and measured their fitness in six environments. We show that the resulting fitness landscapes exhibit global fitness-correlated trends but that these trends emerge from specific idiosyncratic interactions. We thus provide experimental validation of recent theoretical work arguing that fitness-correlated trends can emerge as the generic consequence of idiosyncratic epistasis.
Collapse
Affiliation(s)
- Christopher W Bakerlee
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Quantitative Biology Initiative, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Quantitative Biology Initiative, Harvard University, Cambridge, MA, USA.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Yekaterina Shulgina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jose I Rojas Echenique
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Quantitative Biology Initiative, Harvard University, Cambridge, MA, USA.,NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
34
|
Hernando-Amado S, Laborda P, Valverde JR, Martínez JL. Rapid decline of ceftazidime resistance in antibiotic-free and sub-lethal environments is contingent on genetic background. Mol Biol Evol 2022; 39:6543660. [PMID: 35291010 PMCID: PMC8935207 DOI: 10.1093/molbev/msac049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trade-offs of antibiotic resistance evolution, such as fitness cost and collateral sensitivity (CS), could be exploited to drive evolution toward antibiotic susceptibility. Decline of resistance may occur when resistance to other drug leads to CS to the first one and when compensatory mutations, or genetic reversion of the original ones, reduce fitness cost. Here we describe the impact of antibiotic-free and sublethal environments on declining ceftazidime resistance in different Pseudomonas aeruginosa resistant mutants. We determined that decline of ceftazidime resistance occurs within 450 generations, which is caused by newly acquired mutations and not by reversion of the original ones, and that the original CS of these mutants is preserved. In addition, we observed that the frequency and degree of this decline is contingent on genetic background. Our results are relevant to implement evolution-based therapeutic approaches, as well as to redefine global policies of antibiotic use, such as drug cycling.
Collapse
Affiliation(s)
| | - Pablo Laborda
- Centro Nacional de Biotecnología. CSIC, Madrid, 28049, Spain
| | | | | |
Collapse
|
35
|
The relative fitness of the de novo variants in general Lithuanian population vs. in individuals with intellectual disability. Eur J Hum Genet 2022; 30:332-338. [PMID: 34363065 PMCID: PMC8904440 DOI: 10.1038/s41431-021-00915-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/08/2022] Open
Abstract
The effect of a variant on an organism is always multifaceted and can be considered from multiple perspectives-biochemical, medical, or evolutionary. However, the relationship between the effects of amino acid substitution on protein activity, human health, and an individual's evolutionary fitness is not trivial. We uncover that the general Lithuanian population is characterized by a "mirror reflection" of the de novo variant fitness effect, confirming the theory of neutrality. Meanwhile, in the group of individuals with intellectual disability, compared with the reference exome de novo variants significantly changed the composition of the amino acid. Therefore, it predicts that, both in terms of the number of amino acids and changes in their relative fitness, the structure of the proteins encoded by the studied amino acids undergo significant changes following the de novo variant, leading to possible changes in protein function associated with phenotypic traits. These results suggest that the analysis of relative fitness of exome sequences with de novo variants can predict the future phenotype. Therefore even in those cases, then only a few of all functional prediction analysis tools predict a variant as damaging, the negative relative fitness or even adaptability of the genome variant should be carefully evaluated considering both its direct function and the global background of the possible disease-associated mechanism regardless of the phenotype being studied.
Collapse
|
36
|
Zheng Z, Hua R, Xu G, Yang H, Shi P. Gene losses may contribute to subterranean adaptations in naked mole-rat and blind mole-rat. BMC Biol 2022; 20:44. [PMID: 35172813 PMCID: PMC8851862 DOI: 10.1186/s12915-022-01243-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Naked mole-rats (Heterocephalus glaber, NMRs) and blind mole-rats (Spalax galili, BMRs) are representative subterranean rodents that have evolved many extraordinary traits, including hypoxia tolerance, longevity, and cancer resistance. Although multiple candidate loci responsible for these traits have been uncovered by genomic studies, many of them are limited to functional changes to amino acid sequence and little is known about the contributions of other genetic events. To address this issue, we focused on gene losses (unitary pseudogenes) and systematically analyzed gene losses in NMRs and BMRs, aiming to elucidate the potential roles of pseudogenes in their adaptation to subterranean lifestyle. Results We obtained the pseudogene repertoires in NMRs and BMRs, as well as their respective aboveground relatives, guinea pigs and rats, on a genome-wide scale. As a result, 167, 139, 341, and 112 pseudogenes were identified in NMRs, BMRs, guinea pigs, and rats, respectively. Functional enrichment analysis identified 4 shared and 2 species-specific enriched functional groups (EFGs) in subterranean lineages. Notably, the pseudogenes in these EFGs might be associated with either regressive (e.g., visual system) or adaptive (e.g., altered DNA damage response) traits. In addition, several pseudogenes including TNNI3K and PDE5A might be associated with specific cardiac features observed in subterranean lineages. Interestingly, we observed 20 convergent gene losses in NMRs and BMRs. Given that the functional investigations of these genes are generally scarce, we provided functional evidence that independent loss of TRIM17 in NMRs and BMRs might be beneficial for neuronal survival under hypoxia, supporting the positive role of eliminating TRIM17 function in hypoxia adaptation. Our results also suggested that pseudogenes, together with positively selected genes, reinforced subterranean adaptations cooperatively. Conclusions Our study provides new insights into the molecular underpinnings of subterranean adaptations and highlights the importance of gene losses in mammalian evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01243-0.
Collapse
Affiliation(s)
- Zhizhong Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Rong Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China. .,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
37
|
Kurokawa M, Nishimura I, Ying BW. Experimental Evolution Expands the Breadth of Adaptation to an Environmental Gradient Correlated With Genome Reduction. Front Microbiol 2022; 13:826894. [PMID: 35154062 PMCID: PMC8826082 DOI: 10.3389/fmicb.2022.826894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022] Open
Abstract
Whether and how adaptive evolution adjusts the breadth of adaptation in coordination with the genome are essential issues for connecting evolution with ecology. To address these questions, experimental evolution in five Escherichia coli strains carrying either the wild-type genome or a reduced genome was performed in a defined minimal medium (C0). The ancestral and evolved populations were subsequently subjected to fitness and chemical niche analyses across an environmental gradient with 29 combinations of eight chemical components of the minimal medium. The results showed that adaptation was achieved not only specific to the evolutionary condition (C0), but also generally, to the environmental gradient; that is, the breadth of adaptation to the eight chemical niches was expanded. The magnitudes of the adaptive improvement and the breadth increase were both correlated with genome reduction and were highly significant in two out of eight niches (i.e., glucose and sulfate). The direct adaptation-induced correlated adaptation to the environmental gradient was determined by only a few genome mutations. An additive increase in fitness associated with the stepwise fixation of mutations was consistently observed in the reduced genomes. In summary, this preliminary survey demonstrated that evolution finely tuned the breadth of adaptation correlated with genome reduction.
Collapse
Affiliation(s)
- Masaomi Kurokawa
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Issei Nishimura
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
38
|
Abstract
How do mutational biases influence the process of adaptation? A common assumption is that selection alone determines the course of adaptation from abundant preexisting variation. Yet, theoretical work shows broad conditions under which the mutation rate to a given type of variant strongly influences its probability of contributing to adaptation. Here we introduce a statistical approach to analyzing how mutation shapes protein sequence adaptation. Using large datasets from three different species, we show that the mutation spectrum has a proportional influence on the types of changes fixed in adaptation. We also show via computer simulations that a variety of factors can influence how closely the spectrum of adaptive substitutions reflects the spectrum of variants introduced by mutation. Evolutionary adaptation often occurs by the fixation of beneficial mutations. This mode of adaptation can be characterized quantitatively by a spectrum of adaptive substitutions, i.e., a distribution for types of changes fixed in adaptation. Recent work establishes that the changes involved in adaptation reflect common types of mutations, raising the question of how strongly the mutation spectrum shapes the spectrum of adaptive substitutions. We address this question with a codon-based model for the spectrum of adaptive amino acid substitutions, applied to three large datasets covering thousands of amino acid changes identified in natural and experimental adaptation in Saccharomyces cerevisiae, Escherichia coli, and Mycobacterium tuberculosis. Using species-specific mutation spectra based on prior knowledge, we find that the mutation spectrum has a proportional influence on the spectrum of adaptive substitutions in all three species. Indeed, we find that by inferring the mutation rates that best explain the spectrum of adaptive substitutions, we can accurately recover the species-specific mutation spectra. However, we also find that the predictive power of the model differs substantially between the three species. To better understand these differences, we use population simulations to explore the factors that influence how closely the spectrum of adaptive substitutions mirrors the mutation spectrum. The results show that the influence of the mutation spectrum decreases with increasing mutational supply (Nμ) and that predictive power is strongly affected by the number and diversity of beneficial mutations.
Collapse
|
39
|
Pavani M, Bonaiuti P, Chiroli E, Gross F, Natali F, Macaluso F, Póti Á, Pasqualato S, Farkas Z, Pompei S, Cosentino Lagomarsino M, Rancati G, Szüts D, Ciliberto A. Epistasis, aneuploidy, and functional mutations underlie evolution of resistance to induced microtubule depolymerization. EMBO J 2021; 40:e108225. [PMID: 34605051 DOI: 10.15252/embj.2021108225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/09/2022] Open
Abstract
Cells with blocked microtubule polymerization are delayed in mitosis, but eventually manage to proliferate despite substantial chromosome missegregation. While several studies have analyzed the first cell division after microtubule depolymerization, we have asked how cells cope long-term with microtubule impairment. We allowed 24 clonal populations of yeast cells with beta-tubulin mutations preventing proper microtubule polymerization, to evolve for ˜150 generations. At the end of the laboratory evolution experiment, cells had regained the ability to form microtubules and were less sensitive to microtubule-depolymerizing drugs. Whole-genome sequencing identified recurrently mutated genes, in particular for tubulins and kinesins, as well as pervasive duplication of chromosome VIII. Recreating these mutations and chromosome VIII disomy prior to evolution confirmed that they allow cells to compensate for the original mutation in beta-tubulin. Most of the identified mutations did not abolish function, but rather restored microtubule functionality. Analysis of the temporal order of resistance development in independent populations repeatedly revealed the same series of events: disomy of chromosome VIII followed by a single additional adaptive mutation in either tubulins or kinesins. Since tubulins are highly conserved among eukaryotes, our results have implications for understanding resistance to microtubule-targeting drugs widely used in cancer therapy.
Collapse
Affiliation(s)
- Mattia Pavani
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Paolo Bonaiuti
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Elena Chiroli
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Fridolin Gross
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | - Federica Natali
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sebastiano Pasqualato
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Human Technopole, Milano, Italy
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Simone Pompei
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy
| | | | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andrea Ciliberto
- IFOM, The Firc Institute of Molecular Oncology, Milano, Italy.,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| |
Collapse
|
40
|
Targa A, Larrimore KE, Wong CK, Chong YL, Fung R, Lee J, Choi H, Rancati G. Non-genetic and genetic rewiring underlie adaptation to hypomorphic alleles of an essential gene. EMBO J 2021; 40:e107839. [PMID: 34528284 PMCID: PMC8561638 DOI: 10.15252/embj.2021107839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptive evolution to cellular stress is a process implicated in a wide range of biological and clinical phenomena. Two major routes of adaptation have been identified: non-genetic changes, which allow expression of different phenotypes in novel environments, and genetic variation achieved by selection of fitter phenotypes. While these processes are broadly accepted, their temporal and epistatic features in the context of cellular evolution and emerging drug resistance are contentious. In this manuscript, we generated hypomorphic alleles of the essential nuclear pore complex (NPC) gene NUP58. By dissecting early and long-term mechanisms of adaptation in independent clones, we observed that early physiological adaptation correlated with transcriptome rewiring and upregulation of genes known to interact with the NPC; long-term adaptation and fitness recovery instead occurred via focal amplification of NUP58 and restoration of mutant protein expression. These data support the concept that early phenotypic plasticity allows later acquisition of genetic adaptations to a specific impairment. We propose this approach as a genetic model to mimic targeted drug therapy in human cells and to dissect mechanisms of adaptation.
Collapse
Affiliation(s)
- Altea Targa
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Katherine E Larrimore
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Cheng Kit Wong
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Yu Lin Chong
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Ronald Fung
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Joseph Lee
- Department of MedicineYong Loo Lin School of MedicineNUS and National University Health SystemSingaporeSingapore
| | - Hyungwon Choi
- Department of MedicineYong Loo Lin School of MedicineNUS and National University Health SystemSingaporeSingapore
| | - Giulia Rancati
- Institute of Medical Biology (IMB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Skin Research Institute of Singapore (SRIS)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
41
|
Fumasoni M, Murray AW. Ploidy and recombination proficiency shape the evolutionary adaptation to constitutive DNA replication stress. PLoS Genet 2021; 17:e1009875. [PMID: 34752451 PMCID: PMC8604288 DOI: 10.1371/journal.pgen.1009875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/19/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
In haploid budding yeast, evolutionary adaptation to constitutive DNA replication stress alters three genome maintenance modules: DNA replication, the DNA damage checkpoint, and sister chromatid cohesion. We asked how these trajectories depend on genomic features by comparing the adaptation in three strains: haploids, diploids, and recombination deficient haploids. In all three, adaptation happens within 1000 generations at rates that are correlated with the initial fitness defect of the ancestors. Mutations in individual genes are selected at different frequencies in populations with different genomic features, but the benefits these mutations confer are similar in the three strains, and combinations of these mutations reproduce the fitness gains of evolved populations. Despite the differences in the selected mutations, adaptation targets the same three functional modules in strains with different genomic features, revealing a common evolutionary response to constitutive DNA replication stress.
Collapse
Affiliation(s)
- Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
42
|
Bao X, Koorengevel MC, Groot Koerkamp MJA, Homavar A, Weijn A, Crielaard S, Renne MF, Lorent JH, Geerts WJC, Surma MA, Mari M, Holstege FCP, Klose C, de Kroon AIPM. Shortening of membrane lipid acyl chains compensates for phosphatidylcholine deficiency in choline-auxotroph yeast. EMBO J 2021; 40:e107966. [PMID: 34520050 PMCID: PMC8521299 DOI: 10.15252/embj.2021107966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes, including yeast, and has been assigned multiple functions in addition to acting as building block of the lipid bilayer. Here, by isolating S. cerevisiae suppressor mutants that exhibit robust growth in the absence of PC, we show that PC essentiality is subject to cellular evolvability in yeast. The requirement for PC is suppressed by monosomy of chromosome XV or by a point mutation in the ACC1 gene encoding acetyl-CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis in different ways, both decrease Acc1 activity, thereby reducing average acyl chain length. Consistently, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, feedback inhibition of Acc1 through acyl-CoA produced by fatty acid synthase (FAS) results from upregulation of lipid synthesis. The results show that budding yeast regulates acyl chain length by fine-tuning the activities of Acc1 and FAS and indicate that PC evolved by benefitting the maintenance of membrane fluidity.
Collapse
Affiliation(s)
- Xue Bao
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Martijn C Koorengevel
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | | | - Amir Homavar
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Amrah Weijn
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Stefan Crielaard
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Mike F Renne
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Joseph H Lorent
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| | - Willie JC Geerts
- Cryo‐Electron MicroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | | | - Muriel Mari
- Department of Biomedical Sciences of Cells & SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | | | | | - Anton I P M de Kroon
- Membrane Biochemistry & BiophysicsBijvoet Center for Biomolecular Research and Institute of BiomembranesUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
43
|
Phillips KN, Cooper TF. The cost of evolved constitutive lac gene expression is usually, but not always, maintained during evolution of generalist populations. Ecol Evol 2021; 11:12497-12507. [PMID: 34594515 PMCID: PMC8462147 DOI: 10.1002/ece3.7994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/13/2023] Open
Abstract
Beneficial mutations can become costly following an environmental change. Compensatory mutations can relieve these costs, while not affecting the selected function, so that the benefits are retained if the environment shifts back to be similar to the one in which the beneficial mutation was originally selected. Compensatory mutations have been extensively studied in the context of antibiotic resistance, responses to specific genetic perturbations, and in the determination of interacting gene network components. Few studies have focused on the role of compensatory mutations during more general adaptation, especially as the result of selection in fluctuating environments where adaptations to different environment components may often involve trade-offs. We examine whether costs of a mutation in lacI, which deregulated the expression of the lac operon in evolving populations of Escherichia coli bacteria, were compensated. This mutation occurred in multiple replicate populations selected in environments that fluctuated between growth on lactose, where the mutation was beneficial, and on glucose, where it was deleterious. We found that compensation for the cost of the lacI mutation was rare, but, when it did occur, it did not negatively affect the selected benefit. Compensation was not more likely to occur in a particular evolution environment. Compensation has the potential to remove pleiotropic costs of adaptation, but its rarity indicates that the circumstances to bring about the phenomenon may be peculiar to each individual or impeded by other selected mutations.
Collapse
Affiliation(s)
- Kelly N. Phillips
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Tim F. Cooper
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
- School of Natural and Computational SciencesMassey UniversityAucklandNew Zealand
| |
Collapse
|
44
|
Bohutínská M, Handrick V, Yant L, Schmickl R, Kolář F, Bomblies K, Paajanen P. De Novo Mutation and Rapid Protein (Co-)evolution during Meiotic Adaptation in Arabidopsis arenosa. Mol Biol Evol 2021; 38:1980-1994. [PMID: 33502506 PMCID: PMC8097281 DOI: 10.1093/molbev/msab001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A sudden shift in environment or cellular context necessitates rapid adaptation. A dramatic example is genome duplication, which leads to polyploidy. In such situations, the waiting time for new mutations might be prohibitive; theoretical and empirical studies suggest that rapid adaptation will largely rely on standing variation already present in source populations. Here, we investigate the evolution of meiosis proteins in Arabidopsis arenosa, some of which were previously implicated in adaptation to polyploidy, and in a diploid, habitat. A striking and unexplained feature of prior results was the large number of amino acid changes in multiple interacting proteins, especially in the relatively young tetraploid. Here, we investigate whether selection on meiosis genes is found in other lineages, how the polyploid may have accumulated so many differences, and whether derived variants were selected from standing variation. We use a range-wide sample of 145 resequenced genomes of diploid and tetraploid A. arenosa, with new genome assemblies. We confirmed signals of positive selection in the polyploid and diploid lineages they were previously reported in and find additional meiosis genes with evidence of selection. We show that the polyploid lineage stands out both qualitatively and quantitatively. Compared with diploids, meiosis proteins in the polyploid have more amino acid changes and a higher proportion affecting more strongly conserved sites. We find evidence that in tetraploids, positive selection may have commonly acted on de novo mutations. Several tests provide hints that coevolution, and in some cases, multinucleotide mutations, might contribute to rapid accumulation of changes in meiotic proteins.
Collapse
Affiliation(s)
- Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Vinzenz Handrick
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic.,Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Kirsten Bomblies
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom.,Plant Evolutionary Genetics, Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zurich, Switzerland
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
45
|
Mutation E48K in PB1 Polymerase Subunit Improves Stability of a Candidate Live Attenuated Influenza B Virus Vaccine. Vaccines (Basel) 2021; 9:vaccines9070800. [PMID: 34358217 PMCID: PMC8310045 DOI: 10.3390/vaccines9070800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza B virus (IBV) is a major respiratory pathogen of humans, particularly in the elderly and children, and vaccines are the most effective way to control it. In previous work, incorporation of two mutations (E580G, S660A) along with the addition of an HA epitope tag in the PB1 segment of B/Brisbane/60/2008 (B/Bris) resulted in an attenuated strain that was safe and effective as a live attenuated vaccine. A third attempted mutation (K391E) in PB1 was not always stable. Interestingly, viruses that maintained the K391E mutation were associated with the mutation E48K. To explore the contribution of the E48K mutation to stability of the K391E mutation, a vaccine candidate was generated by inserting both mutations, along with attenuating mutations E580G and S660A, in PB1 of B/Bris (B/Bris PB1att 4M). Serial passages of the B/Bris PB1att 4M vaccine candidate in eggs and MDCK indicated high stability. In silico structural analysis revealed a potential interaction between amino acids at positions 48 and 391. In mice, B/Bris PB1att 4M was safe and provided complete protection against homologous challenge. These results confirm the compensatory effect of mutation E48K to stabilize the K391E mutation, resulting in a safer, yet still protective, IBV LAIV vaccine.
Collapse
|
46
|
Sun M, Zhang J. Rampant False Detection of Adaptive Phenotypic Optimization by ParTI-Based Pareto Front Inference. Mol Biol Evol 2021; 38:1653-1664. [PMID: 33346805 PMCID: PMC8042732 DOI: 10.1093/molbev/msaa330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Organisms face tradeoffs in performing multiple tasks. Identifying the optimal phenotypes maximizing the organismal fitness (or Pareto front) and inferring the relevant tasks allow testing phenotypic adaptations and help delineate evolutionary constraints, tradeoffs, and critical fitness components, so are of broad interest. It has been proposed that Pareto fronts can be identified from high-dimensional phenotypic data, including molecular phenotypes such as gene expression levels, by fitting polytopes (lines, triangles, tetrahedrons, and so on), and a program named ParTI was recently introduced for this purpose. ParTI has identified Pareto fronts and inferred phenotypes best for individual tasks (or archetypes) from numerous data sets such as the beak morphologies of Darwin’s finches and mRNA concentrations in human tumors, implying evolutionary optimizations of the involved traits. Nevertheless, the reliabilities of these findings are unknown. Using real and simulated data that lack evolutionary optimization, we here report extremely high false-positive rates of ParTI. The errors arise from phylogenetic relationships or population structures of the organisms analyzed and the flexibility of data analysis in ParTI that is equivalent to p-hacking. Because these problems are virtually universal, our findings cast doubt on almost all ParTI-based results and suggest that reliably identifying Pareto fronts and archetypes from high-dimensional phenotypic data are currently generally difficult.
Collapse
Affiliation(s)
- Mengyi Sun
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Pereira F, Lopes H, Maia P, Meyer B, Nocon J, Jouhten P, Konstantinidis D, Kafkia E, Rocha M, Kötter P, Rocha I, Patil KR. Model-guided development of an evolutionarily stable yeast chassis. Mol Syst Biol 2021; 17:e10253. [PMID: 34292675 PMCID: PMC8297383 DOI: 10.15252/msb.202110253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/14/2023] Open
Abstract
First-principle metabolic modelling holds potential for designing microbial chassis that are resilient against phenotype reversal due to adaptive mutations. Yet, the theory of model-based chassis design has rarely been put to rigorous experimental test. Here, we report the development of Saccharomyces cerevisiae chassis strains for dicarboxylic acid production using genome-scale metabolic modelling. The chassis strains, albeit geared for higher flux towards succinate, fumarate and malate, do not appreciably secrete these metabolites. As predicted by the model, introducing product-specific TCA cycle disruptions resulted in the secretion of the corresponding acid. Adaptive laboratory evolution further improved production of succinate and fumarate, demonstrating the evolutionary robustness of the engineered cells. In the case of malate, multi-omics analysis revealed a flux bypass at peroxisomal malate dehydrogenase that was missing in the yeast metabolic model. In all three cases, flux balance analysis integrating transcriptomics, proteomics and metabolomics data confirmed the flux re-routing predicted by the model. Taken together, our modelling and experimental results have implications for the computer-aided design of microbial cell factories.
Collapse
Affiliation(s)
- Filipa Pereira
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Life Science InstituteUniversity of MichiganAnn ArborUSA
| | - Helder Lopes
- CEB‐Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBragaPortugal
| | - Paulo Maia
- Silicolife ‐ Computational Biology Solutions for the Life SciencesBragaPortugal
| | - Britta Meyer
- Johann Wolfgang Goethe‐UniversitätFrankfurt am MainGermany
| | - Justyna Nocon
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Paula Jouhten
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | | | - Eleni Kafkia
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| | - Miguel Rocha
- CEB‐Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBragaPortugal
| | - Peter Kötter
- Johann Wolfgang Goethe‐UniversitätFrankfurt am MainGermany
| | - Isabel Rocha
- CEB‐Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBragaPortugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB‐NOVA)OeirasPortugal
| | - Kiran R Patil
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- The Medical Research Council Toxicology UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
48
|
Klim J, Zielenkiewicz U, Skoneczny M, Skoneczna A, Kurlandzka A, Kaczanowski S. Genetic interaction network has a very limited impact on the evolutionary trajectories in continuous culture-grown populations of yeast. BMC Ecol Evol 2021; 21:99. [PMID: 34039270 PMCID: PMC8157726 DOI: 10.1186/s12862-021-01830-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background The impact of genetic interaction networks on evolution is a fundamental issue. Previous studies have demonstrated that the topology of the network is determined by the properties of the cellular machinery. Functionally related genes frequently interact with one another, and they establish modules, e.g., modules of protein complexes and biochemical pathways. In this study, we experimentally tested the hypothesis that compensatory evolutionary modifications, such as mutations and transcriptional changes, occur frequently in genes from perturbed modules of interacting genes. Results Using Saccharomyces cerevisiae haploid deletion mutants as a model, we investigated two modules lacking COG7 or NUP133, which are evolutionarily conserved genes with many interactions. We performed laboratory evolution experiments with these strains in two genetic backgrounds (with or without additional deletion of MSH2), subjecting them to continuous culture in a non-limiting minimal medium. Next, the evolved yeast populations were characterized through whole-genome sequencing and transcriptome analyses. No obvious compensatory changes resulting from inactivation of genes already included in modules were identified. The supposedly compensatory inactivation of genes in the evolved strains was only rarely observed to be in accordance with the established fitness effect of the genetic interaction network. In fact, a substantial majority of the gene inactivations were predicted to be neutral in the experimental conditions used to determine the interaction network. Similarly, transcriptome changes during continuous culture mostly signified adaptation to growth conditions rather than compensation of the absence of the COG7, NUP133 or MSH2 genes. However, we noticed that for genes whose inactivation was deleterious an upregulation of transcription was more common than downregulation. Conclusions Our findings demonstrate that the genetic interactions and the modular structure of the network described by others have very limited effects on the evolutionary trajectory following gene deletion of module elements in our experimental conditions and has no significant impact on short-term compensatory evolution. However, we observed likely compensatory evolution in functionally related (albeit non-interacting) genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01830-9.
Collapse
Affiliation(s)
- Joanna Klim
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Anna Kurlandzka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Szymon Kaczanowski
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
49
|
Lai HY, Cooper TF. Dynamics of bacterial adaptation. Biochem Soc Trans 2021; 49:945-951. [PMID: 33843990 PMCID: PMC8106486 DOI: 10.1042/bst20200885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022]
Abstract
Determining pattern in the dynamics of population evolution is a long-standing focus of evolutionary biology. Complementing the study of natural populations, microbial laboratory evolution experiments have become an important tool for addressing these dynamics because they allow detailed and replicated analysis of evolution in response to controlled environmental and genetic conditions. Key findings include a tendency for smoothly declining rates of adaptation during selection in constant environments, at least in part a reflection of antagonism between accumulating beneficial mutations, and a large number of beneficial mutations available to replicate populations leading to significant, but relatively low genetic parallelism, even as phenotypic characteristics show high similarity. Together, there is a picture of adaptation as a process with a varied and largely unpredictable genetic basis leading to much more similar phenotypic outcomes. Increasing sophistication of sequencing and genetic tools will allow insight into mechanisms behind these and other patterns.
Collapse
Affiliation(s)
- Huei-Yi Lai
- School of Natural and Computational Sciences, Massey University, Auckland 0634, New Zealand
| | - Tim F. Cooper
- School of Natural and Computational Sciences, Massey University, Auckland 0634, New Zealand
| |
Collapse
|
50
|
Helsen J, Voordeckers K, Vanderwaeren L, Santermans T, Tsontaki M, Verstrepen KJ, Jelier R. Gene Loss Predictably Drives Evolutionary Adaptation. Mol Biol Evol 2021; 37:2989-3002. [PMID: 32658971 PMCID: PMC7530610 DOI: 10.1093/molbev/msaa172] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Loss of gene function is common throughout evolution, even though it often leads to reduced fitness. In this study, we systematically evaluated how an organism adapts after deleting genes that are important for growth under oxidative stress. By evolving, sequencing, and phenotyping over 200 yeast lineages, we found that gene loss can enhance an organism’s capacity to evolve and adapt. Although gene loss often led to an immediate decrease in fitness, many mutants rapidly acquired suppressor mutations that restored fitness. Depending on the strain’s genotype, some ultimately even attained higher fitness levels than similarly adapted wild-type cells. Further, cells with deletions in different modules of the genetic network followed distinct and predictable mutational trajectories. Finally, losing highly connected genes increased evolvability by facilitating the emergence of a more diverse array of phenotypes after adaptation. Together, our findings show that loss of specific parts of a genetic network can facilitate adaptation by opening alternative evolutionary paths.
Collapse
Affiliation(s)
- Jana Helsen
- Laboratory of Predictive Genetics and Multicellular Systems, CMPG, KU Leuven, Leuven, Belgium.,Laboratory of Genetics and Genomics, CMPG, KU Leuven, Leuven, Belgium.,Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Karin Voordeckers
- Laboratory of Genetics and Genomics, CMPG, KU Leuven, Leuven, Belgium.,Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Laura Vanderwaeren
- Laboratory of Predictive Genetics and Multicellular Systems, CMPG, KU Leuven, Leuven, Belgium.,Laboratory of Genetics and Genomics, CMPG, KU Leuven, Leuven, Belgium.,Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Toon Santermans
- Laboratory of Predictive Genetics and Multicellular Systems, CMPG, KU Leuven, Leuven, Belgium
| | - Maria Tsontaki
- Laboratory of Genetics and Genomics, CMPG, KU Leuven, Leuven, Belgium.,Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory of Genetics and Genomics, CMPG, KU Leuven, Leuven, Belgium.,Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Rob Jelier
- Laboratory of Predictive Genetics and Multicellular Systems, CMPG, KU Leuven, Leuven, Belgium
| |
Collapse
|