1
|
Wang Q, Ruan Q, Ding H. XPD Regulates MIAT/miR-29a-3p/COL4A1 Axis to Impede Hepatocellular Carcinoma Development. FASEB J 2025; 39:e70611. [PMID: 40372289 DOI: 10.1096/fj.202402908r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/28/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025]
Abstract
Xeroderma pigmentosum group D (XPD) has been reported to inhibit cell growth of hepatocellular carcinoma (HCC). This work attempted to reveal the underlying mechanism of XPD in HCC. In this study, XPD and miR-29a-3p were down-regulated, and MIAT and COL4A1 were up-regulated in tumor tissues of HCC patients. The same phenomena were also observed in HCC cell lines. XPD overexpression enhanced E-cadherin expression, reduced N-cadherin and Vimentin expression, and repressed the migration and invasion of HepG2 and Hep3B cells. MIAT or COL4A1 overexpression reversed the effect of XPD on the invasion, migration, and epithelial-mesenchymal transition (EMT) of HCC cells. MIAT overexpression-mediated promotion of malignant phenotypes of HCC cells was reversed by COL4A1 deficiency. In terms of mechanics, MIAT enhanced COL4A1 expression by sponging miR-29a-3p. XPD interacted with P53. XPD overexpression repressed MIAT expression, which was abrogated by P53 silencing. Thus, XPD recruited P53 to repress MIAT expression. In vivo, XPD up-regulation inhibited tumor growth and reduced the metastatic lesions in intrahepatic, lung, and kidney tissues of mice. In conclusion, this study demonstrated that XPD recruited P53 to regulate the MIAT/miR-29a-3p/COL4A1 axis, which contributed to inhibiting migration, invasion, EMT, and metastasis of HCC. Thus, XPD may be a valuable target for HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qichao Ruan
- Department of Gastroenterology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Hao Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Cai X, Zhai Z, Noto T, Dong G, Wang X, Liucong M, Liu Y, Agreiter C, Loidl J, Mochizuki K, Tian M. A specialized TFIIB is required for transcription of transposon-targeting noncoding RNAs. Nucleic Acids Res 2025; 53:gkaf427. [PMID: 40377217 PMCID: PMC12082453 DOI: 10.1093/nar/gkaf427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Transposable elements (TEs) pose threats to genome stability. Therefore, small RNA-mediated heterochromatinization suppresses the transcription and hence the mobility of TEs. Paradoxically, transcription of noncoding RNA (ncRNA) from TEs is needed for the production of TE-targeting small RNAs and/or recruiting the silencing machinery to TEs. Hence, specialized RNA polymerase II (Pol II) regulators are required for such unconventional transcription in different organisms, including the developmental stage-specific Mediator complex (Med)-associated proteins in the ncRNA transcription from TE-related sequences in Tetrahymena. Yet it remains unclear how the Pol II transcriptional machinery is assembled at TE-related sequences for the ncRNA transcription. Here, we report that Pol II is regulated by Emit3, a stage-specific TFIIB-like protein specialized in TE transcription. Emit3 interacts with the TFIIH complex and localizes to TE-dense regions, especially at sites enriched with a G-rich sequence motif. Deletion of Emit3 globally abolishes Pol II-chromatin association in the meiotic nucleus, disrupts the chromatin binding of Med, and impairs the TE-biased localization of TFIIH. Conversely, Emit3's preferential localization to TE-rich loci relies in part on Med-associated proteins. These findings suggest that Emit3, TFIIH, and Med-associated proteins work together to initiate Pol II ncRNA transcription from TE-dense regions, possibly in a sequence-dependent manner.
Collapse
Affiliation(s)
- Xia Cai
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhihao Zhai
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tomoko Noto
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier 34090, France
| | - Gang Dong
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna A-1030, Austria
| | - Xue Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Mingmei Liucong
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yujie Liu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Christiane Agreiter
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna A-1030, Austria
| | - Josef Loidl
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna A-1030, Austria
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier 34090, France
| | - Miao Tian
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier 34090, France
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna A-1030, Austria
| |
Collapse
|
3
|
Zachayus A, Loup-Forest J, Cura V, Poterszman A. Nucleotide Excision Repair: Insights into Canonical and Emerging Functions of the Transcription/DNA Repair Factor TFIIH. Genes (Basel) 2025; 16:231. [PMID: 40004560 PMCID: PMC11855273 DOI: 10.3390/genes16020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Nucleotide excision repair (NER) is a universal cut-and-paste DNA repair mechanism that corrects bulky DNA lesions such as those caused by UV radiation, environmental mutagens, and some chemotherapy drugs. In this review, we focus on the human transcription/DNA repair factor TFIIH, a key player of the NER pathway in eukaryotes. This 10-subunit multiprotein complex notably verifies the presence of a lesion and opens the DNA around the damage via its XPB and XPD subunits, two proteins identified in patients suffering from Xeroderma Pigmentosum syndrome. Isolated as a class II gene transcription factor in the late 1980s, TFIIH is a prototypic molecular machine that plays an essential role in both DNA repair and transcription initiation and harbors a DNA helicase, a DNA translocase, and kinase activity. More recently, TFIIH subunits have been identified as participating in other cellular processes, including chromosome segregation during mitosis, maintenance of mitochondrial DNA integrity, and telomere replication.
Collapse
Affiliation(s)
- Amélie Zachayus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Jules Loup-Forest
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Vincent Cura
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
4
|
Kuper J, Hove T, Maidl S, Neitz H, Sauer F, Kempf M, Schroeder T, Greiter E, Höbartner C, Kisker C. XPD stalled on cross-linked DNA provides insight into damage verification. Nat Struct Mol Biol 2024; 31:1580-1588. [PMID: 38806694 PMCID: PMC11479942 DOI: 10.1038/s41594-024-01323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
The superfamily 2 helicase XPD is a central component of the general transcription factor II H (TFIIH), which is essential for transcription and nucleotide excision DNA repair (NER). Within these two processes, the helicase function of XPD is vital for NER but not for transcription initiation, where XPD acts only as a scaffold for other factors. Using cryo-EM, we deciphered one of the most enigmatic steps in XPD helicase action: the active separation of double-stranded DNA (dsDNA) and its stalling upon approaching a DNA interstrand cross-link, a highly toxic form of DNA damage. The structure shows how dsDNA is separated and reveals a highly unusual involvement of the Arch domain in active dsDNA separation. Combined with mutagenesis and biochemical analyses, we identified distinct functional regions important for helicase activity. Surprisingly, those areas also affect core TFIIH translocase activity, revealing a yet unencountered function of XPD within the TFIIH scaffold. In summary, our data provide a universal basis for NER bubble formation, XPD damage verification and XPG incision.
Collapse
Affiliation(s)
- Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| | - Tamsanqa Hove
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sarah Maidl
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hermann Neitz
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Maximilian Kempf
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Till Schroeder
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Elke Greiter
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), University of Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Hoag A, Duan M, Mao P. The role of Transcription Factor IIH complex in nucleotide excision repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:72-81. [PMID: 37545038 PMCID: PMC10903506 DOI: 10.1002/em.22568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
DNA damage occurs throughout life from a variety of sources, and it is imperative to repair damage in a timely manner to maintain genome stability. Thus, DNA repair mechanisms are a fundamental part of life. Nucleotide excision repair (NER) plays an important role in the removal of bulky DNA adducts, such as cyclobutane pyrimidine dimers from ultraviolet light or DNA crosslinking damage from platinum-based chemotherapeutics, such as cisplatin. A main component for the NER pathway is transcription factor IIH (TFIIH), a multifunctional, 10-subunit protein complex with crucial roles in both transcription and NER. In transcription, TFIIH is a component of the pre-initiation complex and is important for promoter opening and the phosphorylation of RNA Polymerase II (RNA Pol II). During repair, TFIIH is important for DNA unwinding, recruitment of downstream repair factors, and verification of the bulky lesion. Several different disease states can arise from mutations within subunits of the TFIIH complex. Most strikingly are xeroderma pigmentosum (XP), XP combined with Cockayne syndrome (CS), and trichothiodystrophy (TTD). Here, we summarize the recruitment and functions of TFIIH in the two NER subpathways, global genomic (GG-NER) and transcription-coupled NER (TC-NER). We will also discuss how TFIIH's roles in the two subpathways lead to different genetic disorders.
Collapse
Affiliation(s)
- Allyson Hoag
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
6
|
Greber BJ. High-resolution cryo-EM of a small protein complex: The structure of the human CDK-activating kinase. Structure 2024:S0969-2126(24)00085-6. [PMID: 38565138 DOI: 10.1016/j.str.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The human CDK-activating kinase (CAK) is a multifunctional protein complex and key regulator of cell growth and division. Because of its critical functions in regulating the cell cycle and transcription initiation, it is a key target for multiple cancer drug discovery programs. However, the structure of the active human CAK, insights into its regulation, and its interactions with cellular substrates and inhibitors remained elusive until recently due to the lack of high-resolution structures of the intact complex. This review covers the progress in structure determination of the human CAK by cryogenic electron microscopy (cryo-EM), from early efforts to recent near-atomic resolution maps routinely resolved at 2Å or better. These results were enabled by the latest cryo-EM technologies introduced after the initial phase of the "resolution revolution" and allowed the application of high-resolution methods to new classes of molecular targets, including small protein complexes that were intractable using earlier technology.
Collapse
Affiliation(s)
- Basil J Greber
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
7
|
Mao C, Mills M. Characterization of human XPD helicase activity with single-molecule magnetic tweezers. Biophys J 2024; 123:260-271. [PMID: 38111195 PMCID: PMC10808040 DOI: 10.1016/j.bpj.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
XPD helicase is a DNA-unwinding enzyme involved in DNA repair. As part of TFIIH, XPD opens a repair bubble in DNA for access by proteins in the nucleotide excision repair pathway. XPD uses the energy from ATP hydrolysis to translocate in the 5' to 3' direction on one strand of duplex DNA, displacing the opposite strand in the process. We used magnetic tweezers assays to measure the double-stranded DNA unwinding and single-stranded DNA translocation activities of human XPD in isolation. In our experimental setup, hXPD exhibited low unwinding processivity of ∼14 bp and slow unwinding rate of ∼0.3 bp/s. Measurements of the ssDNA translocation activity demonstrated that hXPD translocated on ssDNA at a similar rate as unwinding, revealing that slow rate was an intrinsic property of the hXPD translocation. Individual unwinding and translocation events were composed of pauses and runs with a distribution of lengths and rates. Analysis of these events unveiled similar mean run lengths and rates for unwinding and translocation, indicating that the unwinding behavior was a direct reflection of the translocation activity. The analysis also revealed that hXPD spent similar time stalling and unwinding/translocating. The detailed basal activity of hXPD reported here provides a baseline for future studies on how hXPD activity is regulated by other TFIIH components.
Collapse
Affiliation(s)
- Chunfeng Mao
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
| | - Maria Mills
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri.
| |
Collapse
|
8
|
Essawy M, Chesner L, Alshareef D, Ji S, Tretyakova N, Campbell C. Ubiquitin signaling and the proteasome drive human DNA-protein crosslink repair. Nucleic Acids Res 2023; 51:12174-12184. [PMID: 37843153 PMCID: PMC10711432 DOI: 10.1093/nar/gkad860] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
DNA-protein crosslinks (DPCs) are large cytotoxic DNA lesions that form following exposure to chemotherapeutic drugs and environmental chemicals. Nucleotide excision repair (NER) and homologous recombination (HR) promote survival following exposure to DPC-inducing agents. However, it is not known how cells recognize DPC lesions, or what mechanisms selectively target DPC lesions to these respective repair pathways. To address these questions, we examined DPC recognition and repair by transfecting a synthetic DPC lesion comprised of the human oxoguanine glycosylase (OGG1) protein crosslinked to double-stranded M13MP18 into human cells. In wild-type cells, this lesion is efficiently repaired, whereas cells deficient in NER can only repair this lesion if an un-damaged homologous donor is co-transfected. Transfected DPC is subject to rapid K63 polyubiquitination. In NER proficient cells, the DPC is subject to K48 polyubiquitination, and is removed via a proteasome-dependent mechanism. In NER-deficient cells, the DNA-conjugated protein is not subject to K48 polyubiquitination. Instead, the K63 tag remains attached, and is only lost when a homologous donor molecule is present. Taken together, these results support a model in which selective addition of polyubiquitin chains to DNA-crosslinked protein leads to selective recruitment of the proteasome and the cellular NER and recombinational DNA repair machinery.
Collapse
Affiliation(s)
- Maram Essawy
- Department of Pharmacology, University of Minnesota, Minnesota, MN 55455, USA
| | - Lisa Chesner
- Department of Pharmacology, University of Minnesota, Minnesota, MN 55455, USA
| | - Duha Alshareef
- Department of Pharmacology, University of Minnesota, Minnesota, MN 55455, USA
| | - Shaofei Ji
- Department of Medicinal Chemistry, University of Minnesota, Minnesota, MN 55455, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minnesota, MN 55455, USA
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minnesota, MN 55455, USA
| |
Collapse
|
9
|
Fu I, Geacintov NE, Broyde S. Differing structures and dynamics of two photolesions portray verification differences by the human XPD helicase. Nucleic Acids Res 2023; 51:12261-12274. [PMID: 37933861 PMCID: PMC10711554 DOI: 10.1093/nar/gkad974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
Ultraviolet light generates cyclobutane pyrimidine dimer (CPD) and pyrimidine 6-4 pyrimidone (6-4PP) photoproducts that cause skin malignancies if not repaired by nucleotide excision repair (NER). While the faster repair of the more distorting 6-4PPs is attributed mainly to more efficient recognition by XPC, the XPD lesion verification helicase may play a role, as it directly scans the damaged DNA strand. With extensive molecular dynamics simulations of XPD-bound single-strand DNA containing each lesion outside the entry pore of XPD, we elucidate strikingly different verification processes for these two lesions that have very different topologies. The open book-like CPD thymines are sterically blocked from pore entry and preferably entrapped by sensors that are outside the pore; however, the near-perpendicular 6-4PP thymines can enter, accompanied by a displacement of the Arch domain toward the lesion, which is thereby tightly accommodated within the pore. This trapped 6-4PP may inhibit XPD helicase activity to foster lesion verification by locking the Arch to other domains. Furthermore, the movement of the Arch domain, only in the case of 6-4PP, may trigger signaling to the XPG nuclease for subsequent lesion incision by fostering direct contact between the Arch domain and XPG, and thereby facilitating repair of 6-4PP.
Collapse
Affiliation(s)
- Iwen Fu
- Department of Biology, New York University, 24 Waverly Place, 6th Floor, New York, NY 10003, USA
| | - Nicholas E Geacintov
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Suse Broyde
- Department of Biology, New York University, 24 Waverly Place, 6th Floor, New York, NY 10003, USA
| |
Collapse
|
10
|
Theil AF, Häckes D, Lans H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair (Amst) 2023; 132:103568. [PMID: 37977600 DOI: 10.1016/j.dnarep.2023.103568] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 11/19/2023]
Abstract
The heterodecameric transcription factor IIH (TFIIH) functions in multiple cellular processes, foremost in nucleotide excision repair (NER) and transcription initiation by RNA polymerase II. TFIIH is essential for life and hereditary mutations in TFIIH cause the devastating human syndromes xeroderma pigmentosum, Cockayne syndrome or trichothiodystrophy, or combinations of these. In NER, TFIIH binds to DNA after DNA damage is detected and, using its translocase and helicase subunits XPB and XPD, opens up the DNA and checks for the presence of DNA damage. This central activity leads to dual incision and removal of the DNA strand containing the damage, after which the resulting DNA gap is restored. In this review, we discuss new structural and mechanistic insights into the central function of TFIIH in NER. Moreover, we provide an elaborate overview of all currently known patients and diseases associated with inherited TFIIH mutations and describe how our understanding of TFIIH function in NER and transcription can explain the different disease features caused by TFIIH deficiency.
Collapse
Affiliation(s)
- Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - David Häckes
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Tessmer I. The roles of non-productive complexes of DNA repair proteins with DNA lesions. DNA Repair (Amst) 2023; 129:103542. [PMID: 37453245 DOI: 10.1016/j.dnarep.2023.103542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
A multitude of different types of lesions is continuously introduced into the DNA inside our cells, and their rapid and efficient repair is fundamentally important for the maintenance of genomic stability and cellular viability. This is achieved by a number of DNA repair systems that each involve different protein factors and employ versatile strategies to target different types of DNA lesions. Intriguingly, specialized DNA repair proteins have also evolved to form non-functional complexes with their target lesions. These proteins allow the marking of innocuous lesions to render them visible for DNA repair systems and can serve to directly recruit DNA repair cascades. Moreover, they also provide links between different DNA repair mechanisms or even between DNA lesions and transcription regulation. I will focus here in particular on recent findings from single molecule analyses on the alkyltransferase-like protein ATL, which is believed to initiate nucleotide excision repair (NER) of non-native NER target lesions, and the base excision repair (BER) enzyme hOGG1, which recruits the oncogene transcription factor Myc to gene promoters under oxidative stress.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
12
|
Mao C, Mills M. Characterization of human XPD helicase activity with Single Molecule Magnetic Tweezers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527508. [PMID: 36798221 PMCID: PMC9934580 DOI: 10.1101/2023.02.07.527508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
XPD helicase is a DNA unwinding enzyme involved in multiple cellular processes. As part of TFIIH, XPD opens a repair bubble in DNA for access by proteins in the nucleotide excision repair pathway. XPD uses the energy from ATP hydrolysis to translocate in the 5-prime to 3-prime direction on one strand of duplex DNA, displacing the opposite strand in the process. We used magnetic tweezers assays to measure the double-stranded DNA (dsDNA) unwinding and single-stranded DNA (ssDNA) translocation activities of human XPD by itself. In our experimental setup, hXPD exhibits low unwinding processivity of ~14 bp and slow overall unwinding rate of ~0.3 bp/s. Individual unwinding and translocation events were composed of fast and slow runs and pauses. Analysis of these events gave similar mean run sizes and rates for unwinding and translocation, suggesting that unwinding is a reflection of translocation. The analysis also revealed that hXPD spent similar time stalling and unwinding. hXPD translocated on ssDNA at a similar overall rate as that of unwinding, pointing to an active helicase. However, we observed modest effects of DNA sequence on stalling and unwinding initiation position. Considering the slow unwinding rate, high probability of base pair separation at the ssDNA/dsDNA fork, and the observed DNA sequence dependences, we propose that hXPD is most likely a partially active helicase. Our results provide detailed information on the basal activity of hXPD which enhances our mechanistic understanding of hXPD activity.
Collapse
|
13
|
He F, Bravo M, Fan L. Helicases required for nucleotide excision repair: structure, function and mechanism. Enzymes 2023; 54:273-304. [PMID: 37945175 DOI: 10.1016/bs.enz.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Nucleotide excision repair (NER) is a major DNA repair pathway conserved from bacteria to humans. Various DNA helicases, a group of enzymes capable of separating DNA duplex into two strands through ATP binding and hydrolysis, are required by NER to unwind the DNA duplex around the lesion to create a repair bubble and for damage verification and removal. In prokaryotes, UvrB helicase is required for repair bubble formation and damage verification, while UvrD helicase is responsible for the removal of the excised damage containing single-strand (ss) DNA fragment. In addition, UvrD facilitates transcription-coupled repair (TCR) by backtracking RNA polymerase stalled at the lesion. In eukaryotes, two helicases XPB and XPD from the transcription factor TFIIH complex fulfill the helicase requirements of NER. Interestingly, homologs of all these four helicases UvrB, UvrD, XPB, and XPD have been identified in archaea. This review summarizes our current understanding about the structure, function, and mechanism of these four helicases.
Collapse
Affiliation(s)
- Feng He
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marco Bravo
- Department of Biochemistry, University of California, Riverside, CA, United States
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA, United States.
| |
Collapse
|
14
|
Kuper J, Kisker C. At the core of nucleotide excision repair. Curr Opin Struct Biol 2023; 80:102605. [PMID: 37150041 DOI: 10.1016/j.sbi.2023.102605] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Nucleotide excision repair (NER) is unique in its ability to identify and remove vastly different lesions from DNA. Recent advances in the structural characterization of complexes involved in detection, verification, and excision of damaged DNA have reshaped our understanding of the molecular architecture of this efficient and accurate machinery. Initial damage recognition achieved through transcription coupled repair (TC-NER) or global genome repair (GG-NER) has been addressed by complexes of RNA Pol II with different TC-NER factors and XPC/RAD23B/Centrin-2 with TFIIH, respectively. Moreover, transcription factor IIH (TFIIH), one of the core repair factors and a central NER hub was resolved in different states, providing important insights how this complex facilitates DNA opening and damage verification. Combined, these recent advances led to a highly improved understanding of the molecular landscape of NER core processes, sharpening our view on how NER is successfully achieved.
Collapse
Affiliation(s)
- Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Germany.
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Germany.
| |
Collapse
|
15
|
Xu L, Halma MTJ, Wuite GJL. Unravelling How Single-Stranded DNA Binding Protein Coordinates DNA Metabolism Using Single-Molecule Approaches. Int J Mol Sci 2023; 24:ijms24032806. [PMID: 36769124 PMCID: PMC9917605 DOI: 10.3390/ijms24032806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in DNA metabolism. Proteins of the SSB family exclusively and transiently bind to ssDNA, preventing the DNA double helix from re-annealing and maintaining genome integrity. In the meantime, they interact and coordinate with various proteins vital for DNA replication, recombination, and repair. Although SSB is essential for DNA metabolism, proteins of the SSB family have been long described as accessory players, primarily due to their unclear dynamics and mechanistic interaction with DNA and its partners. Recently-developed single-molecule tools, together with biochemical ensemble techniques and structural methods, have enhanced our understanding of the different coordination roles that SSB plays during DNA metabolism. In this review, we discuss how single-molecule assays, such as optical tweezers, magnetic tweezers, Förster resonance energy transfer, and their combinations, have advanced our understanding of the binding dynamics of SSBs to ssDNA and their interaction with other proteins partners. We highlight the central coordination role that the SSB protein plays by directly modulating other proteins' activities, rather than as an accessory player. Many possible modes of SSB interaction with protein partners are discussed, which together provide a bigger picture of the interaction network shaped by SSB.
Collapse
|
16
|
Petronek MS, Allen BG. Maintenance of genome integrity by the late-acting cytoplasmic iron-sulfur assembly (CIA) complex. Front Genet 2023; 14:1152398. [PMID: 36968611 PMCID: PMC10031043 DOI: 10.3389/fgene.2023.1152398] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are unique, redox-active co-factors ubiquitous throughout cellular metabolism. Fe-S cluster synthesis, trafficking, and coordination result from highly coordinated, evolutionarily conserved biosynthetic processes. The initial Fe-S cluster synthesis occurs within the mitochondria; however, the maturation of Fe-S clusters culminating in their ultimate insertion into appropriate cytosolic/nuclear proteins is coordinated by a late-acting cytosolic iron-sulfur assembly (CIA) complex in the cytosol. Several nuclear proteins involved in DNA replication and repair interact with the CIA complex and contain Fe-S clusters necessary for proper enzymatic activity. Moreover, it is currently hypothesized that the late-acting CIA complex regulates the maintenance of genome integrity and is an integral feature of DNA metabolism. This review describes the late-acting CIA complex and several [4Fe-4S] DNA metabolic enzymes associated with maintaining genome stability.
Collapse
|
17
|
Naumenko NV, Petruseva IO, Lavrik OI. Bulky Adducts in Clustered DNA Lesions: Causes of Resistance to the NER System. Acta Naturae 2022; 14:38-49. [PMID: 36694906 PMCID: PMC9844087 DOI: 10.32607/actanaturae.11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/18/2022] [Indexed: 01/22/2023] Open
Abstract
The nucleotide excision repair (NER) system removes a wide range of bulky DNA lesions that cause significant distortions of the regular double helix structure. These lesions, mainly bulky covalent DNA adducts, are induced by ultraviolet and ionizing radiation or the interaction between exogenous/endogenous chemically active substances and nitrogenous DNA bases. As the number of DNA lesions increases, e.g., due to intensive chemotherapy and combination therapy of various diseases or DNA repair impairment, clustered lesions containing bulky adducts may occur. Clustered lesions are two or more lesions located within one or two turns of the DNA helix. Despite the fact that repair of single DNA lesions by the NER system in eukaryotic cells has been studied quite thoroughly, the repair mechanism of these lesions in clusters remains obscure. Identification of the structural features of the DNA regions containing irreparable clustered lesions is of considerable interest, in particular due to a relationship between the efficiency of some antitumor drugs and the activity of cellular repair systems. In this review, we analyzed data on the induction of clustered lesions containing bulky adducts, the potential biological significance of these lesions, and methods for quantification of DNA lesions and considered the causes for the inhibition of NER-catalyzed excision of clustered bulky lesions.
Collapse
Affiliation(s)
- N. V. Naumenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - I. O. Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | - O. I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
| |
Collapse
|
18
|
Fu I, Mu H, Geacintov NE, Broyde S. Mechanism of lesion verification by the human XPD helicase in nucleotide excision repair. Nucleic Acids Res 2022; 50:6837-6853. [PMID: 35713557 PMCID: PMC9262607 DOI: 10.1093/nar/gkac496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/19/2023] Open
Abstract
In nucleotide excision repair (NER), the xeroderma pigmentosum D helicase (XPD) scans DNA searching for bulky lesions, stalls when encountering such damage to verify its presence, and allows repair to proceed. Structural studies have shown XPD bound to its single-stranded DNA substrate, but molecular and dynamic characterization of how XPD translocates on undamaged DNA and how it stalls to verify lesions remains poorly understood. Here, we have performed extensive all-atom MD simulations of human XPD bound to undamaged and damaged ssDNA, containing a mutagenic pyrimidine (6-4) pyrimidone UV photoproduct (6-4PP), near the XPD pore entrance. We characterize how XPD responds to the presence of the DNA lesion, delineating the atomistic-scale mechanism that it utilizes to discriminate between damaged and undamaged nucleotides. We identify key amino acid residues, including FeS residues R112, R196, H135, K128, Arch residues E377 and R380, and ATPase lobe 1 residues 215-221, that are involved in damage verification and show how movements of Arch and ATPase lobe 1 domains relative to the FeS domain modulate these interactions. These structural and dynamic molecular depictions of XPD helicase activity with unmodified DNA and its inhibition by the lesion elucidate how the lesion is verified by inducing XPD stalling.
Collapse
Affiliation(s)
- Iwen Fu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Hong Mu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Nicholas E Geacintov
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Suse Broyde
- To whom correspondence should be addressed. Tel: +1 212 998 8231;
| |
Collapse
|
19
|
Farnung L, Vos SM. Assembly of RNA polymerase II transcription initiation complexes. Curr Opin Struct Biol 2022; 73:102335. [PMID: 35183822 PMCID: PMC9339144 DOI: 10.1016/j.sbi.2022.102335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/03/2022]
Abstract
The first step of eukaryotic gene expression is the assembly of RNA polymerase II and general transcription factors on promoter DNA. This highly regulated process involves ∼80 different proteins that together form the preinitiation complex (PIC). Decades of work have gone into understanding PIC assembly using biochemical and structural approaches. These efforts have yielded significant but partial descriptions of PIC assembly. Over the past few years, cryo-electron microscopy has provided the first high-resolution structures of the near-complete mammalian PIC assembly. These structures have revealed that PIC assembly is a highly dynamic process. This review will summarize recent structural findings and discuss their implications for understanding cell type-specific gene expression.
Collapse
Affiliation(s)
- Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA. https://twitter.com/@LucasFarnung
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA, 02142, USA.
| |
Collapse
|
20
|
Nucleotide Excision Repair Pathway Activity Is Inhibited by Airborne Particulate Matter (PM10) through XPA Deregulation in Lung Epithelial Cells. Int J Mol Sci 2022; 23:ijms23042224. [PMID: 35216341 PMCID: PMC8878008 DOI: 10.3390/ijms23042224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Airborne particulate matter with a diameter size of ≤10 µm (PM10) is a carcinogen that contains polycyclic aromatic hydrocarbons (PAH), which form PAH–DNA adducts. However, the way in which these adducts are managed by DNA repair pathways in cells exposed to PM10 has been partially described. We evaluated the effect of PM10 on nucleotide excision repair (NER) activity and on the levels of different proteins of this pathway that eliminate bulky DNA adducts. Our results showed that human lung epithelial cells (A549) exposed to 10 µg/cm2 of PM10 exhibited PAH–DNA adducts as well as an increase in RAD23 and XPD protein levels (first responders in NER). In addition, PM10 increased the levels of H4K20me2, a recruitment signal for XPA. However, we observed a decrease in total and phosphorylated XPA (Ser196) and an increase in phosphatase WIP1, aside from the absence of XPA–RPA complex, which participates in DNA-damage removal. Additionally, an NER activity assay demonstrated inhibition of the NER functionality in cells exposed to PM10, indicating that XPA alterations led to deficiencies in DNA repair. These results demonstrate that PM10 exposure induces an accumulation of DNA damage that is associated with NER inhibition, highlighting the role of PM10 as an important contributor to lung cancer.
Collapse
|
21
|
Kolesnikova O, Zachayus A, Pichard S, Osz J, Rochel N, Rossolillo P, Kolb-Cheynel I, Troffer-Charlier N, Compe E, Bensaude O, Berger I, Poterszman A. HR-Bac, a toolbox based on homologous recombination for expression, screening and production of multiprotein complexes using the baculovirus expression system. Sci Rep 2022; 12:2030. [PMID: 35132103 PMCID: PMC8821708 DOI: 10.1038/s41598-021-04715-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 11/25/2021] [Indexed: 11/09/2022] Open
Abstract
The Baculovirus/insect cell expression system is a powerful technology for reconstitution of eukaryotic macromolecular assemblies. Most multigene expression platforms rely on Tn7-mediated transposition for transferring the expression cassette into the baculoviral genome. This allows a rigorous characterization of recombinant bacmids but involves multiple steps, a limitation when many constructs are to be tested. For parallel expression screening and potential high throughput applications, we have established an open source multigene-expression toolbox exploiting homologous recombination, thus reducing the recombinant baculovirus generation to a single-step procedure and shortening the time from cloning to protein production to 2 weeks. The HR-bac toolbox is composed of a set of engineered bacmids expressing a fluorescent marker to monitor virus propagation and a library of transfer vectors. They contain single or dual expression cassettes bearing different affinity tags and their design facilitates the mix and match utilization of expression units from Multibac constructs. The overall cost of virus generation with HR-bac toolbox is relatively low as the preparation of linearized baculoviral DNA only requires standard reagents. Various multiprotein assemblies (nuclear hormone receptor heterodimers, the P-TEFb or the ternary CAK kinase complex associated with the XPD TFIIH subunit) are used as model systems to validate the toolbox presented.
Collapse
Affiliation(s)
- Olga Kolesnikova
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,EMBL, Heidelberg, Germany
| | - Amélie Zachayus
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Simon Pichard
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Judit Osz
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Natacha Rochel
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Paola Rossolillo
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Isabelle Kolb-Cheynel
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Nathalie Troffer-Charlier
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Emmanuel Compe
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Olivier Bensaude
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005, Paris, France
| | - Imre Berger
- Max Planck Bristol Centre for Minimal Biology, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.,Bristol Synthetic Biology Centre BrisSynBio, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol, BS8 1TD, UK
| | - Arnaud Poterszman
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, Illkirch, France. .,Centre National de la Recherche Scientifique (CNRS), UMR 7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale (Inserm), U964, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| |
Collapse
|
22
|
Tsutakawa SE, Bacolla A, Katsonis P, Bralić A, Hamdan SM, Lichtarge O, Tainer JA, Tsai CL. Decoding Cancer Variants of Unknown Significance for Helicase-Nuclease-RPA Complexes Orchestrating DNA Repair During Transcription and Replication. Front Mol Biosci 2021; 8:791792. [PMID: 34966786 PMCID: PMC8710748 DOI: 10.3389/fmolb.2021.791792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
All tumors have DNA mutations, and a predictive understanding of those mutations could inform clinical treatments. However, 40% of the mutations are variants of unknown significance (VUS), with the challenge being to objectively predict whether a VUS is pathogenic and supports the tumor or whether it is benign. To objectively decode VUS, we mapped cancer sequence data and evolutionary trace (ET) scores onto crystallography and cryo-electron microscopy structures with variant impacts quantitated by evolutionary action (EA) measures. As tumors depend on helicases and nucleases to deal with transcription/replication stress, we targeted helicase–nuclease–RPA complexes: (1) XPB-XPD (within TFIIH), XPF-ERCC1, XPG, and RPA for transcription and nucleotide excision repair pathways and (2) BLM, EXO5, and RPA plus DNA2 for stalled replication fork restart. As validation, EA scoring predicts severe effects for most disease mutations, but disease mutants with low ET scores not only are likely destabilizing but also disrupt sophisticated allosteric mechanisms. For sites of disease mutations and VUS predicted to be severe, we found strong co-localization to ordered regions. Rare discrepancies highlighted the different survival requirements between disease and tumor mutations, as well as the value of examining proteins within complexes. In a genome-wide analysis of 33 cancer types, we found correlation between the number of mutations in each tumor and which pathways or functional processes in which the mutations occur, revealing different mutagenic routes to tumorigenesis. We also found upregulation of ancient genes including BLM, which supports a non-random and concerted cancer process: reversion to a unicellular, proliferation-uncontrolled, status by breaking multicellular constraints on cell division. Together, these genes and global analyses challenge the binary “driver” and “passenger” mutation paradigm, support a gradient impact as revealed by EA scoring from moderate to severe at a single gene level, and indicate reduced regulation as well as activity. The objective quantitative assessment of VUS scoring and gene overexpression in the context of functional interactions and pathways provides insights for biology, oncology, and precision medicine.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.,Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
23
|
Gaul L, Svejstrup JQ. Transcription-coupled repair and the transcriptional response to UV-Irradiation. DNA Repair (Amst) 2021; 107:103208. [PMID: 34416541 DOI: 10.1016/j.dnarep.2021.103208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Lesions in genes that result in RNA polymerase II (RNAPII) stalling or arrest are particularly toxic as they are a focal point of genome instability and potently block further transcription of the affected gene. Thus, cells have evolved the transcription-coupled nucleotide excision repair (TC-NER) pathway to identify damage-stalled RNAPIIs, so that the lesion can be rapidly repaired and transcription can continue. However, despite the identification of several factors required for TC-NER, how RNAPII is remodelled, modified, removed, or whether this is even necessary for repair remains enigmatic, and theories are intensely contested. Recent studies have further detailed the cellular response to UV-induced ubiquitylation and degradation of RNAPII and its consequences for transcription and repair. These advances make it pertinent to revisit the TC-NER process in general and with specific discussion of the fate of RNAPII stalled at DNA lesions.
Collapse
Affiliation(s)
- Liam Gaul
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
24
|
Tomko EJ, Luyties O, Rimel JK, Tsai CL, Fuss JO, Fishburn J, Hahn S, Tsutakawa SE, Taatjes DJ, Galburt EA. The Role of XPB/Ssl2 dsDNA Translocase Processivity in Transcription Start-site Scanning. J Mol Biol 2021; 433:166813. [PMID: 33453189 PMCID: PMC8327364 DOI: 10.1016/j.jmb.2021.166813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The general transcription factor TFIIH contains three ATP-dependent catalytic activities. TFIIH functions in nucleotide excision repair primarily as a DNA helicase and in Pol II transcription initiation as a dsDNA translocase and protein kinase. During initiation, the XPB/Ssl2 subunit of TFIIH couples ATP hydrolysis to dsDNA translocation facilitating promoter opening and the kinase module phosphorylates Pol II to facilitate the transition to elongation. These functions are conserved between metazoans and yeast; however, yeast TFIIH also drives transcription start-site scanning in which Pol II scans downstream DNA to locate productive start-sites. The ten-subunit holo-TFIIH from S. cerevisiae has a processive dsDNA translocase activity required for scanning and a structural role in scanning has been ascribed to the three-subunit TFIIH kinase module. Here, we assess the dsDNA translocase activity of ten-subunit holo- and core-TFIIH complexes (i.e. seven subunits, lacking the kinase module) from both S. cerevisiae and H. sapiens. We find that neither holo nor core human TFIIH exhibit processive translocation, consistent with the lack of start-site scanning in humans. Furthermore, in contrast to holo-TFIIH, the S. cerevisiae core-TFIIH also lacks processive translocation and its dsDNA-stimulated ATPase activity was reduced ~5-fold to a level comparable to the human complexes, potentially explaining the reported upstream shift in start-site observed in vitro in the absence of the S. cerevisiae kinase module. These results suggest that neither human nor S. cerevisiae core-TFIIH can translocate efficiently, and that the S. cerevisiae kinase module functions as a processivity factor to allow for robust transcription start-site scanning.
Collapse
Affiliation(s)
- Eric J Tomko
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia Luyties
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Jenna K Rimel
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jill O Fuss
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Fishburn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dylan J Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Eric A Galburt
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Tibbs J, Ghoneim M, Caldwell CC, Buzynski T, Bowie W, Boehm EM, Washington MT, Tabei SMA, Spies M. KERA: analysis tool for multi-process, multi-state single-molecule data. Nucleic Acids Res 2021; 49:e53. [PMID: 33660771 PMCID: PMC8136784 DOI: 10.1093/nar/gkab087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/17/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Molecular machines within cells dynamically assemble, disassemble and reorganize. Molecular interactions between their components can be observed at the single-molecule level and quantified using colocalization single-molecule spectroscopy, in which individual labeled molecules are seen transiently associating with a surface-tethered partner, or other total internal reflection fluorescence microscopy approaches in which the interactions elicit changes in fluorescence in the labeled surface-tethered partner. When multiple interacting partners can form ternary, quaternary and higher order complexes, the types of spatial and temporal organization of these complexes can be deduced from the order of appearance and reorganization of the components. Time evolution of complex architectures can be followed by changes in the fluorescence behavior in multiple channels. Here, we describe the kinetic event resolving algorithm (KERA), a software tool for organizing and sorting the discretized fluorescent trajectories from a range of single-molecule experiments. KERA organizes the data in groups by transition patterns, and displays exhaustive dwell time data for each interaction sequence. Enumerating and quantifying sequences of molecular interactions provides important information regarding the underlying mechanism of the assembly, dynamics and architecture of the macromolecular complexes. We demonstrate KERA's utility by analyzing conformational dynamics of two DNA binding proteins: replication protein A and xeroderma pigmentosum complementation group D helicase.
Collapse
Affiliation(s)
- Joseph Tibbs
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Mohamed Ghoneim
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Colleen C Caldwell
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Troy Buzynski
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Wayne Bowie
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Elizabeth M Boehm
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - M Todd Washington
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Kuper J, Kisker C. Three targets in one complex: A molecular perspective of TFIIH in cancer therapy. DNA Repair (Amst) 2021; 105:103143. [PMID: 34144487 DOI: 10.1016/j.dnarep.2021.103143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022]
Abstract
The general transcription factor II H (TFIIH) plays an essential role in transcription and nucleotide excision DNA repair (NER). TFIIH is a complex 10 subunit containing molecular machine that harbors three enzymatic activities while the remaining subunits assume regulatory and/or structural functions. Intriguingly, the three enzymatic activities of the CDK7 kinase, the XPB translocase, and the XPD helicase exert different impacts on the overall activities of TFIIH. While the enzymatic function of the XPD helicase is exclusively required in NER, the CDK7 kinase is deeply involved in transcription, whereas XPB is essential to both processes. Recent structural and biochemical endeavors enabled unprecedented details towards the molecular basis of these different TFIIH functions and how the enzymatic activities are regulated within the entire complex. Due to its involvement in two fundamental processes, TFIIH has become increasingly important as a target in cancer therapy and two of the three enzymes have already been addressed successfully. Here we explore the possibilities of recent high resolution structures in the context of TFIIH druggability and shed light on the functional consequences of the different approaches towards TFIIH inhibition.
Collapse
Affiliation(s)
- Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Germany.
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Germany.
| |
Collapse
|
27
|
Hodáková Z, Nans A, Kunzelmann S, Mehmood S, Taylor I, Uhlmann F, Cherepanov P, Singleton MR. Structural characterisation of the Chaetomium thermophilum Chl1 helicase. PLoS One 2021; 16:e0251261. [PMID: 33970942 PMCID: PMC8109800 DOI: 10.1371/journal.pone.0251261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022] Open
Abstract
Chl1 is a member of the XPD family of 5'-3' DNA helicases, which perform a variety of roles in genome maintenance and transmission. They possess a variety of unique structural features, including the presence of a highly variable, partially-ordered insertion in the helicase domain 1. Chl1 has been shown to be required for chromosome segregation in yeast due to its role in the formation of persistent chromosome cohesion during S-phase. Here we present structural and biochemical data to show that Chl1 has the same overall domain organisation as other members of the XPD family, but with some conformational alterations. We also present data suggesting the insert domain in Chl1 regulates its DNA binding.
Collapse
Affiliation(s)
- Zuzana Hodáková
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, United Kingdom
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Shahid Mehmood
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Ian Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Martin R. Singleton
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
28
|
Saravani M, Nematollahi MH, Shahroudi MJ, Heidary Z, Sandoughi M, Maruei-Milan R, Mehrabani M. Polymorphism of the DNA repair gene XDP increases the risk of systemic lupus erythematosus but not multiple sclerosis in the Iranian population. Mult Scler Relat Disord 2021; 52:102985. [PMID: 33984652 DOI: 10.1016/j.msard.2021.102985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Xeroderma pigmentosum group D ( XPD ) is an essential component of the nucleotide excision repair (NER) pathway, which can play a major role in DNA repair processes. A deficiency in this pathway was suggested as a causative factor of autoimmune diseases. Therefore, the current study aimed to investigate the relationship between XPD Lys751Gln polymorphism (rs13181) as one of the most common XDP polymorphisms and the risk of two important auto-immune diseases,namely systemic lupus erythematosus (SLE) and multiple sclerosis (MS) in the Iranian population. METHODS 165 SLE patients and 165 age- and gender-matched healthy controls, and 150 MS patients and 150 age- and gender-matched healthy controls were genotyped for XPD rs13181 A/C polymorphism using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS The results of the present study have indicated that both C allele frequency ( P = 0.012; odds ratio: 1.5; 95% confidence interval: 1.1-2.07) and CC genotype ( P = 0.007; odds ratio: 2.46; 95% confidence interval: 1.2-4.7) in SLE patient were significantly higher than those in control group. Furthermore, there were no significant differences between MS patients and normal subjects concerning the genotype and the allele frequencies. CONCLUSION Our findings suggested that XPD rs13181 A/C polymorphism may be a crucial risk factor for the development of SLE but not MS in Iranian patients.
Collapse
Affiliation(s)
- Mohsen Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biochemistry, Faculty of Medicine, Kerman University of medical sciences, Kerman, Iran
| | - Mahdieh Jafari Shahroudi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zohreh Heidary
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sandoughi
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rostam Maruei-Milan
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
29
|
Stekas B, Yeo S, Troitskaia A, Honda M, Sho S, Spies M, Chemla YR. Switch-like control of helicase processivity by single-stranded DNA binding protein. eLife 2021; 10:60515. [PMID: 33739282 PMCID: PMC7997660 DOI: 10.7554/elife.60515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent 'processivity switch' in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.
Collapse
Affiliation(s)
- Barbara Stekas
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Steve Yeo
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Alice Troitskaia
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Masayoshi Honda
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Sei Sho
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Yann R Chemla
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, United States.,Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Urbana, United States
| |
Collapse
|
30
|
Petruseva I, Naumenko N, Kuper J, Anarbaev R, Kappenberger J, Kisker C, Lavrik O. The Interaction Efficiency of XPD-p44 With Bulky DNA Damages Depends on the Structure of the Damage. Front Cell Dev Biol 2021; 9:617160. [PMID: 33777931 PMCID: PMC7991749 DOI: 10.3389/fcell.2021.617160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/22/2021] [Indexed: 11/28/2022] Open
Abstract
The successful elimination of bulky DNA damages via the nucleotide excision repair (NER) system is largely determined by the damage recognition step. This step consists of primary recognition and verification of the damage. The TFIIH helicase XPD plays a key role in the verification step during NER. To date, the mechanism of damage verification is not sufficiently understood and requires further detailed research. This study is a systematic investigation of the interaction of ctXPD (Chaetomium thermophilum) as well as ctXPD-ctp44 with model DNAs, which contain structurally different bulky lesions with previously estimated NER repair efficiencies. We have used ATPase and DNA binding studies to assess the interaction of ctXPD with damaged DNA. The result of the analysis of ctXPD-ctp44 binding to DNA containing fluorescent and photoactivatable lesions demonstrates the relationship between the affinity of XPD for DNAs containing bulky damages and the ability of the NER system to eliminate the damage. Photo-cross-linking of ctXPD with DNA probes containing repairable and unrepairable photoactivatable damages reveals differences in the DNA interaction efficiency in the presence and absence of ctp44. In general, the results obtained indicate the ability of ctXPD-ctp44 to interact with a damage and suggest a significant role for ctp44 subunit in the verification process.
Collapse
Affiliation(s)
- Irina Petruseva
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Natalia Naumenko
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Rashid Anarbaev
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Jeannette Kappenberger
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Olga Lavrik
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
31
|
Barnett JT, Kuper J, Koelmel W, Kisker C, Kad NM. The TFIIH subunits p44/p62 act as a damage sensor during nucleotide excision repair. Nucleic Acids Res 2021; 48:12689-12696. [PMID: 33166411 PMCID: PMC7736792 DOI: 10.1093/nar/gkaa973] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023] Open
Abstract
Nucleotide excision repair (NER) in eukaryotes is orchestrated by the core form of the general transcription factor TFIIH, containing the helicases XPB, XPD and five ‘structural’ subunits, p62, p44, p34, p52 and p8. Recent cryo-EM structures show that p62 makes extensive contacts with p44 and in part occupies XPD’s DNA binding site. While p44 is known to regulate the helicase activity of XPD during NER, p62 is thought to be purely structural. Here, using helicase and adenosine triphosphatase assays we show that a complex containing p44 and p62 enhances XPD’s affinity for dsDNA 3-fold over p44 alone. Remarkably, the relative affinity is further increased to 60-fold by dsDNA damage. Direct binding studies show this preference derives from p44/p62’s high affinity (20 nM) for damaged ssDNA. Single molecule imaging of p44/p62 complexes without XPD reveals they bind to and randomly diffuse on DNA, however, in the presence of UV-induced DNA lesions these complexes stall. Combined with the analysis of a recent cryo-EM structure, we suggest that p44/p62 acts as a novel DNA-binding entity that enhances damage recognition in TFIIH. This revises our understanding of TFIIH and prompts investigation into the core subunits for an active role during DNA repair and/or transcription.
Collapse
Affiliation(s)
- Jamie T Barnett
- School of Biological Sciences, University of Kent, Canterbury CT2 7NH, UK
| | - Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Wolfgang Koelmel
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Neil M Kad
- School of Biological Sciences, University of Kent, Canterbury CT2 7NH, UK
| |
Collapse
|
32
|
Kappenberger J, Koelmel W, Schoenwetter E, Scheuer T, Woerner J, Kuper J, Kisker C. How to limit the speed of a motor: the intricate regulation of the XPB ATPase and translocase in TFIIH. Nucleic Acids Res 2020; 48:12282-12296. [PMID: 33196848 PMCID: PMC7708078 DOI: 10.1093/nar/gkaa911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 09/28/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
The superfamily 2 helicase XPB is an integral part of the general transcription factor TFIIH and assumes essential catalytic functions in transcription initiation and nucleotide excision repair. The ATPase activity of XPB is required in both processes. We investigated the interaction network that regulates XPB via the p52 and p8 subunits with functional mutagenesis based on our crystal structure of the p52/p8 complex and current cryo-EM structures. Importantly, we show that XPB’s ATPase can be activated either by DNA or by the interaction with the p52/p8 proteins. Intriguingly, we observe that the ATPase activation by p52/p8 is significantly weaker than the activation by DNA and when both p52/p8 and DNA are present, p52/p8 dominates the maximum activation. We therefore define p52/p8 as the master regulator of XPB acting as an activator and speed limiter at the same time. A correlative analysis of the ATPase and translocase activities of XPB shows that XPB only acts as a translocase within the context of complete core TFIIH and that XPA increases the processivity of the translocase complex without altering XPB’s ATPase activity. Our data define an intricate network that tightly controls the activity of XPB during transcription and nucleotide excision repair.
Collapse
Affiliation(s)
- Jeannette Kappenberger
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Wolfgang Koelmel
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Elisabeth Schoenwetter
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Tobias Scheuer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Julia Woerner
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
33
|
Role of Nucleotide Excision Repair in Cisplatin Resistance. Int J Mol Sci 2020; 21:ijms21239248. [PMID: 33291532 PMCID: PMC7730652 DOI: 10.3390/ijms21239248] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a chemotherapeutic drug used for the treatment of a number of cancers. The efficacy of cisplatin relies on its binding to DNA and the induction of cytotoxic DNA damage to kill cancer cells. Cisplatin-based therapy is best known for curing testicular cancer; however, treatment of other solid tumors with cisplatin has not been as successful. Pre-clinical and clinical studies have revealed nucleotide excision repair (NER) as a major resistance mechanism against cisplatin in tumor cells. NER is a versatile DNA repair system targeting a wide range of helix-distorting DNA damage. The NER pathway consists of multiple steps, including damage recognition, pre-incision complex assembly, dual incision, and repair synthesis. NER proteins can recognize cisplatin-induced DNA damage and remove the damage from the genome, thereby neutralizing the cytotoxicity of cisplatin and causing drug resistance. Here, we review the molecular mechanism by which NER repairs cisplatin damage, focusing on the recent development of genome-wide cisplatin damage mapping methods. We also discuss how the expression and somatic mutations of key NER genes affect the response of cancer cells to cisplatin. Finally, small molecules targeting NER factors provide important tools to manipulate NER capacity in cancer cells. The status of research on these inhibitors and their implications in cancer treatment will be discussed.
Collapse
|
34
|
Sandy Z, da Costa IC, Schmidt CK. More than Meets the ISG15: Emerging Roles in the DNA Damage Response and Beyond. Biomolecules 2020; 10:E1557. [PMID: 33203188 PMCID: PMC7698331 DOI: 10.3390/biom10111557] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genome stability is a crucial priority for any organism. To meet this priority, robust signalling networks exist to facilitate error-free DNA replication and repair. These signalling cascades are subject to various regulatory post-translational modifications that range from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs). Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication. Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised functions for ISG15 in genome stability. We review these recent discoveries and highlight future perspectives to increase our understanding of this multifaceted UBL in health and disease.
Collapse
Affiliation(s)
| | | | - Christine K. Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK; (Z.S.); (I.C.d.C.)
| |
Collapse
|
35
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
36
|
Panchal NK, Bhale A, Verma VK, Beevi SS. Computational and molecular dynamics simulation approach to analyze the impactof XPD gene mutation on protein stability and function. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1810852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nagesh Kishan Panchal
- Cancer Biology Division, KIMS Foundation and Research Centre, KIMS Hospitals, Secunderabad, India
| | - Aishwarya Bhale
- Cancer Biology Division, KIMS Foundation and Research Centre, KIMS Hospitals, Secunderabad, India
| | - Vinod Kumar Verma
- Cancer Biology Division, KIMS Foundation and Research Centre, KIMS Hospitals, Secunderabad, India
| | - Syed Sultan Beevi
- Cancer Biology Division, KIMS Foundation and Research Centre, KIMS Hospitals, Secunderabad, India
| |
Collapse
|
37
|
Peissert S, Sauer F, Grabarczyk DB, Braun C, Sander G, Poterszman A, Egly JM, Kuper J, Kisker C. In TFIIH the Arch domain of XPD is mechanistically essential for transcription and DNA repair. Nat Commun 2020; 11:1667. [PMID: 32245994 PMCID: PMC7125077 DOI: 10.1038/s41467-020-15241-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/17/2020] [Indexed: 11/09/2022] Open
Abstract
The XPD helicase is a central component of the general transcription factor TFIIH which plays major roles in transcription and nucleotide excision repair (NER). Here we present the high-resolution crystal structure of the Arch domain of XPD with its interaction partner MAT1, a central component of the CDK activating kinase complex. The analysis of the interface led to the identification of amino acid residues that are crucial for the MAT1-XPD interaction. More importantly, mutagenesis of the Arch domain revealed that these residues are essential for the regulation of (i) NER activity by either impairing XPD helicase activity or the interaction of XPD with XPG; (ii) the phosphorylation of the RNA polymerase II and RNA synthesis. Our results reveal how MAT1 shields these functionally important residues thereby providing insights into how XPD is regulated by MAT1 and defining the Arch domain as a major mechanistic player within the XPD scaffold. XPD is part of the TFIIH complex which plays major roles in transcription initiation and nucleotide excision repair (NER). Here the authors present a high-resolution crystal structure of the XPD-MAT1 interface and dissect the role of this interface in transcription and NER.
Collapse
Affiliation(s)
- Stefan Peissert
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Daniel B Grabarczyk
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Cathy Braun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U., Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France
| | - Gudrun Sander
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U., Strasbourg, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U., Strasbourg, France. .,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France. .,Université de Strasbourg, 67404, Illkirch, France.
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany.
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
| |
Collapse
|
38
|
XPA: DNA Repair Protein of Significant Clinical Importance. Int J Mol Sci 2020; 21:ijms21062182. [PMID: 32235701 PMCID: PMC7139726 DOI: 10.3390/ijms21062182] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023] Open
Abstract
The nucleotide excision repair (NER) pathway is activated in response to a broad spectrum of DNA lesions, including bulky lesions induced by platinum-based chemotherapeutic agents. Expression levels of NER factors and resistance to chemotherapy has been examined with some suggestion that NER plays a role in tumour resistance; however, there is a great degree of variability in these studies. Nevertheless, recent clinical studies have suggested Xeroderma Pigmentosum group A (XPA) protein, a key regulator of the NER pathway that is essential for the repair of DNA damage induced by platinum-based chemotherapeutics, as a potential prognostic and predictive biomarker for response to treatment. XPA functions in damage verification step in NER, as well as a molecular scaffold to assemble other NER core factors around the DNA damage site, mediated by protein–protein interactions. In this review, we focus on the interacting partners and mechanisms of regulation of the XPA protein. We summarize clinical oncology data related to this DNA repair factor, particularly its relationship with treatment outcome, and examine the potential of XPA as a target for small molecule inhibitors.
Collapse
|
39
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
40
|
Apostolou Z, Chatzinikolaou G, Stratigi K, Garinis GA. Nucleotide Excision Repair and Transcription-Associated Genome Instability. Bioessays 2019; 41:e1800201. [PMID: 30919497 DOI: 10.1002/bies.201800201] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Transcription is a potential threat to genome integrity, and transcription-associated DNA damage must be repaired for proper messenger RNA (mRNA) synthesis and for cells to transmit their genome intact into progeny. For a wide range of structurally diverse DNA lesions, cells employ the highly conserved nucleotide excision repair (NER) pathway to restore their genome back to its native form. Recent evidence suggests that NER factors function, in addition to the canonical DNA repair mechanism, in processes that facilitate mRNA synthesis or shape the 3D chromatin architecture. Here, these findings are critically discussed and a working model that explains the puzzling clinical heterogeneity of NER syndromes highlighting the relevance of physiological, transcription-associated DNA damage to mammalian development and disease is proposed.
Collapse
Affiliation(s)
- Zivkos Apostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| |
Collapse
|
41
|
Nogales E, Greber BJ. High-resolution cryo-EM structures of TFIIH and their functional implications. Curr Opin Struct Biol 2019; 59:188-194. [PMID: 31600675 PMCID: PMC6951423 DOI: 10.1016/j.sbi.2019.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/27/2019] [Accepted: 08/25/2019] [Indexed: 01/26/2023]
Abstract
Eukaryotic transcription factor IIH (TFIIH) is a 500 kDa-multiprotein complex that harbors two SF2-family DNA-dependent ATPase/helicase subunits and the kinase activity of Cyclin-dependent kinase 7. TFIIH serves as a general transcription factor for transcription initiation by eukaryotic RNA polymerase II and plays an important role in nucleotide excision DNA repair. Aiming to understand the molecular mechanisms of its function and regulation in two key cellular pathways, the high-resolution structure of TFIIH has been pursued for decades. Recent breakthroughs, largely enabled by methodological advances in cryo-electron microscopy, have finally revealed the structure of TFIIH and its interactions in the context of the Pol II-pre-initiation complex, and provide a first glimpse of a TFIIH-containing assembly in DNA repair. Here, we review and discuss these recent structural insights and their functional implications.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA.
| | - Basil J Greber
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
42
|
Greber BJ, Toso DB, Fang J, Nogales E. The complete structure of the human TFIIH core complex. eLife 2019; 8:e44771. [PMID: 30860024 PMCID: PMC6422496 DOI: 10.7554/elife.44771] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/03/2019] [Indexed: 01/26/2023] Open
Abstract
Transcription factor IIH (TFIIH) is a heterodecameric protein complex critical for transcription initiation by RNA polymerase II and nucleotide excision DNA repair. The TFIIH core complex is sufficient for its repair functions and harbors the XPB and XPD DNA-dependent ATPase/helicase subunits, which are affected by human disease mutations. Transcription initiation additionally requires the CdK activating kinase subcomplex. Previous structural work has provided only partial insight into the architecture of TFIIH and its interactions within transcription pre-initiation complexes. Here, we present the complete structure of the human TFIIH core complex, determined by phase-plate cryo-electron microscopy at 3.7 Å resolution. The structure uncovers the molecular basis of TFIIH assembly, revealing how the recruitment of XPB by p52 depends on a pseudo-symmetric dimer of homologous domains in these two proteins. The structure also suggests a function for p62 in the regulation of XPD, and allows the mapping of previously unresolved human disease mutations.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyUnited States
- Molecular Biophysics and Integrative Bio-Imaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Daniel B Toso
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyUnited States
| | - Jie Fang
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyUnited States
| | - Eva Nogales
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyUnited States
- Molecular Biophysics and Integrative Bio-Imaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- Howard Hughes Medical Institute, University of CaliforniaBerkeleyUnited States
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUnited States
| |
Collapse
|
43
|
Kolesnikova O, Radu L, Poterszman A. TFIIH: A multi-subunit complex at the cross-roads of transcription and DNA repair. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 115:21-67. [PMID: 30798933 DOI: 10.1016/bs.apcsb.2019.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcription factor IIH (TFIIH) is a multiprotein complex involved in both eukaryotic transcription and DNA repair, revealing a tight connection between these two processes. Composed of 10 subunits, it can be resolved into a 7-subunits core complex with the XPB translocase and the XPD helicase, and the 3-subunits kinase complex CAK, which also exists as a free complex with a distinct function. Initially identified as basal transcription factor, TFIIH also participates in transcription regulation and plays a key role in nucleotide excision repair (NER) for opening DNA at damaged sites, lesion verification and recruitment of additional repair factors. Our understanding of TFIIH function in eukaryotic cells has greatly benefited from studies of the genetic rare diseases xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD), that are not only characterized by cancer and aging predispositions but also by neurological and developmental defects. Although much remains unknown about TFIIH function, significant progresses have been done regarding the structure of the complex, the functions of its catalytic subunits and the multiple roles of the regulatory core-TFIIH subunits. This review provides a non-exhaustive survey of key discoveries on the structure and function of this pivotal factor, which can be considered as a promising target for therapeutic strategies.
Collapse
Affiliation(s)
- Olga Kolesnikova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laura Radu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
44
|
Sugasawa K. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. DNA Repair (Amst) 2019; 45:99-138. [DOI: 10.1016/bs.enz.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
46
|
White MF, Allers T. DNA repair in the archaea-an emerging picture. FEMS Microbiol Rev 2018; 42:514-526. [PMID: 29741625 DOI: 10.1093/femsre/fuy020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
There has long been a fascination in the DNA repair pathways of archaea, for two main reasons. Firstly, many archaea inhabit extreme environments where the rate of physical damage to DNA is accelerated. These archaea might reasonably be expected to have particularly robust or novel DNA repair pathways to cope with this. Secondly, the archaea have long been understood to be a lineage distinct from the bacteria, and to share a close relationship with the eukarya, particularly in their information processing systems. Recent discoveries suggest the eukarya arose from within the archaeal domain, and in particular from lineages related to the TACK superphylum and Lokiarchaea. Thus, archaeal DNA repair proteins and pathways can represent a useful model system. This review focuses on recent advances in our understanding of archaeal DNA repair processes including base excision repair, nucleotide excision repair, mismatch repair and double-strand break repair. These advances are discussed in the context of the emerging picture of the evolution and relationship of the three domains of life.
Collapse
Affiliation(s)
- Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, Fife KY16 9ST, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
47
|
Mu H, Geacintov NE, Broyde S, Yeo JE, Schärer OD. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair. DNA Repair (Amst) 2018; 71:33-42. [PMID: 30174301 DOI: 10.1016/j.dnarep.2018.08.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global genome nucleotide excision repair (GG-NER) is the main pathway for the removal of bulky lesions from DNA and is characterized by an extraordinarily wide substrate specificity. Remarkably, the efficiency of lesion removal varies dramatically and certain lesions escape repair altogether and are therefore associated with high levels of mutagenicity. Central to the multistep mechanism of damage recognition in NER is the sensing of lesion-induced thermodynamic and structural alterations of DNA by the XPC-RAD23B protein and the verification of the damage by the transcription/repair factor TFIIH. Additional factors contribute to the process: UV-DDB, for the recognition of certain UV-induced lesions in particular in the context of chromatin, while the XPA protein is believed to have a role in damage verification and NER complex assembly. Here we consider the molecular mechanisms that determine repair efficiency in GG-NER based on recent structural, computational, biochemical, cellular and single molecule studies of XPC-RAD23B and its yeast ortholog Rad4. We discuss how the actions of XPC-RAD23B are integrated with those of other NER proteins and, based on recent high-resolution structures of TFIIH, present a structural model of how XPC-RAD23B and TFIIH cooperate in damage recognition and verification.
Collapse
Affiliation(s)
- Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea; Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
48
|
Balupillai A, Nagarajan RP, Ramasamy K, Govindasamy K, Muthusamy G. Caffeic acid prevents UVB radiation induced photocarcinogenesis through regulation of PTEN signaling in human dermal fibroblasts and mouse skin. Toxicol Appl Pharmacol 2018; 352:87-96. [DOI: 10.1016/j.taap.2018.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/12/2018] [Accepted: 05/22/2018] [Indexed: 01/10/2023]
|
49
|
Cruz-Becerra G, Valerio-Cabrera S, Juárez M, Bucio-Mendez A, Zurita M. TFIIH localization is highly dynamic during zygotic genome activation in Drosophila, and its depletion causes catastrophic mitosis. J Cell Sci 2018; 131:jcs.211631. [PMID: 29643118 DOI: 10.1242/jcs.211631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
In Drosophila, zygotic genome activation occurs in pre-blastoderm embryos during rapid mitotic divisions. How the transcription machinery is coordinated to achieve this goal in a very brief time span is still poorly understood. Transcription factor II H (TFIIH) is fundamental for transcription initiation by RNA polymerase II (RNAPII). Herein, we show the in vivo dynamics of TFIIH at the onset of transcription in Drosophila embryos. TFIIH shows an oscillatory behaviour between the nucleus and cytoplasm. TFIIH foci are observed from interphase to metaphase, and colocalize with those for RNAPII phosphorylated at serine 5 (RNAPIIS5P) at prophase, suggesting that transcription occurs during the first mitotic phases. Furthermore, embryos with defects in subunits of either the CAK or the core subcomplexes of TFIIH show catastrophic mitosis. Although, transcriptome analyses show altered expression of several maternal genes that participate in mitosis, the global level of RNAPIIS5P in TFIIH mutant embryos is similar to that in the wild type, therefore, a direct role for TFIIH in mitosis cannot be ruled out. These results provide important insights regarding the role of a basal transcription machinery component when the zygotic genome is activated.
Collapse
Affiliation(s)
- Grisel Cruz-Becerra
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Sarai Valerio-Cabrera
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Mandy Juárez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Alyeri Bucio-Mendez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| |
Collapse
|
50
|
Rimel JK, Taatjes DJ. The essential and multifunctional TFIIH complex. Protein Sci 2018; 27:1018-1037. [PMID: 29664212 PMCID: PMC5980561 DOI: 10.1002/pro.3424] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
TFIIH is a 10‐subunit complex that regulates RNA polymerase II (pol II) transcription but also serves other important biological roles. Although much remains unknown about TFIIH function in eukaryotic cells, much progress has been made even in just the past few years, due in part to technological advances (e.g. cryoEM and single molecule methods) and the development of chemical inhibitors of TFIIH enzymes. This review focuses on the major cellular roles for TFIIH, with an emphasis on TFIIH function as a regulator of pol II transcription. We describe the structure of TFIIH and its roles in pol II initiation, promoter‐proximal pausing, elongation, and termination. We also discuss cellular roles for TFIIH beyond transcription (e.g. DNA repair, cell cycle regulation) and summarize small molecule inhibitors of TFIIH and diseases associated with defects in TFIIH structure and function.
Collapse
Affiliation(s)
- Jenna K Rimel
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| | - Dylan J Taatjes
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| |
Collapse
|