1
|
Luo Y, Yang J, Zhang L, Tai Z, Huang H, Xu Z, Zhang H. Phosphoglycerate kinase (PGK) 1 succinylation modulates epileptic seizures and the blood-brain barrier. Exp Anim 2023; 72:475-489. [PMID: 37258131 PMCID: PMC10658094 DOI: 10.1538/expanim.23-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Epilepsy is the most common chronic disorder in the nervous system, mainly characterized by recurrent, periodic, unpredictable seizures. Post-translational modifications (PTMs) are important protein functional regulators that regulate various physiological and pathological processes. It is significant for cell activity, stability, protein folding, and localization. Phosphoglycerate kinase (PGK) 1 has traditionally been studied as an important adenosine triphosphate (ATP)-generating enzyme of the glycolytic pathway. PGK1 catalyzes the reversible transfer of a phosphoryl group from 1, 3-bisphosphoglycerate (1, 3-BPG) to ADP, producing 3-phosphoglycerate (3-PG) and ATP. In addition to cell metabolism regulation, PGK1 is involved in multiple biological activities, including angiogenesis, autophagy, and DNA repair. However, the exact role of PGK1 succinylation in epilepsy has not been thoroughly investigated. The expression of PGK1 succinylation was analyzed by Immunoprecipitation. Western blots were used to assess the expression of PGK1, angiostatin, and vascular endothelial growth factor (VEGF) in a rat model of lithium-pilocarpine-induced acute epilepsy. Behavioral experiments were performed in a rat model of lithium-pilocarpine-induced acute epilepsy. ELISA method was used to measure the level of S100β in serum brain biomarkers' integrity of the blood-brain barrier. The expression of the succinylation of PGK1 was decreased in a rat model of lithium-pilocarpine-induced acute epilepsy compared with the normal rats in the hippocampus. Interestingly, the lysine 15 (K15), and the arginine (R) variants of lentivirus increased the susceptibility in a rat model of lithium-pilocarpine-induced acute epilepsy, and the K15 the glutamate (E) variants, had the opposite effect. In addition, the succinylation of PGK1 at K15 affected the expression of PGK1 succinylation but not the expression of PGK1total protein. Furthermore, the study found that the succinylation of PGK1 at K15 may affect the level of angiostatin and VEGF in the hippocampus, which also affects the level of S100β in serum. In conclusion, the mutation of the K15 site of PGK1 may alter the expression of the succinylation of PGK1 and then affect the integrity of the blood-brain barrier through the angiostatin / VEGF pathway altering the activity of epilepsy, which may be one of the new mechanisms of treatment strategies.
Collapse
Affiliation(s)
- Yuemei Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Juan Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
2
|
Zhang N, Zhang L, Li L, Geng J, Zhao L, Ren Y, Dong Z, Chen F. Global Profiling of 2-hydroxyisobutyrylome in Common Wheat. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:688-701. [PMID: 33581340 PMCID: PMC9880814 DOI: 10.1016/j.gpb.2020.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/17/2020] [Accepted: 08/15/2020] [Indexed: 01/31/2023]
Abstract
As a novel post-translational modification (PTM), lysine 2-hydroxyisobutyrylation (Khib) is considered to regulate gene transcriptional activities in eukaryotic cells; however, the functions of Khib-modified proteins in plants remain unknown. Here, we report that Khib is an evolutionarily-conserved PTM in wheat and its progenitors. A total of 3348 Khib sites on 1074 proteins are identified in common wheat (Triticum aestivum L.) by using affinity purification and mass spectroscopy of 2-hydroxyisobutyrylome. Bioinformatic data indicate that Khib-modified proteins participate in a wide variety of biological and metabolic pathways. Immunoprecipitation confirms that Khib-modified proteins are present endogenously. A comparison of Khib and other main PTMs shows that Khib-modified proteins are simultaneously modified by multiple PTMs. Using mutagenesis experiments and co-immunoprecipitation assays, we demonstrate that Khib on K206 of phosphoglycerate kinase (PGK) is a key regulatory modification for its enzymatic activity, and mutation on K206 affects the interactions of PGK with its substrates. Furthermore, Khib modification of low-molecular-weight proteins is a response to the deacetylase inhibitors nicotinamide and trichostatin. This study provides evidence to promote our current understanding of Khib in wheat plants, including the cooperation between Khib and its metabolic regulation.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Linjie Li
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Junyou Geng
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongdong Dong
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Rodríguez-Enríquez S, Robledo-Cadena DX, Gallardo-Pérez JC, Pacheco-Velázquez SC, Vázquez C, Saavedra E, Vargas-Navarro JL, Blanco-Carpintero BA, Marín-Hernández Á, Jasso-Chávez R, Encalada R, Ruiz-Godoy L, Aguilar-Ponce JL, Moreno-Sánchez R. Acetate Promotes a Differential Energy Metabolic Response in Human HCT 116 and COLO 205 Colon Cancer Cells Impacting Cancer Cell Growth and Invasiveness. Front Oncol 2021; 11:697408. [PMID: 34414111 PMCID: PMC8370060 DOI: 10.3389/fonc.2021.697408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Under dysbiosis, a gut metabolic disorder, short-chain carboxylic acids (SCCAs) are secreted to the lumen, affecting colorectal cancer (CRC) development. Butyrate and propionate act as CRC growth inhibitors, but they might also serve as carbon source. In turn, the roles of acetate as metabolic fuel and protein acetylation promoter have not been clearly elucidated. To assess whether acetate favors CRC growth through active mitochondrial catabolism, a systematic study evaluating acetate thiokinase (AcK), energy metabolism, cell proliferation, and invasiveness was performed in two CRC cell lines incubated with physiological SCCAs concentrations. In COLO 205, acetate (+glucose) increased the cell density (50%), mitochondrial protein content (3–10 times), 2-OGDH acetylation, and oxidative phosphorylation (OxPhos) flux (36%), whereas glycolysis remained unchanged vs. glucose-cultured cells; the acetate-induced OxPhos activation correlated with a high AcK activity, content, and acetylation (1.5–6-fold). In contrast, acetate showed no effect on HCT116 cell growth, OxPhos, AcK activity, protein content, and acetylation. However, a substantial increment in the HIF-1α content, HIF-1α-glycolytic protein targets (1–2.3 times), and glycolytic flux (64%) was observed. Butyrate and propionate decreased the growth of both CRC cells by impairing OxPhos flux through mitophagy and mitochondrial fragmentation activation. It is described, for the first time, the role of acetate as metabolic fuel for ATP supply in CRC COLO 205 cells to sustain proliferation, aside from its well-known role as protein epigenetic regulator. The level of AcK determined in COLO 205 cells was similar to that found in human CRC biopsies, showing its potential role as metabolic marker.
Collapse
Affiliation(s)
| | | | | | | | - Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | | | | | | | | | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | - Luz Ruiz-Godoy
- Banco de Tumores, Instituto Nacional de Cancerología, México, Mexico
| | | | | |
Collapse
|
4
|
ELP3 Acetyltransferase is phosphorylated and regulated by the oncogenic anaplastic lymphoma kinase (ALK). Biochem J 2019; 476:2239-2254. [DOI: 10.1042/bcj20190106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
AbstractProtein lysine acetylation is one of the major posttranslational modifications (PTMs) with several thousands of proteins identified to be acetylated in mammalian tissues. Mechanistic studies have revealed important functions of acetylation in the regulation of protein function. Much less is known on how the acetyltransferases themselves are regulated. In the current study, we discover that the Elongator protein 3 (ELP3) acetyltransferase is modified by tyrosine phosphorylation. We demonstrate that the anaplastic lymphoma kinase (ALK) is the major tyrosine kinase responsible for ELP3 tyrosine phosphorylation. ELP3 is phosphorylated in tumor cells expressing oncogenic NPM–ALK fusion protein. We further identify Tyr202 as the major ALK phosphorylation site in ELP3. Importantly, the introduction of Y202 phosphorylation mutant ELP3 into ALK-positive tumor cells reduced cell growth and impaired gene expression. Collectively, our study reveals a novel regulatory mechanism for ELP3, provides an example that acetyltransferase itself can be regulated by PTM, and suggests a potential target for ALK-positive cancer therapies.
Collapse
|
5
|
Yang H, Geng Y, Wang P, Zhou Y, Yang H, Huo Y, Zhang H, Li Y, He H, Tian X, Fang W. Extracellular ATP promotes breast cancer invasion and epithelial-mesenchymal transition via hypoxia-inducible factor 2α signaling. Cancer Sci 2019; 110:2456-2470. [PMID: 31148343 PMCID: PMC6676128 DOI: 10.1111/cas.14086] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
Extracellular ATP has been shown to play an important role in invasion and the epithelial-mesenchymal transition (EMT) process in breast cancer; however, the mechanism is unclear. Here, by using a cDNA microarray, we demonstrated that extracellular ATP could stimulate hypoxia-inducible factor (HIF) signaling and upregulate hypoxia-inducible factor 1/2α (HIF-1/2α) expression. After knocking down HIF-1/2α using siRNA, we found that ATP-driven invasion and EMT were significantly attenuated via HIF2A-siRNA in breast cancer cells. By using ChIP assays, we revealed that the biological function of extracellular ATP in invasion and EMT process depended on HIF-2α direct targets, among which lysyl oxidase-like 2 (LOXL2) and matrix metalloproteinase-9 (MMP-9) mediated ATP-driven invasion, and E-cadherin and Snail mediated ATP-driven EMT, respectively. In addition, using silver staining and mass spectrometry, we found that phosphoglycerate kinase 1 (PGK1) could interact with HIF-2α and mediate ATP-driven HIF-2α upregulation. Furthermore, we demonstrated that expressions of HIF-2α and its target proteins could be regulated via ATP by AKT-PGK1 pathway. Using a Balb/c mice model, we illustrated the function of HIF-2α in promoting tumor growth and metastasis in vivo. Moreover, by exploring online databases, we found that molecules involved in ATP-HIF-2α signaling were highly expressed in human breast carcinoma tissues and were associated with poor prognosis. Altogether, these findings suggest that extracellular ATP could promote breast carcinoma invasion and EMT via HIF-2α signaling, which may be a potential target for future anti-metastasis therapy.
Collapse
Affiliation(s)
- Hui Yang
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Yue‐Hang Geng
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Peng Wang
- Department of Anatomy, Histology and EmbryologyPeking University Health Science CenterBeijingChina
| | - Yan‐Ting Zhou
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Han Yang
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Yan‐Fei Huo
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Hong‐Quan Zhang
- Department of Anatomy, Histology and EmbryologyPeking University Health Science CenterBeijingChina
| | - Yan Li
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Hui‐Ying He
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Xin‐Xia Tian
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| | - Wei‐Gang Fang
- Department of PathologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education), School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- Department of PathologyPeking University Third HospitalBeijingChina
| |
Collapse
|
6
|
Peng M, Han J, Li L, Ma H. Suppression of fat deposition in broiler chickens by (-)-hydroxycitric acid supplementation: A proteomics perspective. Sci Rep 2016; 6:32580. [PMID: 27586962 PMCID: PMC5009311 DOI: 10.1038/srep32580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022] Open
Abstract
(-)-Hydroxycitric acid (HCA) suppresses fatty acid synthesis in animals, but its biochemical mechanism in poultry is unclear. This study identified the key proteins associated with fat metabolism and elucidated the biochemical mechanism of (-)-HCA in broiler chickens. Four groups (n = 30 each) received a diet supplemented with 0, 1000, 2000 or 3000 mg/kg (-)-HCA for 4 weeks. Of the differentially expressed liver proteins, 40 and 26 were identified in the mitochondrial and cytoplasm respectively. Pyruvate dehydrogenase E1 components (PDHA1 and PDHB), dihydrolipoyl dehydrogenase (DLD), aconitase (ACO2), a-ketoglutarate dehydrogenase complex (DLST), enoyl-CoA hydratase (ECHS1) and phosphoglycerate kinase (PGK) were upregulated, while NADP-dependent malic enzyme (ME1) was downregulated. Biological network analysis showed that the identified proteins were involved in glycometabolism and lipid metabolism, whereas PDHA1, PDHB, ECHS1, and ME1 were identified in the canonical pathway by Ingenuity Pathway Analysis. The data indicated that (-)-HCA inhibited fatty acid synthesis by reducing the acetyl-CoA supply, via promotion of the tricarboxylic acid cycle (upregulation of PDHA1, PDHB, ACO2, and DLST expression) and inhibition of ME1 expression. Moreover, (-)-HCA promoted fatty acid beta-oxidation by upregulating ECHS1 expression. These results reflect a biochemically relevant mechanism of fat reduction by (-)-HCA in broiler chickens.
Collapse
Affiliation(s)
- Mengling Peng
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Han
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|