1
|
Romero EV, Feder AF. Elevated HIV Viral Load is Associated with Higher Recombination Rate In Vivo. Mol Biol Evol 2024; 41:msad260. [PMID: 38197289 PMCID: PMC10777272 DOI: 10.1093/molbev/msad260] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
HIV's exceptionally high recombination rate drives its intrahost diversification, enabling immune escape and multidrug resistance within people living with HIV. While we know that HIV's recombination rate varies by genomic position, we have little understanding of how recombination varies throughout infection or between individuals as a function of the rate of cellular coinfection. We hypothesize that denser intrahost populations may have higher rates of coinfection and therefore recombination. To test this hypothesis, we develop a new approach (recombination analysis via time series linkage decay or RATS-LD) to quantify recombination using autocorrelation of linkage between mutations across time points. We validate RATS-LD on simulated data under short read sequencing conditions and then apply it to longitudinal, high-throughput intrahost viral sequencing data, stratifying populations by viral load (a proxy for density). Among sampled viral populations with the lowest viral loads (<26,800 copies/mL), we estimate a recombination rate of 1.5×10-5 events/bp/generation (95% CI: 7×10-6 to 2.9×10-5), similar to existing estimates. However, among samples with the highest viral loads (>82,000 copies/mL), our median estimate is approximately 6 times higher. In addition to co-varying across individuals, we also find that recombination rate and viral load are associated within single individuals across different time points. Our findings suggest that rather than acting as a constant, uniform force, recombination can vary dynamically and drastically across intrahost viral populations and within them over time. More broadly, we hypothesize that this phenomenon may affect other facultatively asexual populations where spatial co-localization varies.
Collapse
Affiliation(s)
- Elena V Romero
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Alison F Feder
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
2
|
Lythgoe KA, Lumley SF, Pellis L, McKeating JA, Matthews PC. Estimating hepatitis B virus cccDNA persistence in chronic infection. Virus Evol 2021; 7:veaa063. [PMID: 33732502 PMCID: PMC7947180 DOI: 10.1093/ve/veaa063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem with over 240 million infected individuals at risk of developing progressive liver disease and hepatocellular carcinoma. HBV is an enveloped DNA virus that establishes its genome as an episomal, covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Currently, available standard-of-care treatments for chronic hepatitis B (CHB) include nucleos(t)ide analogues (NAs) that suppress HBV replication but do not target the cccDNA and hence rarely cure infection. There is considerable interest in determining the lifespan of cccDNA molecules to design and evaluate new curative treatments. We took a novel approach to this problem by developing a new mathematical framework to model changes in evolutionary rates during infection which, combined with previously determined within-host evolutionary rates of HBV, we used to determine the lifespan of cccDNA. We estimate that during HBe-antigen positive (HBeAgPOS) infection the cccDNA lifespan is 61 (36-236) days, whereas during the HBeAgNEG phase of infection it is only 26 (16-81) days. We found that cccDNA replicative capacity declined by an order of magnitude between HBeAgPOS and HBeAgNEG phases of infection. Our estimated lifespan of cccDNA is too short to explain the long durations of chronic infection observed in patients on NA treatment, suggesting that either a sub-population of long-lived hepatocytes harbouring cccDNA molecules persists during therapy, or that NA therapy does not suppress all viral replication. These results provide a greater understanding of the biology of the cccDNA reservoir and can aid the development of new curative therapeutic strategies for treating CHB.
Collapse
Affiliation(s)
- Katrina A Lythgoe
- Big Data Institute, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
- Department of Zoology, University of Oxford, Medawar Building, South Parks Road, Oxford OX1 3SY, UK
| | - Sheila F Lumley
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Road, Oxford OX1 3SY, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Lorenzo Pellis
- Department of Mathematics, Alan Turing Building, Oxford Rd, Manchester M13 9PL, UK
| | - Jane A McKeating
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford OX3 7LF, UK
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Road, Oxford OX1 3SY, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
3
|
Singh AK, Salwe S, Padwal V, Velhal S, Sutar J, Bhowmick S, Mukherjee S, Nagar V, Patil P, Patel V. Delineation of Homeostatic Immune Signatures Defining Viremic Non-progression in HIV-1 Infection. Front Immunol 2020; 11:182. [PMID: 32194543 PMCID: PMC7066316 DOI: 10.3389/fimmu.2020.00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/23/2020] [Indexed: 01/07/2023] Open
Abstract
Viremic non-progressors (VNPs), a distinct group of HIV-1-infected individuals, exhibit no signs of disease progression and maintain persistently elevated CD4+ T cell counts for several years despite high viral replication. Comprehensive characterization of homeostatic cellular immune signatures in VNPs can provide unique insights into mechanisms responsible for coping with viral pathogenesis as well as identifying strategies for immune restoration under clinically relevant settings such as antiretroviral therapy (ART) failure. We report a novel homeostatic signature in VNPs, the preservation of the central memory CD4+ T cell (CD4+ TCM) compartment. In addition, CD4+ TCM preservation was supported by ongoing interleukin-7 (IL-7)-mediated thymic repopulation of naive CD4+ T cells leading to intact CD4+ T cell homeostasis in VNPs. Regulatory T cell (Treg) expansion was found to be a function of preserved CD4+ T cell count and CD4+ T cell activation independent of disease status. However, in light of continual depletion of CD4+ T cell count in progressors but not in VNPs, Tregs appear to be involved in lack of disease progression despite high viremia. In addition to these homeostatic mechanisms resisting CD4+ T cell depletion in VNPs, a relative diminution of terminally differentiated effector subset was observed exclusively in these individuals that might ameliorate consequences of high viral replication. VNPs also shared signatures of impaired CD8+ T cell cytotoxic function with progressors evidenced by increased exhaustion (PD-1 upregulation) and CD127 (IL-7Rα) downregulation contributing to persistent viremia. Thus, the homeostatic immune signatures reported in our study suggest a complex multifactorial mechanism accounting for non-progression in VNPs.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Sukeshani Salwe
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Varsha Padwal
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Shilpa Velhal
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Jyoti Sutar
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Shilpa Bhowmick
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Vidya Nagar
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, India
| | - Priya Patil
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, India
| | - Vainav Patel
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
4
|
Stansfield SE, Mittler JE, Gottlieb GS, Murphy JT, Hamilton DT, Detels R, Wolinsky SM, Jacobson LP, Margolick JB, Rinaldo CR, Herbeck JT, Goodreau SM. Sexual role and HIV-1 set point viral load among men who have sex with men. Epidemics 2019; 26:68-76. [PMID: 30193771 PMCID: PMC6538391 DOI: 10.1016/j.epidem.2018.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/12/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND HIV-1 set point viral load (SPVL) is a highly variable trait that influences disease progression and transmission risk. Men who are exclusively insertive (EI) during anal intercourse require more sexual contacts to become infected than exclusively receptive (ER) men. Thus, we hypothesize that EIs are more likely to acquire their viruses from highly infectious partners (i.e., with high SPVLs) and to have higher SPVLs than infected ERs. METHODS We used a one-generation Bernoulli model, a dynamic network model, and data from the Multicenter AIDS Cohort Study (MACS) to examine whether and under what circumstances MSM differ in SPVL by sexual role. RESULTS Both models predicted higher SPVLs in EIs than role versatile (RV) or ER men, but only in scenarios where longer-term relationships predominated. ER and RV men displayed similar SPVLs. EI men remained far less likely than ER men to become infected, however. When the MACS data were limited by some estimates of lower sex partner counts (a proxy for longer relationships), EI men had higher SPVLs; these differences were clinically relevant (>0.3 log10 copies/mL) and statistically significant (p < 0.05). CONCLUSIONS Mode of acquisition may be an important aspect of SPVL evolution in MSM, with clinical implications.
Collapse
Affiliation(s)
- Sarah E Stansfield
- Departments of Anthropology & Epidemiology, University of Washington, 314 Denny Hall, Box 353100, Seattle, WA 98195-3100, USA.
| | - John E Mittler
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Geoffrey S Gottlieb
- Departments of Medicine & Global Health, University of Washington, Seattle, WA 98195, USA
| | - James T Murphy
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Deven T Hamilton
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA 98195, USA
| | - Roger Detels
- Department of Epidemiology, University of California School of Public Health, Los Angeles, CA, 90024, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lisa P Jacobson
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, 15261, USA
| | - Joshua T Herbeck
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Steven M Goodreau
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Thompson RN, Wymant C, Spriggs RA, Raghwani J, Fraser C, Lythgoe KA. Link between the numbers of particles and variants founding new HIV-1 infections depends on the timing of transmission. Virus Evol 2019; 5:vey038. [PMID: 30723550 PMCID: PMC6354028 DOI: 10.1093/ve/vey038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding which HIV-1 variants are most likely to be transmitted is important for vaccine design and predicting virus evolution. Since most infections are founded by single variants, it has been suggested that selection at transmission has a key role in governing which variants are transmitted. We show that the composition of the viral population within the donor at the time of transmission is also important. To support this argument, we developed a probabilistic model describing HIV-1 transmission in an untreated population, and parameterised the model using both within-host next generation sequencing data and population-level epidemiological data on heterosexual transmission. The most basic HIV-1 transmission models cannot explain simultaneously the low probability of transmission and the non-negligible proportion of infections founded by multiple variants. In our model, transmission can only occur when environmental conditions are appropriate (e.g. abrasions are present in the genital tract of the potential recipient), allowing these observations to be reconciled. As well as reproducing features of transmission in real populations, our model demonstrates that, contrary to expectation, there is not a simple link between the number of viral variants and the number of viral particles founding each new infection. These quantities depend on the timing of transmission, and infections can be founded with small numbers of variants yet large numbers of particles. Including selection, or a bias towards early transmission (e.g. due to treatment), acts to enhance this conclusion. In addition, we find that infections initiated by multiple variants are most likely to have derived from donors with intermediate set-point viral loads, and not from individuals with high set-point viral loads as might be expected. We therefore emphasise the importance of considering viral diversity in donors, and the timings of transmissions, when trying to discern the complex factors governing single or multiple variant transmission.
Collapse
Affiliation(s)
- Robin N Thompson
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK.,Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Oxford, UK.,Christ Church, University of Oxford, St Aldates, Oxford, UK
| | - Chris Wymant
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca A Spriggs
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK.,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christophe Fraser
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katrina A Lythgoe
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK.,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Goodreau SM, Stansfield SE, Murphy JT, Peebles KC, Gottlieb GS, Abernethy NF, Herbeck JT, Mittler JE. Relational concurrency, stages of infection, and the evolution of HIV set point viral load. Virus Evol 2018; 4:vey032. [PMID: 30483403 PMCID: PMC6249390 DOI: 10.1093/ve/vey032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HIV viral load (VL) predicts both transmission potential and rate of disease progression. For reasons that are still not fully understood, the set point viral load (SPVL) established after acute infection varies across individuals and populations. Previous studies have suggested that population mean SPVL (MSPVL) has evolved near an optimum that reflects a trade-off between transmissibility and host survival. Sexual network structures affect rates of potential exposure during different within-host phases of infection marked by different transmission probabilities, and thus affect the number and timing of transmission events. These structures include relational concurrency, which has been argued to explain key differences in HIV burden across populations. We hypothesize that concurrency will alter the fitness landscape for SPVL in ways that differ from other network features whose impacts accrue at other times during infection. To quantitatively test this hypothesis, we developed a dynamic, stochastic, data-driven network model of HIV transmission, and evolution to assess the impact of key sexual network phenomena on MSPVL evolution. Experiments were repeated in sensitivity runs that made different assumptions about transmissibility during acute infection, SPVL heritability, and the functional form of the relationship between VL and transmissibility. For our main transmission model, scenarios yielded MSPVLs ranging from 4.4 to 4.75 log10 copies/ml, covering much of the observed empirical range. MSPVL evolved to be higher in populations with high concurrency and shorter relational durations, with values varying over a clinically significant range. In linear regression analyses on these and other predictors, main effects were significant (P < 0.05), as were interaction terms, indicating that effects are interdependent. We also noted a strong correlation between two key emergent properties measured at the end of the simulations-MSPVL and HIV prevalence-most clearly for phenomena that affect transmission networks early in infection. Controlling for prevalence, high concurrency yielded higher MSPVL than other network phenomena. Interestingly, we observed lower prevalence in runs in which SPVL heritability was zero, indicating the potential for viral evolution to exacerbate disease burden over time. Future efforts to understand empirical variation in MSPVL should consider local HIV burden and basic sexual behavioral and network structure.
Collapse
Affiliation(s)
- Steven M Goodreau
- Department of Anthropology, Campus Box 353100, Seattle, WA 98195, USA
| | | | - James T Murphy
- Department of Microbiology, Campus Box 357735, Seattle, WA 98195, USA
| | - Kathryn C Peebles
- Department of Epidemiology, Campus Box 357236, Seattle, WA 98195, USA
| | - Geoffrey S Gottlieb
- Departments of Medicine and Global Health, Campus Box 356420, Seattle, WA 98195, USA
| | - Neil F Abernethy
- Department of Biomedical Informatics and Medical Education, Campus Box 358047, Seattle, WA 98195, USA
| | - Joshua T Herbeck
- Department of Global Health, University of Washington, Campus Box 353100, Seattle, WA 98195, USA
| | - John E Mittler
- Department of Microbiology, Campus Box 357735, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Textor J, Fähnrich A, Meinhardt M, Tune C, Klein S, Pagel R, König P, Kalies K, Westermann J. Deep Sequencing Reveals Transient Segregation of T Cell Repertoires in Splenic T Cell Zones during an Immune Response. THE JOURNAL OF IMMUNOLOGY 2018; 201:350-358. [PMID: 29884700 DOI: 10.4049/jimmunol.1800091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/19/2018] [Indexed: 11/19/2022]
Abstract
Immunological differences between hosts, such as diverse TCR repertoires, are widely credited for reducing the risk of pathogen spread and adaptation in a population. Within-host immunological diversity might likewise be important for robust pathogen control, but to what extent naive TCR repertoires differ across different locations in the same host is unclear. T cell zones (TCZs) in secondary lymphoid organs provide secluded microenvironmental niches. By harboring distinct TCRs, such niches could enhance within-host immunological diversity. In contrast, rapid T cell migration is expected to dilute such diversity. In this study, we combined tissue microdissection and deep sequencing of the TCR β-chain to examine the extent to which TCR repertoires differ between TCZs in murine spleens. In the absence of Ag, we found little evidence for differences between TCZs of the same spleen. Yet, 3 d after immunization with sheep RBCs, we observed a >10-fold rise in the number of clones that appeared to localize to individual zones. Remarkably, these differences largely disappeared at 4 d after immunization, when hallmarks of an ongoing immune response were still observed. These data suggest that in the absence of Ag, any repertoire differences observed between TCZs of the same host can largely be attributed to random clone distribution. Upon Ag challenge, TCR repertoires in TCZs first segregate and then homogenize within days. Such "transient mosaic" dynamics could be an important barrier for pathogen adaptation and spread during an immune response.
Collapse
Affiliation(s)
- Johannes Textor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; and
| | - Anke Fähnrich
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Martin Meinhardt
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Cornelia Tune
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Sebastian Klein
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Rene Pagel
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Peter König
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Kathrin Kalies
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| | - Jürgen Westermann
- Center for Structural and Cell Biology in Medicine, Institute of Anatomy, University of Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
8
|
Alizon S, Murall CL, Bravo IG. Why Human Papillomavirus Acute Infections Matter. Viruses 2017; 9:v9100293. [PMID: 28994707 PMCID: PMC5691644 DOI: 10.3390/v9100293] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Most infections by human papillomaviruses (HPVs) are `acute', that is non-persistent. Yet, for HPVs, as for many other oncoviruses, there is a striking gap between our detailed understanding of chronic infections and our limited data on the early stages of infection. Here we argue that studying HPV acute infections is necessary and timely. Focusing on early interactions will help explain why certain infections are cleared while others become chronic or latent. From a molecular perspective, descriptions of immune effectors and pro-inflammatory pathways during the initial stages of infections have the potential to lead to novel treatments or to improved handling algorithms. From a dynamical perspective, adopting concepts from spatial ecology, such as meta-populations or meta-communities, can help explain why HPV acute infections sometimes last for years. Furthermore, cervical cancer screening and vaccines impose novel iatrogenic pressures on HPVs, implying that anticipating any viral evolutionary response remains essential. Finally, hints at the associations between HPV acute infections and fertility deserve further investigation given their high, worldwide prevalence. Overall, understanding asymptomatic and benign infections may be instrumental in reducing HPV virulence.
Collapse
Affiliation(s)
- Samuel Alizon
- MIVEGEC (UMR CNRS 5290, UR IRD 224, UM), 911 avenue Agropolis, 34394 Montpellier CEDEX 5, France.
| | - Carmen Lía Murall
- MIVEGEC (UMR CNRS 5290, UR IRD 224, UM), 911 avenue Agropolis, 34394 Montpellier CEDEX 5, France.
| | - Ignacio G Bravo
- MIVEGEC (UMR CNRS 5290, UR IRD 224, UM), 911 avenue Agropolis, 34394 Montpellier CEDEX 5, France.
| |
Collapse
|
9
|
Sobel Leonard A, McClain MT, Smith GJD, Wentworth DE, Halpin RA, Lin X, Ransier A, Stockwell TB, Das SR, Gilbert AS, Lambkin-Williams R, Ginsburg GS, Woods CW, Koelle K, Illingworth CJR. The effective rate of influenza reassortment is limited during human infection. PLoS Pathog 2017; 13:e1006203. [PMID: 28170438 PMCID: PMC5315410 DOI: 10.1371/journal.ppat.1006203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/17/2017] [Accepted: 01/26/2017] [Indexed: 12/31/2022] Open
Abstract
We characterise the evolutionary dynamics of influenza infection described by viral sequence data collected from two challenge studies conducted in human hosts. Viral sequence data were collected at regular intervals from infected hosts. Changes in the sequence data observed across time show that the within-host evolution of the virus was driven by the reversion of variants acquired during previous passaging of the virus. Treatment of some patients with oseltamivir on the first day of infection did not lead to the emergence of drug resistance variants in patients. Using an evolutionary model, we inferred the effective rate of reassortment between viral segments, measuring the extent to which randomly chosen viruses within the host exchange genetic material. We find strong evidence that the rate of effective reassortment is low, such that genetic associations between polymorphic loci in different segments are preserved during the course of an infection in a manner not compatible with epistasis. Combining our evidence with that of previous studies we suggest that spatial heterogeneity in the viral population may reduce the extent to which reassortment is observed. Our results do not contradict previous findings of high rates of viral reassortment in vitro and in small animal studies, but indicate that in human hosts the effective rate of reassortment may be substantially more limited. The influenza virus is an important cause of disease in the human population. During the course of an infection the virus can evolve rapidly. An important mechanism of viral evolution is reassortment, whereby different segments of the influenza genome are shuffled with other segments, producing new viral combinations. Here we study natural selection and reassortment during the course of infections occurring in human hosts. Examining viral genome sequence data from these infections, we note that genetic variants that were acquired during the growth of viruses in culture are selected against in the human host. In addition, we find evidence that the effective rate of reassortment is low. We suggest that the spatial separation between viruses in different parts of the host airway may limit the extent to which genetically distinct segments reassort with one another. Within the global population of influenza viruses, reassortment remains an important factor. However, reassortment is not so rapid as to exclude the possibility of interactions between genome segments affecting the course of influenza evolution during a single infection.
Collapse
Affiliation(s)
- Ashley Sobel Leonard
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Micah T. McClain
- Duke Center for Applied Genomics and Precision Medicine, Durham, North Carolina, United States of America
| | - Gavin J. D. Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rebecca A. Halpin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Xudong Lin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Amy Ransier
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Suman R. Das
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Anthony S. Gilbert
- hVivo PLC, The QMB Innovation Centre, Queen Mary, University of London, London, United Kingdom
| | - Rob Lambkin-Williams
- hVivo PLC, The QMB Innovation Centre, Queen Mary, University of London, London, United Kingdom
| | - Geoffrey S. Ginsburg
- Duke Center for Applied Genomics and Precision Medicine, Durham, North Carolina, United States of America
| | - Christopher W. Woods
- Duke Center for Applied Genomics and Precision Medicine, Durham, North Carolina, United States of America
| | - Katia Koelle
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Christopher J. R. Illingworth
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Maths and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Doekes HM, Fraser C, Lythgoe KA. Effect of the Latent Reservoir on the Evolution of HIV at the Within- and Between-Host Levels. PLoS Comput Biol 2017; 13:e1005228. [PMID: 28103248 PMCID: PMC5245781 DOI: 10.1371/journal.pcbi.1005228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
The existence of long-lived reservoirs of latently infected CD4+ T cells is the major barrier to curing HIV, and has been extensively studied in this light. However, the effect of these reservoirs on the evolutionary dynamics of the virus has received little attention. Here, we present a within-host quasispecies model that incorporates a long-lived reservoir, which we then nest into an epidemiological model of HIV dynamics. For biologically plausible parameter values, we find that the presence of a latent reservoir can severely delay evolutionary dynamics within a single host, with longer delays associated with larger relative reservoir sizes and/or homeostatic proliferation of cells within the reservoir. These delays can fundamentally change the dynamics of the virus at the epidemiological scale. In particular, the delay in within-host evolutionary dynamics can be sufficient for the virus to evolve intermediate viral loads consistent with maximising transmission, as is observed, and not the very high viral loads that previous models have predicted, an effect that can be further enhanced if viruses similar to those that initiate infection are preferentially transmitted. These results depend strongly on within-host characteristics such as the relative reservoir size, with the evolution of intermediate viral loads observed only when the within-host dynamics are sufficiently delayed. In conclusion, we argue that the latent reservoir has important, and hitherto under-appreciated, roles in both within- and between-host viral evolution.
Collapse
Affiliation(s)
- Hilje M. Doekes
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katrina A. Lythgoe
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|