1
|
Felipe-Ruiz A, Zamora-Caballero S, Bendori SO, Penadés JR, Eldar A, Marina A. Extracellular proteolysis of tandemly duplicated pheromone propeptides affords additional complexity to bacterial quorum sensing. PLoS Biol 2024; 22:e3002744. [PMID: 39137235 PMCID: PMC11343458 DOI: 10.1371/journal.pbio.3002744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/23/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Bacterial interactions are vital for adapting to changing environments, with quorum sensing (QS) systems playing a central role in coordinating behaviors through small signaling molecules. The RRNPPA family is the prevalent QS systems in Bacillota and mediating communication through secreted oligopeptides, which are processed into active pheromones by extracellular proteases. Notably, in several cases the propeptides show the presence of multiple putative pheromones within their sequences, which has been proposed as a mechanism to diversify peptide-receptor specificity and potentially facilitate new functions. However, neither the processes governing the maturation of propeptides containing multiple pheromones, nor their functional significance has been evaluated. Here, using 2 Rap systems from bacteriophages infecting Bacillus subtilis that exhibit different types of pheromone duplication in their propeptides, we investigate the maturation process and the molecular and functional activities of the produced pheromones. Our results reveal that distinct maturation processes generate multiple mature pheromones, which bind to receptors with varying affinities but produce identical structural and biological responses. These findings add additional layers in the complexity of QS communication and regulation, opening new possibilities for microbial social behaviors, highlighting the intricate nature of bacterial interactions and adaptation.
Collapse
Affiliation(s)
- Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| | - Sara Zamora-Caballero
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| | - Shira Omer Bendori
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - José R. Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, United Kingdom
- School of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca, Spain
| | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV)-CSIC and CIBER de Enfermedades Raras (CIBERER)-ISCIII, Valencia, Spain
| |
Collapse
|
2
|
Aggarwal S, Huang E, Do H, Makthal N, Li Y, Bapteste E, Lopez P, Bernard C, Kumaraswami M. The leaderless communication peptide (LCP) class of quorum-sensing peptides is broadly distributed among Firmicutes. Nat Commun 2023; 14:5947. [PMID: 37741855 PMCID: PMC10518010 DOI: 10.1038/s41467-023-41719-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
The human pathogen Streptococcus pyogenes secretes a short peptide (leaderless communication peptide, LCP) that mediates intercellular communication and controls bacterial virulence through interaction with its receptor, RopB. Here, we show that LCP and RopB homologues are present in other Firmicutes. We experimentally validate that LCPs with distinct peptide communication codes act as bacterial intercellular signals and regulate gene expression in Streptococcus salivarius, Streptococcus porcinus, Enterococcus malodoratus and Limosilactobacillus reuteri. Our results indicate that LCPs are more widespread than previously thought, and their characterization may uncover new signaling mechanisms and roles in coordinating diverse bacterial traits.
Collapse
Affiliation(s)
- Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Elaine Huang
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Yanyan Li
- Communication Molecules and Adaptation of Microorganisms (MCAM), CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Charles Bernard
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Bareia T, Pollak S, Guler P, Puyesky S, Eldar A. Major distinctions between the two oligopeptide permease systems of Bacillus subtilis with respect to signaling, development and evolutionary divergence. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001382. [PMID: 37755230 PMCID: PMC10569065 DOI: 10.1099/mic.0.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023]
Abstract
Oligopeptide-permeases (Opps) are used by bacteria to import short peptides. In addition to their metabolic benefit, imported short peptides are used in many Gram-positive bacteria as signalling molecules of the RRNPP super-family of quorum-sensing systems, making Opps an integral part of cell–cell communication. In some Gram-positive bacteria there exist multiple Opps and the relative importance of those to RRNPP quorum sensing are not fully clear. Specifically, in Bacillus subtilis , the Gram-positive model species, there exist two homologous oligopeptide permeases named Opp and App. Previous work showed that the App system is mutated in lab strain 168 and its recovery partially complements an Opp mutation for several developmental processes. Yet, the nature of the impact of App on signalling and development in wild-type strains, where both permeases are active was not studied. Here we re-examine the impact of the two permease systems. We find that App has a minor contribution to biofilm formation, surfactin production and phage infection compared to the effect of Opp. This reduced effect is also reflected in its lower ability to import the signals of four different Rap-Phr RRNPP systems. Further analysis of the App system revealed that, unlike Opp, some App genes have undergone horizontal transfer, resulting in two distinct divergent alleles of this system in B. subtilis strains. We found that both alleles were substantially better adapted than the Opp system to import an exogenous RRNPP signal of the Bacillus cereus group PlcR-PapR system. In summary, we find that the App system has only a minor role in signalling but may still be crucial for the import of other peptides.
Collapse
Affiliation(s)
- Tasneem Bareia
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
- Present address: Department of Plant & Environmental Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Shaul Pollak
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
- Present address: Division of Microbial Ecology, Centre for Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Polina Guler
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Shani Puyesky
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
4
|
Qi X, Liu W, He X, Du C. A review on surfactin: molecular regulation of biosynthesis. Arch Microbiol 2023; 205:313. [PMID: 37603063 DOI: 10.1007/s00203-023-03652-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Surfactin has many biological activities, such as inhibiting plant diseases, resisting bacteria, fungi, viruses, tumors, mycoplasma, anti-adhesion, etc. It has great application potential in agricultural biological control, clinical medical treatment, environmental treatment and other fields. However, the low yield has been the bottleneck of its popularization and application. It is very important to understand the synthesis route and control strategy of surfactin to improve its yield and purity. In this paper, based on the biosynthetic pathway and regulatory factors of surfactin, its biosynthesis regulation strategy was comprehensively summarized, involving enhancement of endogenous and exogenous precursor supply, modification of the synthesis pathway of lipid chain and peptide chain, improvement of secretion and efflux, and manipulation some global regulatory factors, such as Spo0A, AbrB, ComQXP, phrCSF, etc. to directly or indirectly stimulate surfactin synthesis. And the current production and separation and purification process of surfactin are briefly described. This review also provides a scientific reference for promoting surfactin production and its applications in various fields.
Collapse
Affiliation(s)
- Xiaohua Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xin He
- Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao, 066102, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
5
|
Structural and Genomic Evolution of RRNPPA Systems and Their Pheromone Signaling. mBio 2022; 13:e0251422. [PMID: 36259720 PMCID: PMC9765709 DOI: 10.1128/mbio.02514-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
In Firmicutes, important processes such as competence development, sporulation, virulence, and biofilm formation are regulated by cytoplasmic quorum sensing (QS) receptors of the RRNPPA family using peptide-based communication. Although these systems regulate important processes in a variety of bacteria, their origin and diversification are poorly understood. Here, we integrate structural, genomic, and phylogenetic evidence to shed light on RRNPPA protein origin and diversification. The family is constituted by seven different subfamilies with different domain architectures and functions. Among these, three were found in Lactobacillales (Rgg, ComR, and PrgX) and four in Bacillales (AimR, NprR, PlcR, and Rap). The patterns of presence and the phylogeny of these proteins show that subfamilies diversified a long time ago, resulting in key structural and functional differences. The concordance between the distribution of subfamilies and the bacterial phylogeny was somewhat unexpected, since many of the subfamilies are very abundant in mobile genetic elements, such as phages, plasmids, and phage-plasmids. The existence of diverse propeptide architectures raises intriguing questions about their export and maturation. It also suggests the existence of diverse roles for the RRNPPA systems. Some systems encode multiple pheromones on the same propeptide or multiple similar propeptides, suggesting that they act as "chatterers." Many others lack pheromone genes and may be "eavesdroppers." Interestingly, AimR systems without associated propeptide genes were particularly abundant in chromosomal regions not classed as prophages, suggesting that either the bacterium or other mobile elements are eavesdropping on phage activity. IMPORTANCE Quorum sensing (QS) is a mechanism of bacterial communication, coordinating important decisions depending on bacterial population. QS regulates important processes not only in bacterial behavior but also in genetic mobile elements and host-guest interactions. In Firmicutes, the most important family of QS receptors is the RRNPPA family. Despite the importance of such systems in microbiology, we know little about RRNPPA origin and diversification. In this work, the combination of sequence analysis and structural biology allowed us to identify a very large number of novel systems but also to class of them in functional families and thereby study of their origin and functional diversification. Moreover, peptide pheromone analysis revealed new and intriguing mechanisms of communication, such as "eavesdropper" systems which only listen for the pheromone and "chatterers" that take control of the communication in their microenvironment.
Collapse
|
6
|
Public communication can facilitate low-risk coordination under surveillance. Sci Rep 2022; 12:3433. [PMID: 35236874 PMCID: PMC8891294 DOI: 10.1038/s41598-022-07165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Consider a sub-population of rebels aiming at initiating a revolution. To avoid initializing a failed revolution, rebels would first strive to estimate their “power”, which is often correlated with their number. However, especially in non-democratic countries, rebels avoid disclosing themselves. This poses a significant challenge for rebels: estimating their number while minimizing the risk of being identified as rebels. This paper introduces a distributed computing framework to study this question. Our main insight is that the communication pattern plays a crucial role in achieving such a task. Specifically, we distinguish between public communication, in which each message announced by an individual can be viewed by all its neighbors, and private communication, in which each message is received by one neighbor. We describe a simple protocol in the public communication model that allows rebels to estimate their number while keeping a negligible risk of being identified as rebels. The proposed protocol, inspired by historical events, can be executed covertly even under extreme conditions of surveillance. Conversely, we show that under private communication, protocols of similar simplicity are either inefficient or non-covert. These results suggest that public communication can facilitate the emergence of revolutions in non-democratic countries.
Collapse
|
7
|
Nordgaard M, Mortensen RMR, Kirk NK, Gallegos‐Monterrosa R, Kovács ÁT. Deletion of Rap-Phr systems in Bacillus subtilis influences in vitro biofilm formation and plant root colonization. Microbiologyopen 2021; 10:e1212. [PMID: 34180604 PMCID: PMC8236291 DOI: 10.1002/mbo3.1212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Natural isolates of the soil-dwelling bacterium Bacillus subtilis form robust biofilms under laboratory conditions and colonize plant roots. B. subtilis biofilm gene expression displays phenotypic heterogeneity that is influenced by a family of Rap-Phr regulatory systems. Most Rap-Phr systems in B. subtilis have been studied independently, in different genetic backgrounds and under distinct conditions, hampering true comparison of the Rap-Phr systems' impact on bacterial cell differentiation. Here, we investigated each of the 12 Rap-Phr systems of B.subtilis NCIB 3610 for their effect on biofilm formation. By studying single ∆rap-phr mutants, we show that despite redundancy between the cell-cell communication systems, deletion of each of the 12 Rap-Phr systems influences matrix gene expression. These Rap-Phr systems therefore enable fine-tuning of the timing and level of matrix production in response to specific conditions. Furthermore, some of the ∆rap-phr mutants demonstrated altered biofilm formation in vitro and colonization of Arabidopsis thaliana roots, but not necessarily similarly in both processes, indicating that the pathways regulating matrix gene expression and other factors important for biofilm formation may be differently regulated under these distinct conditions.
Collapse
Affiliation(s)
- Mathilde Nordgaard
- Bacterial Interactions and Evolution GroupDTU BioengineeringTechnical University of DenmarkLyngbyDenmark
| | | | - Nikolaj Kaae Kirk
- Bacterial Interactions and Evolution GroupDTU BioengineeringTechnical University of DenmarkLyngbyDenmark
| | | | - Ákos T. Kovács
- Bacterial Interactions and Evolution GroupDTU BioengineeringTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
8
|
Gallegos-Monterrosa R, Christensen MN, Barchewitz T, Koppenhöfer S, Priyadarshini B, Bálint B, Maróti G, Kempen PJ, Dragoš A, Kovács ÁT. Impact of Rap-Phr system abundance on adaptation of Bacillus subtilis. Commun Biol 2021; 4:468. [PMID: 33850233 PMCID: PMC8044106 DOI: 10.1038/s42003-021-01983-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Microbes commonly display great genetic plasticity, which has allowed them to colonize all ecological niches on Earth. Bacillus subtilis is a soil-dwelling organism that can be isolated from a wide variety of environments. An interesting characteristic of this bacterium is its ability to form biofilms that display complex heterogeneity: individual, clonal cells develop diverse phenotypes in response to different environmental conditions within the biofilm. Here, we scrutinized the impact that the number and variety of the Rap-Phr family of regulators and cell-cell communication modules of B. subtilis has on genetic adaptation and evolution. We examine how the Rap family of phosphatase regulators impacts sporulation in diverse niches using a library of single and double rap-phr mutants in competition under 4 distinct growth conditions. Using specific DNA barcodes and whole-genome sequencing, population dynamics were followed, revealing the impact of individual Rap phosphatases and arising mutations on the adaptability of B. subtilis.
Collapse
Affiliation(s)
- Ramses Gallegos-Monterrosa
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mathilde Nordgaard Christensen
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tino Barchewitz
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sonja Koppenhöfer
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany ,grid.25055.370000 0000 9130 6822Present Address: Department of Biology, Memorial University of Newfoundland, St. John’s, NL Canada
| | - B. Priyadarshini
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Balázs Bálint
- grid.475919.7Seqomics Biotechnology Ltd., Mórahalom, Hungary
| | - Gergely Maróti
- grid.5018.c0000 0001 2149 4407Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Paul J. Kempen
- grid.5170.30000 0001 2181 8870Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Dragoš
- grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ákos T. Kovács
- grid.9613.d0000 0001 1939 2794Terrestrial Biofilms Group, Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany ,grid.5170.30000 0001 2181 8870Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Bernard C, Li Y, Lopez P, Bapteste E. Beyond arbitrium: identification of a second communication system in Bacillus phage phi3T that may regulate host defense mechanisms. ISME JOURNAL 2020; 15:545-549. [PMID: 33028977 PMCID: PMC8027211 DOI: 10.1038/s41396-020-00795-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022]
Abstract
The evolutionary stability of temperate bacteriophages at low abundance of susceptible bacterial hosts lies in the trade-off between the maximization of phage replication, performed by the host-destructive lytic cycle, and the protection of the phage-host collective, enacted by lysogeny. Upon Bacillus infection, Bacillus phages phi3T rely on the “arbitrium” quorum sensing (QS) system to communicate on their population density in order to orchestrate the lysis-to-lysogeny transition. At high phage densities, where there may be limited host cells to infect, lysogeny is induced to preserve chances of phage survival. Here, we report the presence of an additional, host-derived QS system in the phi3T genome, making it the first known virus with two communication systems. Specifically, this additional system, coined “Rapφ-Phrφ”, is predicted to downregulate host defense mechanisms during the viral infection, but only upon stress or high abundance of Bacillus cells and at low density of population of the phi3T phages. Post-lysogenization, Rapφ-Phrφ is also predicted to provide the lysogenized bacteria with an immediate fitness advantage: delaying the costly production of public goods while nonetheless benefiting from the public goods produced by other non-lysogenized Bacillus bacteria. The discovered “Rapφ-Phrφ” QS system hence provides novel mechanistic insights into how phage communication systems could contribute to the phage-host evolutionary stability.
Collapse
Affiliation(s)
- Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Campus Jussieu, Bâtiment A, 4eme et. Pièce 429, 75005, Paris, France. .,Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM), CNRS, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005, Paris, France.
| | - Yanyan Li
- Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM), CNRS, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Campus Jussieu, Bâtiment A, 4eme et. Pièce 429, 75005, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Campus Jussieu, Bâtiment A, 4eme et. Pièce 429, 75005, Paris, France
| |
Collapse
|
10
|
Rap-Phr Systems from Plasmids pAW63 and pHT8-1 Act Together To Regulate Sporulation in the Bacillus thuringiensis Serovar kurstaki HD73 Strain. Appl Environ Microbiol 2020; 86:AEM.01238-20. [PMID: 32680861 DOI: 10.1128/aem.01238-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Bacillus thuringiensis is a Gram-positive spore-forming bacterium pathogenic to various insect species. This property is due to the Cry toxins encoded by plasmid genes and mostly produced during sporulation. B. thuringiensis contains a remarkable number of extrachromosomal DNA molecules and a great number of plasmid rap-phr genes. Rap-Phr quorum-sensing systems regulate different bacterial processes, notably the commitment to sporulation in Bacillus species. Rap proteins are quorum sensors acting as phosphatases on Spo0F, an intermediate of the sporulation phosphorelay, and are inhibited by Phr peptides that function as signaling molecules. In this study, we characterize the Rap63-Phr63 system encoded by the pAW63 plasmid from the B. thuringiensis serovar kurstaki HD73 strain. Rap63 has moderate activity on sporulation and is inhibited by the Phr63 peptide. The rap63-phr63 genes are cotranscribed, and the phr63 gene is also transcribed from a σH-specific promoter. We show that Rap63-Phr63 regulates sporulation together with the Rap8-Phr8 system harbored by plasmid pHT8_1 of the HD73 strain. Interestingly, the deletion of both phr63 and phr8 genes in the same strain has a greater negative effect on sporulation than the sum of the loss of each phr gene. Despite the similarities in the Phr8 and Phr63 sequences, there is no cross talk between the two systems. Our results suggest a synergism of these two Rap-Phr systems in the regulation of the sporulation of B. thuringiensis at the end of the infectious cycle in insects, thus pointing out the roles of the plasmids in the fitness of the bacterium.IMPORTANCE The life cycle of Bacillus thuringiensis in insect larvae is regulated by quorum-sensing systems of the RNPP family. After the toxemia caused by Cry insecticidal toxins, the sequential activation of these systems allows the bacterium to trigger first a state of virulence (regulated by PlcR-PapR) and then a necrotrophic lifestyle (regulated by NprR-NprX); ultimately, sporulation is controlled by the Rap-Phr systems. Our study describes a new rap-phr operon carried by a B. thuringiensis plasmid and shows that the Rap protein has a moderate effect on sporulation. However, this system, in combination with another plasmidic rap-phr operon, provides effective control of sporulation when the bacteria develop in the cadavers of infected insect larvae. Overall, this study highlights the important adaptive role of the plasmid Rap-Phr systems in the developmental fate of B. thuringiensis and its survival within its ecological niche.
Collapse
|
11
|
Voichek M, Maaß S, Kroniger T, Becher D, Sorek R. Peptide-based quorum sensing systems in Paenibacillus polymyxa. Life Sci Alliance 2020; 3:3/10/e202000847. [PMID: 32764104 PMCID: PMC7425212 DOI: 10.26508/lsa.202000847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
Discovery of conserved communication systems in the agriculturally important Paenibacillus bacteria. These systems are widespread, and some species encode more than 25 different peptide-receptor pairs. Paenibacillus polymyxa is an agriculturally important plant growth–promoting rhizobacterium. Many Paenibacillus species are known to be engaged in complex bacteria–bacteria and bacteria–host interactions, which in other species were shown to necessitate quorum sensing communication. However, to date, no quorum sensing systems have been described in Paenibacillus. Here, we show that the type strain P. polymyxa ATCC 842 encodes at least 16 peptide-based communication systems. Each of these systems is comprised of a pro-peptide that is secreted to the growth medium and processed to generate a mature short peptide. Each peptide has a cognate intracellular receptor of the RRNPP family, and we show that external addition of P. polymyxa communication peptides leads to reprogramming of the transcriptional response. We found that these quorum sensing systems are conserved across hundreds of species belonging to the Paenibacillaceae family, with some species encoding more than 25 different peptide-receptor pairs, representing a record number of quorum sensing systems encoded in a single genome.
Collapse
Affiliation(s)
- Maya Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Tobias Kroniger
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Aframian N, Eldar A. A Bacterial Tower of Babel: Quorum-Sensing Signaling Diversity and Its Evolution. Annu Rev Microbiol 2020; 74:587-606. [PMID: 32680450 DOI: 10.1146/annurev-micro-012220-063740] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quorum sensing is a process in which bacteria secrete and sense a diffusible molecule, thereby enabling bacterial groups to coordinate their behavior in a density-dependent manner. Quorum sensing has evolved multiple times independently, utilizing different molecular pathways and signaling molecules. A common theme among many quorum-sensing families is their wide range of signaling diversity-different variants within a family code for different signal molecules with a cognate receptor specific to each variant. This pattern of vast allelic polymorphism raises several questions-How do different signaling variants interact with one another? How is this diversity maintained? And how did it come to exist in the first place? Here we argue that social interactions between signaling variants can explain the emergence and persistence of signaling diversity throughout evolution. Finally, we extend the discussion to include cases where multiple diverse systems work in concert in a single bacterium.
Collapse
Affiliation(s)
- Nitzan Aframian
- Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 6997801 Tel-Aviv, Israel; ,
| | - Avigdor Eldar
- Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 6997801 Tel-Aviv, Israel; ,
| |
Collapse
|
13
|
Kotte AK, Severn O, Bean Z, Schwarz K, Minton NP, Winzer K. RRNPP-type quorum sensing affects solvent formation and sporulation in Clostridium acetobutylicum. MICROBIOLOGY (READING, ENGLAND) 2020; 166:579-592. [PMID: 32375981 PMCID: PMC7376267 DOI: 10.1099/mic.0.000916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
The strictly anaerobic bacterium Clostridium acetobutylicum is well known for its ability to convert sugars into organic acids and solvents, most notably the potential biofuel butanol. However, the regulation of its fermentation metabolism, in particular the shift from acid to solvent production, remains poorly understood. The aim of this study was to investigate whether cell-cell communication plays a role in controlling the timing of this shift or the extent of solvent formation. Analysis of the available C. acetobutylicum genome sequences revealed the presence of eight putative RRNPP-type quorum-sensing systems, here designated qssA to qssH, each consisting of an RRNPP-type regulator gene followed by a small open reading frame encoding a putative signalling peptide precursor. The identified regulator and signal peptide precursor genes were designated qsrA to qsrH and qspA to qspH, respectively. Triplicate regulator mutants were generated in strain ATCC 824 for each of the eight systems and screened for phenotypic changes. The qsrB mutants showed increased solvent formation during early solventogenesis and hence the QssB system was selected for further characterization. Overexpression of qsrB severely reduced solvent and endospore formation and this effect could be overcome by adding short synthetic peptides to the culture medium representing a specific region of the QspB signalling peptide precursor. In addition, overexpression of qspB increased the production of acetone and butanol and the initial (48 h) titre of heat-resistant endospores. Together, these findings establish a role for QssB quorum sensing in the regulation of early solventogenesis and sporulation in C. acetobutylicum.
Collapse
Affiliation(s)
- Ann-Kathrin Kotte
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
- Present address: Independent Commodity Intelligence Service, Bishopsgate, London, UK
| | - Oliver Severn
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
- Present address: Singer Instruments, Roadwater, Watchet, UK
| | - Zak Bean
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
- Present address: CHAIN Biotechnology Ltd, MediCity, Nottingham, UK
| | - Katrin Schwarz
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
- Present address: Azotic Technologies Ltd, BioCity, Nottingham, UK
| | - Nigel P. Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Multiple and Overlapping Functions of Quorum Sensing Proteins for Cell Specialization in Bacillus Species. J Bacteriol 2020; 202:JB.00721-19. [PMID: 32071096 DOI: 10.1128/jb.00721-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In bacterial populations, quorum sensing (QS) systems participate in the regulation of specialization processes and regulate collective behaviors that mediate interactions and allow survival of the species. In Gram-positive bacteria, QS systems of the RRNPP family (Rgg, Rap, NprR, PlcR, and PrgX) consist of intracellular receptors and their cognate signaling peptides. Two of these receptors, Rap and NprR, have regained attention in Bacillus subtilis and the Bacillus cereus group. Some Rap proteins, such as RapH and Rap60, are multifunctional and/or redundant in function, linking the specialization processes of sporulation and competence, as well as global expression changes in the transition phase in B. subtilis NprR, an evolutionary intermediate between Rap and RRNPP transcriptional activators, is a bifunctional regulator that modulates sporulation initiation and activates nutrient scavenging genes. In this review, we discuss how these receptors switch between functions and connect distinct signaling pathways. Based on structural evidence, we propose that RapH and Rap60 should be considered moonlighting proteins. Additionally, we analyze an evolutionary and ecological perspective to understand the multifunctionality and functional redundancy of these regulators in both Bacillus spp. and non-Bacillus Firmicutes Understanding the mechanistic, structural, ecological, and evolutionary basis for the multifunctionality and redundancy of these QS systems is a key step for achieving the development of innovative technologies for health and agriculture.
Collapse
|
15
|
Babel H, Naranjo-Meneses P, Trauth S, Schulmeister S, Malengo G, Sourjik V, Bischofs IB. Ratiometric population sensing by a pump-probe signaling system in Bacillus subtilis. Nat Commun 2020; 11:1176. [PMID: 32132526 PMCID: PMC7055314 DOI: 10.1038/s41467-020-14840-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
Communication by means of diffusible signaling molecules facilitates higher-level organization of cellular populations. Gram-positive bacteria frequently use signaling peptides, which are either detected at the cell surface or ‘probed’ by intracellular receptors after being pumped into the cytoplasm. While the former type is used to monitor cell density, the functions of pump-probe networks are less clear. Here we show that pump-probe networks can, in principle, perform different tasks and mediate quorum-sensing, chronometric and ratiometric control. We characterize the properties of the prototypical PhrA-RapA system in Bacillus subtilis using FRET. We find that changes in extracellular PhrA concentrations are tracked rather poorly; instead, cells accumulate and strongly amplify the signal in a dose-dependent manner. This suggests that the PhrA-RapA system, and others like it, have evolved to sense changes in the composition of heterogeneous populations and infer the fraction of signal-producing cells in a mixed population to coordinate cellular behaviors. Gram-positive bacteria can release signaling peptides that are ‘probed’ by intracellular receptors after being pumped into the cytoplasm. Here, Babel et al. show that these pump-probe networks can infer the fraction of signal-producing cells in a mixed population, and do not necessarily mediate typical quorum-sensing control.
Collapse
Affiliation(s)
- Heiko Babel
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Pablo Naranjo-Meneses
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Stephanie Trauth
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Sonja Schulmeister
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | - Gabriele Malengo
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Str. 16, 35043, Marburg, Germany
| | - Victor Sourjik
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Str. 16, 35043, Marburg, Germany
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany. .,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
16
|
Rap Protein Paralogs of Bacillus thuringiensis: a Multifunctional and Redundant Regulatory Repertoire for the Control of Collective Functions. J Bacteriol 2020; 202:JB.00747-19. [PMID: 31871034 DOI: 10.1128/jb.00747-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS) is a mechanism of synthesis and detection of signaling molecules to regulate gene expression and coordinate behaviors in bacterial populations. In Bacillus subtilis, multiple paralog Rap-Phr QS systems (receptor-signaling peptides) are highly redundant and multifunctional, interconnecting the regulation of differentiation processes such as sporulation and competence. However, their functions in the Bacillus cereus group are largely unknown. We evaluated the functions of Rap proteins in Bacillus thuringiensis Bt8741, which codes for eight Rap-Phr systems; these were individually overexpressed to study their participation in sporulation, biofilm formation, spreading, and extracellular proteolytic activity. Our results show that four Rap-Phr systems (RapC, RapK, RapF, and RapLike) inhibit sporulation, two of which (RapK and RapF) probably dephosphorylate Spo0F from the Spo0A phosphorelay; these two Rap proteins also inhibit biofilm formation. Four systems (RapC, RacF1, RacF2, and RapLike) participate in spreading inhibition; finally, six systems (RapC, -F, -F2, -I, and -I1 and RapLike) decrease extracellular proteolytic activity. We foresee that functions performed by Rap proteins of Bt8741 could also be carried out by Rap homologs in other strains within the B. cereus group. These results indicate that Rap-Phr systems constitute a highly multifunctional and redundant regulatory repertoire that enables B. thuringiensis and other species from the B. cereus group to efficiently regulate collective functions during their life cycle in the face of changing environments.IMPORTANCE The Bacillus cereus group of bacteria includes species of high economic, clinical, biological warfare, and biotechnological interest, e.g., B. anthracis in bioterrorism, B. cereus in food intoxications, and B. thuringiensis in biocontrol. Knowledge about the ecology of these bacteria is hindered by our limited understanding of the regulatory circuits that control differentiation and specialization processes. Here, we uncover the participation of eight Rap quorum-sensing receptors in collective functions of B. thuringiensis These proteins are highly multifunctional and redundant in their functions, linking ecologically relevant processes such as sporulation, biofilm formation, spreading, extracellular proteolytic activity, and probably other functions in species from the B. cereus group.
Collapse
|
17
|
Cardoso PDF, Perchat S, Vilas-Boas LA, Lereclus D, Vilas-Bôas GT. Diversity of the Rap-Phr quorum-sensing systems in the Bacillus cereus group. Curr Genet 2019; 65:1367-1381. [PMID: 31104082 DOI: 10.1007/s00294-019-00993-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
Bacteria of the Bacillus cereus group colonize several ecological niches and infect different hosts. Bacillus cereus, a ubiquitous species causing food poisoning, Bacillus thuringiensis, an entomopathogen, and Bacillus anthracis, which is highly pathogenic to mammals, are the most important species of this group. These species are closely related genetically, and their specific toxins are encoded by plasmids. The infectious cycle of B. thuringiensis in its insect host is regulated by quorum-sensing systems from the RNPP family. Among them, the Rap-Phr systems, which are well-described in Bacillus subtilis, regulate essential processes, such as sporulation. Given the importance of these systems, we performed a global in silico analysis to investigate their prevalence, distribution, diversity and their role in sporulation in B. cereus group species. The rap-phr genes were identified in all selected strains with 30% located on plasmids, predominantly in B. thuringiensis. Despite a high variability in their sequences, there is a remarkable association between closely related strains and their Rap-Phr profile. Based on the key residues involved in RapH phosphatase activity, we predicted that 32% of the Rap proteins could regulate sporulation by preventing the phosphorylation of Spo0F. These Rap are preferentially located on plasmids and mostly related to B. thuringiensis. The predictions were partially validated by in vivo sporulation experiments suggesting that the residues linked to the phosphatase function are necessary but not sufficient to predict this activity. The wide distribution and diversity of Rap-Phr systems could strictly control the commitment to sporulation and then improve the adaptation capacities of the bacteria to environmental changes.
Collapse
Affiliation(s)
- Priscilla de F Cardoso
- Depto. Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil.,Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Stéphane Perchat
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
18
|
Edwards AN, Anjuwon-Foster BR, McBride SM. RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility. mBio 2019; 10:e01991-18. [PMID: 30862746 PMCID: PMC6414698 DOI: 10.1128/mbio.01991-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/25/2019] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a toxin-mediated diarrheal disease. Several factors have been identified that influence the production of the two major C. difficile toxins, TcdA and TcdB, but prior published evidence suggested that additional unknown factors were involved in toxin regulation. Previously, we identified a C. difficile regulator, RstA, that promotes sporulation and represses motility and toxin production. We observed that the predicted DNA-binding domain of RstA was required for RstA-dependent repression of toxin genes, motility genes, and rstA transcription. In this study, we further investigated the regulation of toxin and motility gene expression by RstA. DNA pulldown assays confirmed that RstA directly binds the rstA promoter via the predicted DNA-binding domain. Through mutational analysis of the rstA promoter, we identified several nucleotides that are important for RstA-dependent transcriptional regulation. Further, we observed that RstA directly binds and regulates the promoters of the toxin genes tcdA and tcdB, as well as the promoters for the sigD and tcdR genes, which encode regulators of toxin gene expression. Complementation analyses with the Clostridium perfringens RstA ortholog and a multispecies chimeric RstA protein revealed that the C. difficile C-terminal domain is required for RstA DNA-binding activity, suggesting that species-specific signaling controls RstA function. Our data demonstrate that RstA is a transcriptional repressor that autoregulates its own expression and directly inhibits transcription of the two toxin genes and two positive toxin regulators, thereby acting at multiple regulatory points to control toxin production.IMPORTANCEClostridioides difficile is an anaerobic, gastrointestinal pathogen of humans and other mammals. C. difficile produces two major toxins, TcdA and TcdB, which cause the symptoms of the disease, and forms dormant endospores to survive the aerobic environment outside the host. A recently discovered regulatory factor, RstA, inhibits toxin production and positively influences spore formation. Herein, we determine that RstA directly binds its own promoter DNA to repress its own gene transcription. In addition, our data demonstrate that RstA directly represses toxin gene expression and gene expression of two toxin gene activators, TcdR and SigD, creating a complex regulatory network to tightly control toxin production. This study provides a novel regulatory link between C. difficile sporulation and toxin production. Further, our data suggest that C. difficile toxin production is regulated through a direct, species-specific sensing mechanism.
Collapse
Affiliation(s)
- Adrianne N Edwards
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brandon R Anjuwon-Foster
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Clonality and non-linearity drive facultative-cooperation allele diversity. ISME JOURNAL 2018; 13:824-835. [PMID: 30464316 PMCID: PMC6461992 DOI: 10.1038/s41396-018-0310-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022]
Abstract
Kin discrimination describes the differential interaction of organisms with kin versus non-kin. In microorganisms, many genetic loci act as effective kin-discrimination systems, such as kin-directed help and non-kin-directed harm. Another important example is facultative cooperation, where cooperators increase their investment in group-directed cooperation with the abundance of their kin in the group. Many of these kin-discrimination loci are highly diversified, yet it remains unclear what evolutionary mechanisms maintain this diversity, and how it is affected by population structure. Here, we demonstrate the unique dependence of kin-discriminative interactions on population structure, and how this could explain facultative-cooperation allele-diversity. We show mathematically that low relatedness between microbes in non-clonal social groups is needed to maintain the diversity of facultative-cooperation alleles, while high clonality is needed to stabilize this diversity against cheating. Interestingly, we demonstrate with simulations that such population structure occurs naturally in expanding microbial colonies. Finally, analysis of experimental data of quorum-sensing mediated facultative cooperation, in Bacillus subtilis, demonstrates the relevance of our results to realistic microbial interactions, due to their intrinsic non-linear frequency dependence. Our analysis therefore stresses the impact of clonality on the interplay between exploitation and kin discrimination and portrays a way for the evolution of facultative cooperation.
Collapse
|
20
|
Kalamara M, Spacapan M, Mandic‐Mulec I, Stanley‐Wall NR. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol 2018; 110:863-878. [PMID: 30218468 PMCID: PMC6334282 DOI: 10.1111/mmi.14127] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Here, we review the multiple mechanisms that the Gram‐positive bacterium Bacillus subtilis uses to allow it to communicate between cells and establish community structures. The modes of action that are used are highly varied and include routes that sense pheromone levels during quorum sensing and control gene regulation, the intimate coupling of cells via nanotubes to share cytoplasmic contents, and long‐range electrical signalling to couple metabolic processes both within and between biofilms. We explore the ability of B. subtilis to detect ‘kin’ (and ‘cheater cells’) by looking at the mechanisms used to potentially ensure beneficial sharing (or limit exploitation) of extracellular ‘public goods’. Finally, reflecting on the array of methods that a single bacterium has at its disposal to ensure maximal benefit for its progeny, we highlight that a large future challenge will be integrating how these systems interact in mixed‐species communities.
Collapse
Affiliation(s)
- Margarita Kalamara
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD15EHUK
| | - Mihael Spacapan
- Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljana1000Slovenia
| | - Ines Mandic‐Mulec
- Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljana1000Slovenia
| | - Nicola R. Stanley‐Wall
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD15EHUK
| |
Collapse
|
21
|
A single mutation in rapP induces cheating to prevent cheating in Bacillus subtilis by minimizing public good production. Commun Biol 2018; 1:133. [PMID: 30272012 PMCID: PMC6123732 DOI: 10.1038/s42003-018-0136-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
Cooperation is beneficial to group behaviors like multicellularity, but is vulnerable to exploitation by cheaters. Here we analyze mechanisms that protect against exploitation of extracellular surfactin in swarms of Bacillus subtilis. Unexpectedly, the reference strain NCIB 3610 displays inherent resistance to surfactin-non-producing cheaters, while a different wild isolate is susceptible. We trace this interstrain difference down to a single amino acid change in the plasmid-borne regulator RapP, which is necessary and sufficient for cheater mitigation. This allele, prevalent in many Bacillus species, optimizes transcription of the surfactin operon to the minimum needed for full cooperation. When combined with a strain lacking rapP, NCIB 3610 acts as a cheater itself—except it does not harm the population at high proportions since it still produces enough surfactin. This strategy of minimal production is thus a doubly advantageous mechanism to limit exploitation of public goods, and is readily evolved from existing regulatory networks. Lyons and Kolter describe a single-point mutation in the plasmid-borne gene rapP of Bacillus subtilis that optimizes surfactin transcription to express the minimum required for cooperation. The decrease in the production of this public good significantly prevented the exploitation of cooperative traits by cheaters.
Collapse
|
22
|
Mutlu A, Trauth S, Ziesack M, Nagler K, Bergeest JP, Rohr K, Becker N, Höfer T, Bischofs IB. Phenotypic memory in Bacillus subtilis links dormancy entry and exit by a spore quantity-quality tradeoff. Nat Commun 2018; 9:69. [PMID: 29302032 PMCID: PMC5754360 DOI: 10.1038/s41467-017-02477-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Some bacteria, such as Bacillus subtilis, withstand starvation by forming dormant spores that revive when nutrients become available. Although sporulation and spore revival jointly determine survival in fluctuating environments, the relationship between them has been unclear. Here we show that these two processes are linked by a phenotypic “memory” that arises from a carry-over of molecules from the vegetative cell into the spore. By imaging life histories of individual B. subtilis cells using fluorescent reporters, we demonstrate that sporulation timing controls nutrient-induced spore revival. Alanine dehydrogenase contributes to spore memory and controls alanine-induced outgrowth, thereby coupling a spore’s revival capacity to the gene expression and growth history of its progenitors. A theoretical analysis, and experiments with signaling mutants exhibiting altered sporulation timing, support the hypothesis that such an intrinsically generated memory leads to a tradeoff between spore quantity and spore quality, which could drive the emergence of complex microbial traits. Bacillus subtilis withstands starvation by forming dormant spores that revive when nutrients become available. Here, Mutlu et al. show that sporulation timing controls spore revival through a phenotypic ‘memory’ that arises from the carry-over of a metabolic enzyme from the vegetative cell into the spore.
Collapse
Affiliation(s)
- Alper Mutlu
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Stephanie Trauth
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Marika Ziesack
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany
| | - Katja Nagler
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Jan-Philip Bergeest
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), 69120, Heidelberg, Germany.,Department of Bioinformatics and Functional Genomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Karl Rohr
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), 69120, Heidelberg, Germany.,Department of Bioinformatics and Functional Genomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Nils Becker
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Thomas Höfer
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany. .,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany. .,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
23
|
Neiditch MB, Capodagli GC, Prehna G, Federle MJ. Genetic and Structural Analyses of RRNPP Intercellular Peptide Signaling of Gram-Positive Bacteria. Annu Rev Genet 2017; 51:311-333. [PMID: 28876981 PMCID: PMC6588834 DOI: 10.1146/annurev-genet-120116-023507] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as Bacillus and Streptococcus, are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure-function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.
Collapse
Affiliation(s)
- Matthew B Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Glenn C Capodagli
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center and Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| |
Collapse
|