1
|
Nam K, Chung J, Ju JW, Cho YJ, Jeon Y. Intraoperative Oxygenation and Microcirculatory Changes Following Off-pump Coronary Artery Bypass Grafting: An Exploratory Secondary Analysis of a Randomized Clinical Trial. J Cardiothorac Vasc Anesth 2025; 39:1188-1196. [PMID: 39988503 DOI: 10.1053/j.jvca.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVES The effect of perioperative hyperoxia on microcirculation after cardiac surgery remains inconclusive. We evaluated the relationship between intraoperative fractional inspired oxygen and microcirculation after off-pump coronary artery bypass grafting (OPCAB). DESIGN Exploratory secondary analysis of a multicenter cluster-randomized trial. SETTING Three teaching hospitals. PARTICIPANTS Adult patients who underwent OPCAB. INTERVENTIONS Seven postoperative microcirculatory parameters, including De Backer scores and the proportion of perfused vessels via sublingual microscopy (from all and small vessels), and thenar muscle tissue oxygenation, occlusion slope, and recovery slope via the vascular occlusion test, were compared between patients receiving 30% and 80% oxygen intraoperatively. Generalized estimating equations were used to account for intracluster correlation. MEASUREMENTS AND MAIN RESULTS The analysis included 52 and 51 patients from the 30% and 80% oxygen groups, respectively, for sublingual microscopy and 59 and 53 patients for the vascular occlusion test. Although all microcirculatory parameters were similar between groups, the 80% oxygen group had higher De Backer scores for all vessels (mean, 9.8 ± 2.9 mm-1 vs. 8.7 ± 2.0 mm-1; p = 0.011) and small vessels (4.0 ± 1.8 mm-1 vs. 3.4 ± 1.1 mm-1; p = 0.024) than the 30% oxygen group at the end of surgery. The 80% oxygen group also exhibited greater thenar muscle tissue oxygenation immediately before vascular occlusion (78.4% ± 10.5 vs. 74.0% ± 9.3; p = 0.031) and a higher recovery score (4.1%·s-1 ± 1.7 vs. 3.2%·s-1 ± 1.4; p = 0.001). CONCLUSIONS Patients receiving 80% oxygen during OPCAB had significantly better postoperative microcirculatory profiles than those receiving 30% oxygen. These findings highlight the potential for optimizing perioperative oxygenation to improve or mitigate microcirculatory impairment, thereby reducing postoperative complications.
Collapse
Affiliation(s)
- Karam Nam
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeyeon Chung
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Woo Ju
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youn Joung Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yunseok Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Milford A, De Clercq E, Louis-Maerten E, Geneviève LD, Elger BS. How animal ethics committees make decisions - a scoping review of empirical studies. PLoS One 2025; 20:e0318570. [PMID: 40096023 PMCID: PMC11913294 DOI: 10.1371/journal.pone.0318570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/17/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVES The aim of the scoping review is to explore the decision-making process for the evaluation of animal research proposals within Animal Ethics Committees (AEC) and Institutional Animal Care and Use Committees (IACUC), and to critically summarize the available empirical literature on the different factors influencing, or likely to influence, decision-making by AECs when evaluating animal research proposals. METHODS A systematic search of empirical literature published between 01.12.2012 and 03.06.2024 in PubMed, Scopus, and Web of Science, was performed. RESULTS Twelve papers were included in the final results, four of which were quantitative, five qualitative, and three were mixed methods. Qualitative content analysis revealed deficits in the assessment of the 3Rs (Replacement, Reduction or Refinement) or the weighing of harms and benefits. Factors related to the review process, applicants, and committees were found to influence this process. CONCLUSION The findings prompt pragmatic strategies to improve the decision making process of Animal ethics committees. REGISTRATION The protocol for this review was registered with Open Science Framework (OSF) with the following DOI: https://doi.org/10.17605/OSF.IO/GZJMB.
Collapse
Affiliation(s)
- Aoife Milford
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | - Eva De Clercq
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
| | | | | | - Bernice S. Elger
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
- Center of Legal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Nogueira BCF, Honório NTDBS, Souza PEDA, Soares GO, Campos AK, Martins MF, Carvalho WA, Gaspar EB. Evidence of the efficiency of reverse vaccinology against bovine parasites: A systematic review. Acta Trop 2024; 260:107478. [PMID: 39603440 DOI: 10.1016/j.actatropica.2024.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Reverse vaccinology is a novel vaccine development technology that uses genome and proteome analyses through bioinformatics to select antigenic epitopes capable of eliciting an immunological and protective response through a quick and cheap methodology. However, data on its use in animal health are scant and further research is advocated. Therefore, this systematic review aimed to evaluate the evidence of the efficiency of reverse vaccinology in the search for antigens against bovine parasites, as well as its perspectives and limitations. One hundred seventy-four studies were found, of which 95 were selected for full reading following the PRISMA guidelines and considering all databases. After the last evaluation and reading of the references, only 19 studies were included and evaluated for methodological quality and biases. The studies applied reverse vaccinology to bacteria, protozoa, and ectoparasites that affect cattle, emphasizing on the tick species Rhipicephalus microplus and the protozoa of the genus Babesia that use it as a vector. Most studies evaluated the acquisition of an immune response through ELISA, WB and IFAT analyses to measure predominantly IgG. In addition, many studies did not examine the complete proteome of the parasites and are carried out only in silico, in vitro, or even with unrelated animals, the reason why they were excluded from our systematic review. Due to lack of studies that met the eligibility criteria, in this systematic review we also included studies carried out with different groups and species of parasites, providing a broad overview of the application of this technique in cattle farming. Conversely, this also resulted in variable methodologies, which makes comparison among studies difficult. Despite that, the application of reverse vaccinology in cattle farming has shown promising results in the development of immunological and protective responses in cattle. However, research methodologies need to be improved to reduce biases and obtain reliable results, in addition to clarity of data and methodologies to enable reproducibility.
Collapse
Affiliation(s)
- Bárbara Cristina Félix Nogueira
- Embrapa Gado de Leite, Av. Eugênio do Nascimento, 610, Juiz de Fora 36038-330, MG, Brazil; Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Viçosa 36570-900, MG, Brazil.
| | | | | | | | | | - Marta Fonseca Martins
- Embrapa Gado de Leite, Av. Eugênio do Nascimento, 610, Juiz de Fora 36038-330, MG, Brazil; Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer, s/n, Juiz de Fora 36036-900 , MG, Brazil
| | | | - Emanuelle Baldo Gaspar
- Embrapa Gado de Leite, Av. Eugênio do Nascimento, 610, Juiz de Fora 36038-330, MG, Brazil.
| |
Collapse
|
4
|
Schiefer JL, Wergen NM, Grieb G, Bagheri M, Seyhan H, Badra M, Kopp M, Fuchs PC, Windolf J, Suschek CV. Experimental evidence for Parthanatos-like mode of cell death of heat-damaged human skin fibroblasts in a cell culture-based in vitro burn model. Burns 2024; 50:1562-1577. [PMID: 38570249 DOI: 10.1016/j.burns.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
The cellular mechanisms of burn conversion of heat damaged tissue are center of many studies. Even if the molecular mechanisms of heat-induced cell death are controversially discussed in the current literature, it is widely accepted that caspase-mediated apoptosis plays a central role. In the current study we wanted to develop further information on the nature of the mechanism of heat-induced cell death of fibroblasts in vitro. We found that heating of human fibroblast cultures (a 10 s rise from 37 °C to 67 °C followed by a 13 s cool down to 37 °C) resulted in the death of about 50% of the cells. However, the increase in cell death started with a delay, about one hour after exposure to heat, and reached the maximum after about five hours. The lack of clear evidence for an active involvement of effector caspase in the observed cell death mechanism and the lack of observation of the occurrence of hypodiploid nuclei contradict heat-induced cell death by caspase-mediated apoptosis. Moreover, a dominant heat-induced increase in PARP1 protein expression, which correlated with a time-delayed ATP synthesis inhibition, appearance of double-strand breaks and secondary necrosis, indicate a different type of cell death than apoptosis. Indeed, increased translocation of Apoptosis Inducing Factor (AIF) and Macrophage Migration Inhibitory Factor (MIF) into cell nuclei, which correlates with the mentioned enhanced PARP1 protein expression, indicate PARP1-induced, AIF-mediated and MIF-activated cell death. With regard to the molecular actors involved, the cellular processes and temporal sequences, the mode of cell death observed in our model is very similar to the cell death mechanism via Parthanatos described in the literature.
Collapse
Affiliation(s)
- Jennifer Lynn Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany.
| | - Niklas M Wergen
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mahsa Bagheri
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Harun Seyhan
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Maria Badra
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Marco Kopp
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Paul C Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Christoph V Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
5
|
Zhao Z, Yan Q, Xie J, Liu Z, Liu F, Liu Y, Zhou S, Pan S, Liu D, Duan J, Liu Z. The intervention of cannabinoid receptor in chronic and acute kidney disease animal models: a systematic review and meta-analysis. Diabetol Metab Syndr 2024; 16:45. [PMID: 38360685 PMCID: PMC10870675 DOI: 10.1186/s13098-024-01283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
AIM Cannabinoid receptors are components of the endocannabinoid system that affect various physiological functions. We aim to investigate the effect of cannabinoid receptor modulation on kidney disease. METHODS PubMed, Web of Science databases, and EMBASE were searched. Articles selection, data extraction and quality assessment were independently performed by two investigators. The SYRCLE's RoB tool was used to assess the risk of study bias, and pooled SMD using a random-effect model and 95% CIs were calculated. Subgroup analyses were conducted in preselected subgroups, and publication bias was evaluated. We compared the effects of CB1 and CB2 antagonists and/or knockout and agonists and/or genetic regulation on renal function, blood glucose levels, body weight, and pathological damage-related indicators in different models of chronic and acute kidney injury. RESULTS The blockade or knockout of CB1 could significantly reduce blood urea nitrogen [SMD,- 1.67 (95% CI - 2.27 to - 1.07)], serum creatinine [SMD, - 1.88 (95% CI - 2.91 to - 0.85)], and albuminuria [SMD, - 1.60 (95% CI - 2.16 to - 1.04)] in renal dysfunction animals compared with the control group. The activation of CB2 group could significantly reduce serum creatinine [SMD, - 0.97 (95% CI - 1.83 to - 0.11)] and albuminuria [SMD, - 2.43 (95% CI - 4.63 to - 0.23)] in renal dysfunction animals compared with the control group. CONCLUSIONS The results suggest that targeting cannabinoid receptors, particularly CB1 antagonists and CB2 agonists, can improve kidney function and reduce inflammatory responses, exerting a renal protective effect and maintaining therapeutic potential in various types of kidney disease.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Junwei Xie
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Zhenjie Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Fengxun Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Shaokang Pan
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Jiayu Duan
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
6
|
Nogueira BCF, da Silva Soares E, Mauricio Ortega Orozco A, Abreu da Fonseca L, Kanadani Campos A. Evidence that ectoparasites influence the hematological parameters of the host: a systematic review. Anim Health Res Rev 2023; 24:28-39. [PMID: 37527971 DOI: 10.1017/s1466252323000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Ectoparasites are important to the one health concept because their parasitism can result in the transmission of pathogens, allergic reactions, the release of toxins, morbidity, and even death of the host. Ectoparasites can affect host physiology, as reflected in immune defenses and body condition as well as hematological and biochemical parameters. Thus, evidence that ectoparasites influence host hematological parameters was systematically reviewed, and the methodological quality of these studies was analyzed. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines were followed, and the studies included were limited to those that evaluated changes in hematological tests in ectoparasite-infested and non-infested animals, and bias and methodological quality were evaluated using the Animal Research: Reporting of In Vivo Experiments guideline. Thirty-four studies were selected and information about the host, ectoparasite infestation, blood collection, and analysis was collected and compared whenever possible. In this review, the presence of ectoparasites influenced both the red series and the white series of hematological parameters. Among the main parameters analyzed, hematocrit, red blood cells, hemoglobin, and lymphocytes showed reductions, probably due to ectoparasite blood-feeding, while including eosinophils, neutrophils, and basophils increased in infested animals due to the host immune response. However, methodologic improvements are needed to reduce the risk of bias, enhance the reproducibility of such studies, and ensure results aligned with the mechanisms that act in the ectoparasite-host relationship.
Collapse
Affiliation(s)
| | - Elaine da Silva Soares
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Artur Kanadani Campos
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
7
|
Seveljevic-Jaran D, Antolic M, Ognjenovic A, Kalliokoski O, Abelson KSP, Hau J. Effects of Multimodal Therapy, Blinding, and Multi-laboratory Protocol Conduct on the Robustness of the Rat Model of Adjuvant Induced Arthritis. In Vivo 2023; 37:115-123. [PMID: 36593032 PMCID: PMC9843802 DOI: 10.21873/invivo.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIM The aim of this study was to investigate the effects of multimodal therapy comprising buprenorphine (BUP) and indomethacin (IND) on key translational parameters in the rat adjuvant induced arthritis (AIA) model. Furthermore, we investigated the difference between visual assessment scores and histology scores generated by blinded and non-blinded assessors and the robustness and generalizability of results by conducting a multi-laboratory study. MATERIALS AND METHODS The experiment was terminated on day 26 after 11 days (days 15-25) of voluntarily ingested buprenorphine and 7 days of gavage delivered indomethacin treatment (days 19-25). The treatment effects were assessed on the last day of the study, relying on body weight assessment, serum concentrations of α1- acid glycoprotein, and assessment of affected hind paws swelling, in-life and post mortem. RESULTS Across two laboratories, the combined analgesic treatments had minimal effects on the measured model parameters indicating that multimodal treatment did not affect the translatability of the model. We found an improvement in clinical scores (a negative change in scores) in nearly all medicated animals when scored informed, whereas it was essentially 50:50 for the blinded scorings and no difference between the blinded and informed histological scoring. CONCLUSION The present results support the use of more effective analgesic treatment regimens and the good practice recommendations advocating blinding as a mandatory practice in conduct of preclinical in vivo efficacy studies. In spite of minor differences between results obtained at the two sites, there was good agreement between them indicating robustness of the AIA model.
Collapse
Affiliation(s)
- Dasa Seveljevic-Jaran
- In Vivo Pharmacology and Toxicology Department and Toxicology and Laboratory Animal Science Department, Selvita Ltd., Zagreb, Croatia;
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maja Antolic
- In Vivo Pharmacology and Toxicology Department and Toxicology and Laboratory Animal Science Department, Selvita Ltd., Zagreb, Croatia
| | - Anja Ognjenovic
- In Vivo Pharmacology and Toxicology Department and Toxicology and Laboratory Animal Science Department, Selvita Ltd., Zagreb, Croatia
| | - Otto Kalliokoski
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klas S P Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jann Hau
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
McDougald WA, Mannheim JG. Understanding the importance of quality control and quality assurance in preclinical PET/CT imaging. EJNMMI Phys 2022; 9:77. [PMID: 36315337 PMCID: PMC9622967 DOI: 10.1186/s40658-022-00503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
The fundamental principle of experimental design is to ensure efficiency and efficacy of the performed experiments. Therefore, it behoves the researcher to gain knowledge of the technological equipment to be used. This should include an understanding of the instrument quality control and assurance requirements to avoid inadequate or spurious results due to instrumentation bias whilst improving reproducibility. Here, the important role of preclinical positron emission tomography/computed tomography and the scanner's required quality control and assurance is presented along with the suggested guidelines for quality control and assurance. There are a multitude of factors impeding the continuity and reproducibility of preclinical research data within a single laboratory as well as across laboratories. A more robust experimental design incorporating validation or accreditation of the scanner performance can reduce inconsistencies. Moreover, the well-being and welfare of the laboratory animals being imaged is prime justification for refining experimental designs to include verification of instrumentation quality control and assurance. Suboptimal scanner performance is not consistent with the 3R principle (Replacement, Reduction, and Refinement) and potentially subjects animals to unnecessary harm. Thus, quality assurance and control should be of paramount interest to any scientist conducting animal studies. For this reason, through this work, we intend to raise the awareness of researchers using PET/CT regarding quality control/quality assurance (QC/QA) guidelines and instil the importance of confirming that these are routinely followed. We introduce a basic understanding of the PET/CT scanner, present the purpose of QC/QA as well as provide evidence of imaging data biases caused by lack of QC/QA. This is shown through a review of the literature, QC/QA accepted standard protocols and our research. We also want to encourage researchers to have discussions with the PET/CT facilities manager and/or technicians to develop the optimal designed PET/CT experiment for obtaining their scientific objective. Additionally, this work provides an easy gateway to multiple resources not only for PET/CT knowledge but for guidelines and assistance in preclinical experimental design to enhance scientific integrity of the data and ensure animal welfare.
Collapse
Affiliation(s)
- Wendy A. McDougald
- grid.4305.20000 0004 1936 7988BHF-Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Edinburgh Preclinical Imaging (EPI), Edinburgh Imaging, University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Julia G. Mannheim
- grid.10392.390000 0001 2190 1447Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard-Karls University Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
9
|
Bruckner T, Wieschowski S, Heider M, Deutsch S, Drude N, Tölch U, Bleich A, Tolba R, Strech D. Measurement challenges and causes of incomplete results reporting of biomedical animal studies: Results from an interview study. PLoS One 2022; 17:e0271976. [PMID: 35960759 PMCID: PMC9374215 DOI: 10.1371/journal.pone.0271976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Existing evidence indicates that a significant amount of biomedical research involving animals remains unpublished. At the same time, we lack standards for measuring the extent of results reporting in animal research. Publication rates may vary significantly depending on the level of measurement such as an entire animal study, individual experiments within a study, or the number of animals used. Methods Drawing on semi-structured interviews with 18 experts and qualitative content analysis, we investigated challenges and opportunities for the measurement of incomplete reporting of biomedical animal research with specific reference to the German situation. We further investigate causes of incomplete reporting. Results The in-depth expert interviews revealed several reasons for why incomplete reporting in animal research is difficult to measure at all levels under the current circumstances. While precise quantification based on regulatory approval documentation is feasible at the level of entire studies, measuring incomplete reporting at the more individual experiment and animal levels presents formidable challenges. Expert-interviews further identified six drivers of incomplete reporting of results in animal research. Four of these are well documented in other fields of research: a lack of incentives to report non-positive results, pressures to ‘deliver’ positive results, perceptions that some data do not add value, and commercial pressures. The fifth driver, reputational concerns, appears to be far more salient in animal research than in human clinical trials. The final driver, socio-political pressures, may be unique to the field. Discussion Stakeholders in animal research should collaborate to develop a clear conceptualisation of complete reporting in animal research, facilitate valid measurements of the phenomenon, and develop incentives and rewards to overcome the causes for incomplete reporting.
Collapse
Affiliation(s)
- Till Bruckner
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité –Universitätsmedizin, Berlin, Germany
- Institute for Ethics, History and Philosophy of Medicine, Hannover Medical School, Hannover, Germany
| | - Susanne Wieschowski
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité –Universitätsmedizin, Berlin, Germany
- Institute for Ethics, History and Philosophy of Medicine, Hannover Medical School, Hannover, Germany
| | - Miriam Heider
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Susanne Deutsch
- Institute for Laboratory Animal Science, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Natascha Drude
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité –Universitätsmedizin, Berlin, Germany
| | - Ulf Tölch
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité –Universitätsmedizin, Berlin, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - René Tolba
- Institute for Laboratory Animal Science, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Daniel Strech
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité –Universitätsmedizin, Berlin, Germany
- Institute for Ethics, History and Philosophy of Medicine, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
10
|
Williams JL, Chu HC, Lown MK, Daniel J, Meckl RD, Patel D, Ibrahim R. Weaknesses in Experimental Design and Reporting Decrease the Likelihood of Reproducibility and Generalization of Recent Cardiovascular Research. Cureus 2022; 14:e21086. [PMID: 35155034 PMCID: PMC8825449 DOI: 10.7759/cureus.21086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Recent evidence indicates that many clinical and preclinical studies are not reproducible. Prominent causes include design and implementation issues, low statistical power, unintentional bias, and incomplete reporting in the published literature. The primary goal of this study was to assess the quality of published research in three prominent cardiovascular research journals by examining statistical power and assessing the adherence to augmented ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments). For unpaired t-tests, the average median power for a 20% and 50% change was 0.27 ± 0.06 and 0.88 ± 0.08, respectively. For analysis of guidelines, 40 categories were assessed with a 0-2 scale. Although many strengths were observed, several key elements that were needed for reproducibility were inadequate, including differentiation of primary and secondary outcomes, power calculations for group size, allocation methods, use of randomization and blinding, checks for normality, reports of attrition, and adverse events of subjects, and assessment of bias. A secondary goal was to examine whether a required checklist improved the quality of reporting; those results indicated that a checklist improved compliance and quality of reporting, but adequacy levels in key categories were still too low. Overall, the findings of this study indicated that the probability for reproducibility of many clinical and preclinical cardiovascular research studies was low because of incomplete reporting, low statistical power, and lack of research practices that decrease experimental bias. Expansion of group sizes to increase power, use of detailed checklists, and closer monitoring for checklist adherence by editors and journals should remediate many of these deficits and increase the likelihood of reproducibility.
Collapse
Affiliation(s)
- John L Williams
- College of Osteopathic Medicine, University of New England, Biddeford, USA
| | - Hsini Cindy Chu
- College of Osteopathic Medicine, University of New England, Biddeford, USA
| | - Marissa K Lown
- College of Osteopathic Medicine, University of New England, Biddeford, USA
| | - Joseph Daniel
- College of Osteopathic Medicine, University of New England, Biddeford, USA
| | - Renate D Meckl
- College of Osteopathic Medicine, University of New England, Biddeford, USA
| | - Darshit Patel
- College of Osteopathic Medicine, University of New England, Biddeford, USA
| | - Radwa Ibrahim
- College of Osteopathic Medicine, University of New England, Biddeford, USA
| |
Collapse
|
11
|
Affiliation(s)
- Mark Yarborough
- Bioethics Program, University of California Davis, Sacramento, California, USA
| |
Collapse
|
12
|
Animal Research that Respects Animal Rights: Extending Requirements for Research with Humans to Animals. Camb Q Healthc Ethics 2022; 31:59-72. [PMID: 35049455 DOI: 10.1017/s0963180121000499] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this article is to show that animal rights are not necessarily at odds with the use of animals for research. If animals hold basic moral rights similar to those of humans, then we should consequently extend the ethical requirements guiding research with humans to research with animals. The article spells out how this can be done in practice by applying the seven requirements for ethical research with humans proposed by Ezekiel Emanuel, David Wendler, and Christine Grady to animal research. These requirements are (1) social value, (2) scientific validity, (3) independent review, (4) fair subject selection, (5) favorable risk-benefit ratio, (6) informed consent, and (7) respect for research subjects. In practice, this means that we must reform the practice of animal research to make it more similar to research with humans, rather than completely abolish the former. Indeed, if we ban animal research altogether, then we would also deprive animals of its potential benefits-which would be ethically problematic.
Collapse
|
13
|
Kerschbaum S, Wegrostek C, Riegel E, Czerny T. Senescence in a cell culture model for burn wounds. Exp Mol Pathol 2021; 122:104674. [PMID: 34437877 DOI: 10.1016/j.yexmp.2021.104674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/25/2021] [Accepted: 08/15/2021] [Indexed: 11/29/2022]
Abstract
Thermal injuries cause severe damage on the cellular and tissue level and are considered especially challenging in the clinical routine. Complex interactions of different cell types and pathways dictate the formation of burn wounds. Thus, complications like burn wound progression, where so far viable tissue becomes necrotic and the size and depth of the wound increases, are difficult to explain, mainly due to the lack of simple model systems. We tested the behavior of human fibroblasts after heat treatment. A prominent response of the cells is to activate the heat shock response (HSR), which is one of the primary emergency mechanisms of the cell to proteotoxic stress factors such as heat. However, after a powerful but not lethal heat shock we observed a delayed activation of the HSR. Extending this model system, we further investigated these static cells and observed the emergence of senescent cells. In particular, the cells became β-galactosidase positive, increased p16 levels and developed a senescence-associated secretory phenotype (SASP). The secretion of cytokines like IL-6 is reminiscent of burn wounds and generates a bystander effect in so far non-senescent cells. In agreement with burn wounds, a wave of cytokine secretion enhanced by invading immune cells could explain complications like burn wound progression. A simple cell culture model can thus be applied for the analysis of highly complex conditions in human tissues.
Collapse
Affiliation(s)
- Sarah Kerschbaum
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Christina Wegrostek
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria.
| |
Collapse
|
14
|
Robust preclinical evidence in somatic cell genome editing: A key driver of responsible and efficient therapeutic innovations. Drug Discov Today 2021; 26:2238-2243. [PMID: 34161846 DOI: 10.1016/j.drudis.2021.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022]
Abstract
Somatic cell genome editing (SCGE) is highly promising for therapeutic innovation. This study demonstrates that the majority of 46 preclinical SCGE studies discussed in reviews as particularly promising for clinical translation do not report on key elements for robust and confirmatory research practices: randomization, blinding, sample size calculation, data handling, pre-registration, multi-centric study design, and independent confirmation. We present the here-examined reporting standards and the new National Institutes of Health (NIH) funding criteria for SCGE research as a viable solution to protect this promising field from backlashes. We argue that the implementation of the novel methodological standards provides the opportunity for SCGE research to become a lighthouse example for trustworthy and useful translational research.
Collapse
|
15
|
Eggel M, Würbel H. Internal consistency and compatibility of the 3Rs and 3Vs principles for project evaluation of animal research. Lab Anim 2021; 55:233-243. [PMID: 33215575 PMCID: PMC8182293 DOI: 10.1177/0023677220968583] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/04/2020] [Indexed: 12/27/2022]
Abstract
Using animals for research raises ethical concerns that are addressed in project evaluation by weighing expected harm to animals against expected benefit to society. A harm-benefit analysis (HBA) relies on two preconditions: (a) the study protocol is scientifically suitable and (b) the use of (sentient) animals and harm imposed on them are necessary for achieving the study's aims. The 3Rs (Replace, Reduce and Refine) provide a guiding principle for evaluating whether the use of animals, their number and the harm imposed on them are necessary. A similar guiding principle for evaluating whether a study protocol is scientifically suitable has recently been proposed: the 3Vs principle referring to the three main aspects of scientific validity in animal research (construct, internal and external validity). Here, we analyse the internal consistency and compatibility of these two principles, address conflicts within and between the 3Rs and 3Vs principles and discuss their implications for project evaluation. We show that a few conflicts and trade-offs exist, but that these can be resolved either by appropriate study designs or by ethical deliberation in the HBA. In combination, the 3Vs, 3Rs and the HBA thus offer a coherent framework for a logically structured evaluation procedure to decide about the legitimacy of animal research projects.
Collapse
Affiliation(s)
- Matthias Eggel
- Institute for Biomedical Ethics and History of
Medicine, University of Zurich, Switzerland
| | - Hanno Würbel
- Animal Welfare Division, Veterinary Public Health
Institute University of Bern, Switzerland
| |
Collapse
|
16
|
Jörgensen S, Lindsjö J, Weber EM, Röcklinsberg H. Reviewing the Review: A Pilot Study of the Ethical Review Process of Animal Research in Sweden. Animals (Basel) 2021; 11:708. [PMID: 33807898 PMCID: PMC8002130 DOI: 10.3390/ani11030708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
The use of animals in research entails a range of societal and ethical issues, and there is widespread consensus that animals are to be kept safe from unnecessary suffering. Therefore, harm done to animals in the name of research has to be carefully regulated and undergo ethical review for approval. Since 2013, this has been enforced within the European Union through Directive 2010/63/EU on the protection of animals used for scientific purposes. However, critics argue that the directive and its implementation by member states do not properly consider all aspects of animal welfare, which risks causing unnecessary animal suffering and decreased public trust in the system. In this pilot study, the ethical review process in Sweden was investigated to determine whether or not the system is in fact flawed, and if so, what may be the underlying cause of this. Through in-depth analysis of 18 applications and decisions of ethical reviews, we found that there are recurring problems within the ethical review process in Sweden. Discrepancies between demands set by legislation and the structure of the application form lead to submitted information being incomplete by design. In turn, this prevents the Animal Ethics Committees from being able to fulfill their task of performing a harm-benefit analysis and ensuring Replacement, Reduction, and Refinement (the 3Rs). Results further showed that a significant number of applications failed to meet legal requirements regarding content. Similarly, no Animal Ethics Committee decision contained any account of evaluation of the 3Rs and a majority failed to include harm-benefit analysis as required by law. Hence, the welfare may be at risk, as well as the fulfilling of the legal requirement of only approving "necessary suffering". We argue that the results show an unacceptably low level of compliance in the investigated applications with the legal requirement of performing both a harm-benefit analysis and applying the 3Rs within the decision-making process, and that by implication, public insight through transparency is not achieved in these cases. In order to improve the ethical review, the process needs to be restructured, and the legal demands put on both the applicants and the Animal Ethics Committees as such need to be made clear. We further propose a number of improvements, including a revision of the application form. We also encourage future research to further investigate and address issues unearthed by this pilot study.
Collapse
Affiliation(s)
- Svea Jörgensen
- Department of Animal Environment and Health (HMH), Swedish University of Agricultural Sciences, P.O. Box 7068, 750 07 Uppsala, Sweden; (S.J.); (J.L.)
| | - Johan Lindsjö
- Department of Animal Environment and Health (HMH), Swedish University of Agricultural Sciences, P.O. Box 7068, 750 07 Uppsala, Sweden; (S.J.); (J.L.)
| | - Elin M. Weber
- Department of Animal Environment and Health (HMH), Swedish University of Agricultural Sciences, P.O. Box 234, 532 23 Skara, Sweden;
| | - Helena Röcklinsberg
- Department of Animal Environment and Health (HMH), Swedish University of Agricultural Sciences, P.O. Box 7068, 750 07 Uppsala, Sweden; (S.J.); (J.L.)
| |
Collapse
|
17
|
Yarborough M. Using the concept of "deserved trust" to strengthen the value and integrity of biomedical research. Account Res 2020; 28:456-469. [PMID: 33233949 DOI: 10.1080/08989621.2020.1855427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It is commonplace for science leaders and others to claim that the future of biomedical research rests in large part upon the public's trust. If true, it behooves the biomedical research community to understand how it avoids taking chances with that trust. This commentary, which builds upon comments of noted trust scholar Russell Hardin about how best to enjoy trust, assumes that the key to being trusted is deserving to be trusted. Thus, it proposes using "deserved trust" to identify ways that the public's trust in biomedical research could be better supported. Employing deserved trust to support the public's trust leads us to consider what it is that the biomedical research community should be trusted to do, examine the evidence about the effectiveness of current safeguards meant to assure that those things routinely get done, and identify new ways to equip individual researchers, research teams, and research institutions to assure that the public's trust in their research is deserved rather than misplaced.
Collapse
Affiliation(s)
- Mark Yarborough
- Bioethics Program, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
18
|
Steiner AR, Rousseau-Blass F, Schroeter A, Hartnack S, Bettschart-Wolfensberger R. Systematic Review: Anaesthetic Protocols and Management as Confounders in Rodent Blood Oxygen Level Dependent Functional Magnetic Resonance Imaging (BOLD fMRI)-Part A: Effects of Changes in Physiological Parameters. Front Neurosci 2020; 14:577119. [PMID: 33192261 PMCID: PMC7646331 DOI: 10.3389/fnins.2020.577119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/10/2020] [Indexed: 12/09/2022] Open
Abstract
Background: To understand brain function in health and disease, functional magnetic resonance imaging (fMRI) is widely used in rodent models. Because animals need to be immobilised for image acquisition, fMRI is commonly performed under anaesthesia. The choice of anaesthetic protocols and may affect fMRI readouts, either directly or via changing physiological balance, and thereby threaten the scientific validity of fMRI in rodents. Methods: The present study systematically reviewed the literature investigating the influence of different anaesthesia regimes and changes in physiological parameters as confounders of blood oxygen level dependent (BOLD) fMRI in rats and mice. Four databases were searched, studies selected according to pre-defined criteria, and risk of bias assessed for each study. Results are reported in two separate articles; this part of the review focuses on effects of changes in physiological parameters. Results: A total of 121 publications was included, of which 49 addressed effects of changes in physiological parameters. Risk of bias was high in all included studies. Blood oxygenation [arterial partial pressure of oxygen (paO2)], ventilation [arterial partial pressure of carbon dioxide (paCO2)] and arterial blood pressure affected BOLD fMRI readouts across various experimental paradigms. Conclusions: Blood oxygenation, ventilation and arterial blood pressure should be monitored and maintained at stable physiological levels throughout experiments. Appropriate anaesthetic management and monitoring are crucial to obtain scientifically valid, reproducible results from fMRI studies in rodent models.
Collapse
Affiliation(s)
- Aline R. Steiner
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Frédérik Rousseau-Blass
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Aileen Schroeter
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Regula Bettschart-Wolfensberger
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Zhou XT, Zou JJ, Ao C, Gong DY, Chen X, Ma YR. Renal protective effects of astragaloside IV, in diabetes mellitus kidney damage animal models: A systematic review, meta-analysis. Pharmacol Res 2020; 160:105192. [PMID: 32942018 DOI: 10.1016/j.phrs.2020.105192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Astragaloside IV (ASIV) is the essential active component of astragalus that has diverse biological activities. Previous research has suggested its potentially beneficial effects on diabetic nephropathies. However, its effects and protective mechanism remain unclear. In this study, we conducted a preclinical systematic review to evaluate the efficacy and potential mechanisms of ASIV in reducing kidney damage in diabetes mellitus (DM) models. Studies were searched from nine databases until January 2020. A random-effects model was used to calculate combined standardised mean difference estimates and 95 % confidence intervals. Risk of bias of studies was assessed using the Systematic Review Center for Laboratory Animal Experimentation risk of bias tool 10-item checklist. RevMan 5.3 software was used for statistical analysis. Twenty-three studies involving 562 animals were included in the meta-analysis. Studies quality scores ranged from 2 to 5. The ASIV group induced a marked decrease in serum creatinine (P < 0.00001), blood urea nitrogen (P < 0.00001), 24-h urine protein (P < 0.00001) and pathological score (P < 0.001) compared with the control group. The determined potential mechanisms of ASIV action were relieving oxidative stress, delaying renal fibrosis, anti-apoptosis and anti-inflammatory action. We conclude that ASIV exerts renal protective effects in animals with DM through multiple signalling pathways.
Collapse
Affiliation(s)
- Xiao-Tao Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Jun-Ju Zou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Chun Ao
- Department of Nursing, Zunyi Medical and Pharmaceutical College, Zunyi, Guizhou, 563006, China
| | - Dao-Yin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Xian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China.
| | - Yue-Rong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China.
| |
Collapse
|
20
|
Reevaluating Benefits in the Moral Justification of Animal Research: A Comment on "Necessary Conditions for Morally Responsible Animal Research". Camb Q Healthc Ethics 2020; 29:131-143. [PMID: 31858941 DOI: 10.1017/s0963180119000860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In a recent paper in Cambridge Quarterly of Healthcare Ethics on the necessary conditions for morally responsible animal research David DeGrazia and Jeff Sebo claim that the key requirements for morally responsible animal research are (1) an assertion of sufficient net benefit, (2) a worthwhile-life condition, and (3) a no-unnecessary-harm condition. With regards to the assertion (or expectation) of sufficient net benefit (ASNB), the authors claim that morally responsible research offers unique benefits to humans that outweigh the costs and harms to humans and animals. In this commentary we will raise epistemic, practical, and ethical challenges to DeGrazia and Sebo's emphasis on benefits in the prospective assessment of research studies involving animals. We do not disagree with DeGrazia and Sebo that, at the theoretical level, the benefits of research justify our using animals. Our contribution intends to clarify, at the practical level, how we should understand benefits in the prospective assessment and moral justification of animal research. We argue that ASNB should be understood as an assessment of Expectation of Knowledge Production (EKP) in the prospective assessment and justification of animal research. EKP breaks down into two further claims: (1) that morally responsible research generates knowledge worth having and (2) that morally responsible research is designed and executed to produce generalizable knowledge. We understand the condition called knowledge worth having as scientists' testing a hypothesis that, whether verified or falsified, advances an important interest, and production of generalizable knowledge in terms of scientific integrity. Generalizable knowledge refers to experimental results that generalize to a larger population beyond the animals studied. Generalizable scientific knowledge is reliable, replicable, and accurately descriptive. In sum, morally responsible research will be designed and carefully executed to successfully test a hypothesis that, whether verified or falsified, advances important interests. Our formulation of EKP, crucially, does not require further showing that an experiment involving animals will produce societal benefits.
Collapse
|
21
|
Ferreira GS, Veening-Griffioen DH, Boon WPC, Moors EHM, van Meer PJK. Levelling the Translational Gap for Animal to Human Efficacy Data. Animals (Basel) 2020; 10:E1199. [PMID: 32679706 PMCID: PMC7401509 DOI: 10.3390/ani10071199] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Reports of a reproducibility crisis combined with a high attrition rate in the pharmaceutical industry have put animal research increasingly under scrutiny in the past decade. Many researchers and the general public now question whether there is still a justification for conducting animal studies. While criticism of the current modus operandi in preclinical research is certainly warranted, the data on which these discussions are based are often unreliable. Several initiatives to address the internal validity and reporting quality of animal studies (e.g., Animals in Research: Reporting In Vivo Experiments (ARRIVE) and Planning Research and Experimental Procedures on Animals: Recommendations for Excellence (PREPARE) guidelines) have been introduced but seldom implemented. As for external validity, progress has been virtually absent. Nonetheless, the selection of optimal animal models of disease may prevent the conducting of clinical trials, based on unreliable preclinical data. Here, we discuss three contributions to tackle the evaluation of the predictive value of animal models of disease themselves. First, we developed the Framework to Identify Models of Disease (FIMD), the first step to standardise the assessment, validation and comparison of disease models. FIMD allows the identification of which aspects of the human disease are replicated in the animals, facilitating the selection of disease models more likely to predict human response. Second, we show an example of how systematic reviews and meta-analyses can provide another strategy to discriminate between disease models quantitatively. Third, we explore whether external validity is a factor in animal model selection in the Investigator's Brochure (IB), and we use the IB-derisk tool to integrate preclinical pharmacokinetic and pharmacodynamic data in early clinical development. Through these contributions, we show how we can address external validity to evaluate the translatability and scientific value of animal models in drug development. However, while these methods have potential, it is the extent of their adoption by the scientific community that will define their impact. By promoting and adopting high quality study design and reporting, as well as a thorough assessment of the translatability of drug efficacy of animal models of disease, we will have robust data to challenge and improve the current animal research paradigm.
Collapse
Affiliation(s)
- Guilherme S. Ferreira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, The Netherlands; (D.H.V.-G.); (P.J.K.v.M.)
| | - Désirée H. Veening-Griffioen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, The Netherlands; (D.H.V.-G.); (P.J.K.v.M.)
| | - Wouter P. C. Boon
- Copernicus Institute of Sustainable Development, Innovation Studies, Utrecht University, 3512 JE Utrecht, The Netherlands; (W.P.C.B.); (E.H.M.M.)
| | - Ellen H. M. Moors
- Copernicus Institute of Sustainable Development, Innovation Studies, Utrecht University, 3512 JE Utrecht, The Netherlands; (W.P.C.B.); (E.H.M.M.)
| | - Peter J. K. van Meer
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3512 JE Utrecht, The Netherlands; (D.H.V.-G.); (P.J.K.v.M.)
- Medicines Evaluation Board, 3531 AH Utrecht, The Netherlands
| |
Collapse
|
22
|
Bespalov A, Steckler T, Skolnick P. Be positive about negatives-recommendations for the publication of negative (or null) results. Eur Neuropsychopharmacol 2019; 29:1312-1320. [PMID: 31753777 DOI: 10.1016/j.euroneuro.2019.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/29/2023]
Abstract
Both positive and negative (null or neutral) results are essential for the progress of science and its self-correcting nature. However, there is general reluctance to publish negative results, and this may be due a range of factors (e.g., the widely held perception that negative results are more difficult to publish, the preference to publish positive findings that are more likely to generate citations and funding for additional research). It is particularly challenging to disclose negative results that are not consistent with previously published positive data, especially if the initial publication appeared in a high impact journal. Ideally, there should be both incentives and support to reduce the costs associated with investing efforts into preparing publications with negative results. We describe here a set of criteria that can help scientists, reviewers and editors to publish technically sound, scientifically high-impact negative (or null) results originating from rigorously designed and executed studies. Proposed criteria emphasize the importance of collaborative efforts and communication among scientists (also including the authors of original publications with positive results).
Collapse
Affiliation(s)
- Anton Bespalov
- Partnership for Assessment and Accreditation of Scientific Practice, Heidelberg, Germany.
| | | | | |
Collapse
|
23
|
Wieschowski S, Biernot S, Deutsch S, Glage S, Bleich A, Tolba R, Strech D. Publication rates in animal research. Extent and characteristics of published and non-published animal studies followed up at two German university medical centres. PLoS One 2019; 14:e0223758. [PMID: 31770377 PMCID: PMC6879110 DOI: 10.1371/journal.pone.0223758] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/27/2019] [Indexed: 02/03/2023] Open
Abstract
Non-publication and publication bias in animal research is a core topic in current debates on the "reproducibility crisis" and "failure rates in clinical research". To date, however, we lack reliable evidence on the extent of non-publication in animal research. We collected a random and stratified sample (n = 210) from all archived animal study protocols of two major German UMCs (university medical centres) and tracked their results publication. The overall publication rate was 67%. Excluding doctoral theses as results publications, the publication rate decreased to 58%. We did not find substantial differences in publication rates with regard to i) the year of animal study approval, ii) the two UMCs, iii) the animal type (rodents vs. non-rodents), iv) the scope of research (basic vs. preclinical), or v) the discipline of the applicant. Via the most reliable assessment strategy currently available, our study confirms that the non-publication of results from animal studies conducted at UMCs is relatively common. The non-publication of 33% of all animal studies is problematic for the following reasons: A) the primary legitimation of animal research, which is the intended knowledge gain for the wider scientific community, B) the waste of public resources, C) the unnecessary repetition of animal studies, and D) incomplete and potentially biased preclinical evidence for decision making on launching early human trials. Results dissemination should become a professional standard for animal research. Academic institutions and research funders should develop effective policies in this regard.
Collapse
Affiliation(s)
- Susanne Wieschowski
- Institute for Ethics, History, and Philosophy of Medicine, Hannover Medical School, Hannover, Germany
| | - Svenja Biernot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Susanne Deutsch
- Institute for Laboratory Animal Science, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - René Tolba
- Institute for Laboratory Animal Science, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Daniel Strech
- Institute for Ethics, History, and Philosophy of Medicine, Hannover Medical School, Hannover, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
24
|
Smith AJ, Lilley E. The Role of the Three Rs in Improving the Planning and Reproducibility of Animal Experiments. Animals (Basel) 2019; 9:E975. [PMID: 31739641 PMCID: PMC6912437 DOI: 10.3390/ani9110975] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Training in the design of animal experiments focuses all too often on those aspects which can be approached mathematically, such as the number of animals needed to deliver a robust result, allocation of group size, and techniques such as randomization, blocking and statistical analysis. Important as they are, these are only a small part of the process of planning animal experiments. Additional key elements include refinements of housing, husbandry and procedures, health and safety, and attention at all stages to animal welfare. Advances in technology and laboratory animal science have led to improvements in care and husbandry, better provision of anesthetics and analgesics, refined methods of drug administration, greater competence in welfare assessment and application of humane endpoints. These improvements require continual dialogue between scientists, facility managers and technical staff, a practice that is a key feature of what has become known as the culture of care. This embodies a commitment to improving animal welfare, scientific quality, staff care and transparency for all stakeholders. Attention to both the physical and mental health of all those directly or indirectly involved in animal research is now an important part of the process of planning and conducting animal experiments. Efforts during the last 30 years to increase the internal and external validity of animal experiments have tended to concentrate on the production of guidelines to improve the quality of reporting animal experiments, rather than for planning them. Recently, comprehensive guidelines for planning animal studies have been published, to redress this imbalance. These will be described in this paper. Endorsement of this overarching influence of the Three R concept, by all the stakeholders, will not only reduce animal numbers and improve animal welfare, but also lead to more reliable and reproducible research which should improve translation of pre-clinical studies into tangible clinical benefit.
Collapse
Affiliation(s)
- Adrian J. Smith
- Norecopa, c/o Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway
| | - Elliot Lilley
- Science Group, Research Animals Department, RSPCA, Wilberforce Way, Southwater, West Sussex RH13 9RS, UK;
| |
Collapse
|
25
|
Fernandes JG, Franco NH, Grierson AJ, Hultgren J, Furley AJW, Olsson IAS. Methodological standards, quality of reporting and regulatory compliance in animal research on amyotrophic lateral sclerosis: a systematic review. BMJ OPEN SCIENCE 2019; 3:e000016. [PMID: 35047680 PMCID: PMC8715942 DOI: 10.1136/bmjos-2018-000016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 02/01/2023] Open
Abstract
Objectives The amyotrophic lateral sclerosis (ALS) research community was one of the first to adopt methodology guidelines to improve preclinical research reproducibility. We here present the results of a systematic review to investigate how the standards in this field changed over the 10-year period during which the guidelines were first published (2007) and updated (2010). Methods We searched for papers reporting ALS research on SOD1 (superoxide dismutase 1) mice published between 2005 and 2015 on the ISI Web of Science database, resulting in a sample of 569 papers to review, after triage. Two scores-one for methodological quality, one for regulatory compliance-were built from weighted sums of separate sets of items, and subjected to multivariable regression analysis, to assess how these related to publication year, type of study, country of origin and journal. Results Reporting standards improved over time. Of papers published after the first ALS guidelines were made public, fewer than 9% referred specifically to these. Of key research parameters, only three (genetic background, number of transgenes and group size) were reported in >50% of the papers. Information on housing conditions, randomisation and blinding was absent in over two-thirds of the papers. Group size was among the best reported parameters, but the majority reported using fewer than the recommended sample size and only two studies clearly justified group size. Conclusions General methodological standards improved gradually over a period of 8-10 years, but remained generally comparable with related fields with no specific guidelines, except with regard to severity. Only 11% of ALS studies were classified in the highest severity level (animals allowed to reach death or moribund stages), substantially below the proportion in studies of comparable neurodegenerative diseases such as Huntington's. The existence of field-specific guidelines, although a welcome indication of concern, seems insufficient to ensure adherence to high methodological standards. Other mechanisms may be required to improve methodological and welfare standards.
Collapse
Affiliation(s)
- Joana G Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nuno H Franco
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Andrew J Grierson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| | - Jan Hultgren
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Andrew J W Furley
- Bateson Centre, University of Sheffield, Sheffield, UK.,Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, UK
| | - I Anna S Olsson
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Hair K, Macleod MR, Sena ES. A randomised controlled trial of an Intervention to Improve Compliance with the ARRIVE guidelines (IICARus). Res Integr Peer Rev 2019; 4:12. [PMID: 31205756 PMCID: PMC6560728 DOI: 10.1186/s41073-019-0069-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines are widely endorsed but compliance is limited. We sought to determine whether journal-requested completion of an ARRIVE checklist improves full compliance with the guidelines. METHODS In a randomised controlled trial, manuscripts reporting in vivo animal research submitted to PLOS ONE (March-June 2015) were randomly allocated to either requested completion of an ARRIVE checklist or current standard practice. Authors, academic editors, and peer reviewers were blinded to group allocation. Trained reviewers performed outcome adjudication in duplicate by assessing manuscripts against an operationalised version of the ARRIVE guidelines that consists 108 items. Our primary outcome was the between-group differences in the proportion of manuscripts meeting all ARRIVE guideline checklist subitems. RESULTS We randomised 1689 manuscripts (control: n = 844, intervention: n = 845), of which 1269 were sent for peer review and 762 (control: n = 340; intervention: n = 332) accepted for publication. No manuscript in either group achieved full compliance with the ARRIVE checklist. Details of animal husbandry (ARRIVE subitem 9b) was the only subitem to show improvements in reporting, with the proportion of compliant manuscripts rising from 52.1 to 74.1% (X 2 = 34.0, df = 1, p = 2.1 × 10-7) in the control and intervention groups, respectively. CONCLUSIONS These results suggest that altering the editorial process to include requests for a completed ARRIVE checklist is not enough to improve compliance with the ARRIVE guidelines. Other approaches, such as more stringent editorial policies or a targeted approach on key quality items, may promote improvements in reporting.
Collapse
Affiliation(s)
- Kaitlyn Hair
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Malcolm R. Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Emily S. Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Bodden C, von Kortzfleisch VT, Karwinkel F, Kaiser S, Sachser N, Richter SH. Heterogenising study samples across testing time improves reproducibility of behavioural data. Sci Rep 2019; 9:8247. [PMID: 31160667 PMCID: PMC6547843 DOI: 10.1038/s41598-019-44705-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
The ongoing debate on the reproducibility crisis in the life sciences highlights the need for a rethinking of current methodologies. Since the trend towards ever more standardised experiments is at risk of causing highly idiosyncratic results, an alternative approach has been suggested to improve the robustness of findings, particularly from animal experiments. This concept, referred to as "systematic heterogenisation", postulates increased external validity and hence, improved reproducibility by introducing variation systematically into a single experiment. However, the implementation of this concept in practice requires the identification of suitable heterogenisation factors. Here we show that the time of day at which experiments are conducted has a significant impact on the reproducibility of behavioural differences between two mouse strains, C57BL/6J and DBA/2N. Specifically, we found remarkably varying strain effects on anxiety, exploration, and learning, depending on the testing time, i.e. morning, noon or afternoon. In a follow-up simulation approach, we demonstrate that the systematic inclusion of two different testing times significantly improved reproducibility between replicate experiments. Our results emphasise the potential of time as an effective and easy-to-handle heterogenisation factor for single-laboratory studies. Its systematic variation likely improves reproducibility of research findings and hence contributes to a fundamental issue of experimental design and conduct in laboratory animal science.
Collapse
Affiliation(s)
- Carina Bodden
- Department of Behavioural Biology, University of Münster, Münster, Germany.,Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| | - Vanessa Tabea von Kortzfleisch
- Department of Behavioural Biology, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Fabian Karwinkel
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany. .,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| |
Collapse
|
28
|
Strech D, Dirnagl U. 3Rs missing: animal research without scientific value is unethical. BMJ OPEN SCIENCE 2019; 3:bmjos-2018-000048. [PMID: 35047678 PMCID: PMC8647585 DOI: 10.1136/bmjos-2018-000048] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/04/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
The current, widely established 3R framework for the ethical use of animals in research consists of three guiding principles, that is, Replacement, Reduction and Refinement, all aiming to safeguard the overarching ethical principle of animal welfare. However, animal welfare alone does not suffice to make animal research ethical if the research does not have sufficient scientific value. The scientific value of animal studies strongly decreases if they are not sufficiently robust, if their questions have already been sufficiently addressed or if the results are selectively reported. Against this background, we argue that three guiding principles are missing, that is, Robustness, Registration and Reporting, all of which aim to safeguard and increase the scientific value of animal research. To establish a new 6R framework, we need a multistakeholder discourse to conceptualise the specific requirements of robustness, registration and reporting and to clarify responsibilities, competencies and legislation for auditing 6R compliance.
Collapse
Affiliation(s)
- Daniel Strech
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Dirnagl
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Richardson LA, Schmid SL, Bhandoola A, Harly C, Hedenström A, Laub MT, Mace GM, Sengupta P, Stock AM, Read AF, Malik HS, Estelle M, Lowell S, Kimmelman J. The PLOS Biology XV Collection: 15 Years of Exceptional Science Highlighted across 12 Months. PLoS Biol 2019; 17:e3000180. [PMID: 30811478 PMCID: PMC6411196 DOI: 10.1371/journal.pbio.3000180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/11/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Lauren A. Richardson
- Public Library of Science, San Francisco, California, United States of America
- * E-mail:
| | - Sandra L. Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Avinash Bhandoola
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Christelle Harly
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Michael T. Laub
- Department of Biology Howard Hughes Medical Institute Graduate Program in Microbiology Graduate Program in Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Georgina M. Mace
- Department of Genetics, Evolution and Environment, Center for Biodiversity and Environment Research, University College London, London, United Kingdom
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, United States of America
| | - Ann M. Stock
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States of America
| | - Andrew F. Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jonathan Kimmelman
- Studies of Translation, Ethics, and Medicine, Biomedical Ethics Unit, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Karp NA, Reavey N. Sex bias in preclinical research and an exploration of how to change the status quo. Br J Pharmacol 2018; 176:4107-4118. [PMID: 30418665 DOI: 10.1111/bph.14539] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/18/2018] [Accepted: 10/28/2018] [Indexed: 01/16/2023] Open
Abstract
There has been a revolution within clinical trials to include females in the research pipeline. However, there has been limited change in the preclinical arena; yet the research here lays the ground work for the subsequent clinical trials. Sex bias has been highlighted as one of the contributing factors to the poor translation and replicability issues undermining preclinical research. There have been multiple calls for action, and the funders of biomedical research are actively pushing the inclusion of sex as a biological variable. Here, we consider the current standard practice within the preclinical research setting, why there is a movement to include females and why the imbalance exists. We explore organizational change theory as a tool to shape strategies needed at an individual and institute level to change the status quo. The ultimate goal is to create a scientific environment in which our preclinical research automatically implements sex-sensitive approaches. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Natasha A Karp
- Quantitative Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Neil Reavey
- Council for Science and Animal Welfare, AstraZeneca, Cambridge, UK.,Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| |
Collapse
|
31
|
DeWitt DS, Hawkins BE, Dixon CE, Kochanek PM, Armstead W, Bass CR, Bramlett HM, Buki A, Dietrich WD, Ferguson AR, Hall ED, Hayes RL, Hinds SR, LaPlaca MC, Long JB, Meaney DF, Mondello S, Noble-Haeusslein LJ, Poloyac SM, Prough DS, Robertson CS, Saatman KE, Shultz SR, Shear DA, Smith DH, Valadka AB, VandeVord P, Zhang L. Pre-Clinical Testing of Therapies for Traumatic Brain Injury. J Neurotrauma 2018; 35:2737-2754. [PMID: 29756522 PMCID: PMC8349722 DOI: 10.1089/neu.2018.5778] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the large number of promising neuroprotective agents identified in experimental traumatic brain injury (TBI) studies, none has yet shown meaningful improvements in long-term outcome in clinical trials. To develop recommendations and guidelines for pre-clinical testing of pharmacological or biological therapies for TBI, the Moody Project for Translational Traumatic Brain Injury Research hosted a symposium attended by investigators with extensive experience in pre-clinical TBI testing. The symposium participants discussed issues related to pre-clinical TBI testing including experimental models, therapy and outcome selection, study design, data analysis, and dissemination. Consensus recommendations included the creation of a manual of standard operating procedures with sufficiently detailed descriptions of modeling and outcome measurement procedures to permit replication. The importance of the selection of clinically relevant outcome variables, especially related to behavior testing, was noted. Considering the heterogeneous nature of human TBI, evidence of therapeutic efficacy in multiple, diverse (e.g., diffuse vs. focused) rodent models and a species with a gyrencephalic brain prior to clinical testing was encouraged. Basing drug doses, times, and routes of administration on pharmacokinetic and pharmacodynamic data in the test species was recommended. Symposium participants agreed that the publication of negative results would reduce costly and unnecessary duplication of unsuccessful experiments. Although some of the recommendations are more relevant to multi-center, multi-investigator collaborations, most are applicable to pre-clinical therapy testing in general. The goal of these consensus guidelines is to increase the likelihood that therapies that improve outcomes in pre-clinical studies will also improve outcomes in TBI patients.
Collapse
Affiliation(s)
- Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Bridget E. Hawkins
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - C. Edward Dixon
- Department of Neurological Surgery, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cameron R. Bass
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Helen M. Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida
| | - Andras Buki
- Department of Neurosurgery, Medical University of Pécs, Pécs, Hungary
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Adam R. Ferguson
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco (UCSF), San Francisco, California
| | - Edward D. Hall
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky Medical Center, Lexington, Kentucky
| | - Ronald L. Hayes
- University of Florida, Virginia Commonwealth University, Banyan Biomarkers, Inc., Alachua, Florida
| | - Sidney R. Hinds
- United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | | | - Joseph B. Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefania Mondello
- Department of Neurosciences, University of Messina, Via Consolare Valeria, Messina, Italy
| | - Linda J. Noble-Haeusslein
- Departments of Neurology and Psychology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Samuel M. Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | | | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky
| | - Sandy R. Shultz
- Department of Medicine, Melbourne Brain Center, The University of Melbourne, Parkville, Victoria, Australia
| | - Deborah A. Shear
- Brain Trauma Neuroprotection Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| |
Collapse
|
32
|
Diaz SL. Conducting and reporting animal experimentation: Quo vadis? Eur J Neurosci 2018; 52:3493-3498. [PMID: 30058230 DOI: 10.1111/ejn.14091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/13/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022]
Abstract
Most scientific journals ask authors to include a statement in their articles that animal studies have been carried out in agreement with international regulations on the use and care of laboratory animals. This statement implies that all the experiments conducted on animals have been evaluated and accepted by an Ethical Committee and, that animal welfare has been put as a priority throughout the experimental protocol. Nevertheless, discrepancies are commonly found between the described procedures and the guidelines that are claimed to have been followed; this reveals a double dilemma. First, animal welfare is not always considered, implicating discomfort or even worse, suffering to animals involved. Secondly, revisions of manuscripts are sometimes done without taking into account ethical and regulatory aspects concerning the use of animals. Underestimation of pain or suffering, disregard for physiological parameters, and other examples recently reported in scientific journals by neuroscientists from all over the world are discussed in this article. In a period of great debate about the ethical use of animals, with society being involved and engaged in the discussion, this Neuro-Opinion intends to call the attention of researchers, ethical committee members, and journal editors about the need of strictly endorsing international regulations and placing animal welfare as the top priority.
Collapse
Affiliation(s)
- Silvina L Diaz
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, Facultad de Medicina - Universidad de Buenos Aires (UBA)Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
33
|
Würbel H. More than 3Rs: the importance of scientific validity for harm-benefit analysis of animal research. Lab Anim (NY) 2018; 46:164-166. [PMID: 28328898 DOI: 10.1038/laban.1220] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hanno Würbel
- Division of Animal Welfare, Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland
| |
Collapse
|
34
|
Yarborough M, Bredenoord A, D’Abramo F, Joyce NC, Kimmelman J, Ogbogu U, Sena E, Strech D, Dirnagl U. The bench is closer to the bedside than we think: Uncovering the ethical ties between preclinical researchers in translational neuroscience and patients in clinical trials. PLoS Biol 2018; 16:e2006343. [PMID: 29874243 PMCID: PMC6005633 DOI: 10.1371/journal.pbio.2006343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/18/2018] [Indexed: 12/11/2022] Open
Abstract
Millions of people worldwide currently suffer from serious neurological diseases and injuries for which there are few, and often no, effective treatments. The paucity of effective interventions is, no doubt, due in large part to the complexity of the disorders, as well as our currently limited understanding of their pathophysiology. The bleak picture for patients, however, is also attributable to avoidable impediments stemming from quality concerns in preclinical research that often escape detection by research regulation efforts. In our essay, we connect the dots between these concerns about the quality of preclinical research and their potential ethical impact on the patients who volunteer for early trials of interventions informed by it. We do so in hopes that a greater appreciation among preclinical researchers of these serious ethical consequences can lead to a greater commitment within the research community to adopt widely available tools and measures that can help to improve the quality of research.
Collapse
Affiliation(s)
- Mark Yarborough
- Bioethics Program, University of California Davis, Sacramento, California, United States of America
| | - Annelien Bredenoord
- Julius Centrum, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Flavio D’Abramo
- Dahlem Research School, Freie Universitat Berlin, Berlin, Germany
- Max Planck Institute for the History of Science, Berlin, Germany
| | - Nanette C. Joyce
- Bioethics Program, University of California Davis, Sacramento, California, United States of America
- Department of Physical Medicine and Rehabilitation, University of California Davis, Sacramento, California, United States of America
| | - Jonathan Kimmelman
- Studies of Translation, Ethics, and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montreal, Canada
| | - Ubaka Ogbogu
- Faculty of Law, University of Alberta, Edmonton, Canada
| | - Emily Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Strech
- Institute for Ethics, History, and Philosophy of Medicine, Medizinische Hochshule Hannover, Hannover, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
- QUEST – Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Ulrich Dirnagl
- Charité Universitätsmedizin Berlin, Berlin, Germany
- QUEST – Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
35
|
Leung V, Rousseau-Blass F, Beauchamp G, Pang DSJ. ARRIVE has not ARRIVEd: Support for the ARRIVE (Animal Research: Reporting of in vivo Experiments) guidelines does not improve the reporting quality of papers in animal welfare, analgesia or anesthesia. PLoS One 2018; 13:e0197882. [PMID: 29795636 PMCID: PMC5967836 DOI: 10.1371/journal.pone.0197882] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/08/2018] [Indexed: 11/18/2022] Open
Abstract
Poor research reporting is a major contributing factor to low study reproducibility, financial and animal waste. The ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines were developed to improve reporting quality and many journals support these guidelines. The influence of this support is unknown. We hypothesized that papers published in journals supporting the ARRIVE guidelines would show improved reporting compared with those in non-supporting journals. In a retrospective, observational cohort study, papers from 5 ARRIVE supporting (SUPP) and 2 non-supporting (nonSUPP) journals, published before (2009) and 5 years after (2015) the ARRIVE guidelines, were selected. Adherence to the ARRIVE checklist of 20 items was independently evaluated by two reviewers and items assessed as fully, partially or not reported. Mean percentages of items reported were compared between journal types and years with an unequal variance t-test. Individual items and sub-items were compared with a chi-square test. From an initial cohort of 956, 236 papers were included: 120 from 2009 (SUPP; n = 52, nonSUPP; n = 68), 116 from 2015 (SUPP; n = 61, nonSUPP; n = 55). The percentage of fully reported items was similar between journal types in 2009 (SUPP: 55.3 ± 11.5% [SD]; nonSUPP: 51.8 ± 9.0%; p = 0.07, 95% CI of mean difference -0.3-7.3%) and 2015 (SUPP: 60.5 ± 11.2%; nonSUPP; 60.2 ± 10.0%; p = 0.89, 95%CI -3.6-4.2%). The small increase in fully reported items between years was similar for both journal types (p = 0.09, 95% CI -0.5-4.3%). No paper fully reported 100% of items on the ARRIVE checklist and measures associated with bias were poorly reported. These results suggest that journal support for the ARRIVE guidelines has not resulted in a meaningful improvement in reporting quality, contributing to ongoing waste in animal research.
Collapse
Affiliation(s)
- Vivian Leung
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | - Guy Beauchamp
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Daniel S. J. Pang
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
36
|
Wieschowski S, Chin WWL, Federico C, Sievers S, Kimmelman J, Strech D. Preclinical efficacy studies in investigator brochures: Do they enable risk-benefit assessment? PLoS Biol 2018; 16:e2004879. [PMID: 29621228 PMCID: PMC5886385 DOI: 10.1371/journal.pbio.2004879] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
Human protection policies require favorable risk–benefit judgments prior to launch of clinical trials. For phase I and II trials, evidence for such judgment often stems from preclinical efficacy studies (PCESs). We undertook a systematic investigation of application materials (investigator brochures [IBs]) presented for ethics review for phase I and II trials to assess the content and properties of PCESs contained in them. Using a sample of 109 IBs most recently approved at 3 institutional review boards based at German Medical Faculties between the years 2010–2016, we identified 708 unique PCESs. We then rated all identified PCESs for their reporting on study elements that help to address validity threats, whether they referenced published reports, and the direction of their results. Altogether, the 109 IBs reported on 708 PCESs. Less than 5% of all PCESs described elements essential for reducing validity threats such as randomization, sample size calculation, and blinded outcome assessment. For most PCESs (89%), no reference to a published report was provided. Only 6% of all PCESs reported an outcome demonstrating no effect. For the majority of IBs (82%), all PCESs were described as reporting positive findings. Our results show that most IBs for phase I/II studies did not allow evaluators to systematically appraise the strength of the supporting preclinical findings. The very rare reporting of PCESs that demonstrated no effect raises concerns about potential design or reporting biases. Poor PCES design and reporting thwart risk–benefit evaluation during ethical review of phase I/II studies. To make a clinical trial ethical, regulatory agencies and institutional review boards have to judge whether the trial-related benefits (the knowledge gain) outweigh the trial-inherent risks. For early-phase human research, these risk–benefit assessments are often based on evidence from preclinical animal studies reported in so-called “investigator brochures.” However, our analysis shows that the vast majority of such investigator brochures lack sufficient information to systematically appraise the strength of the supporting preclinical findings. Furthermore, the very rare reporting of preclinical efficacy studies that demonstrated no effect raises concerns about potential design and/or reporting biases. The poor preclinical study design and reporting thwarts risk–benefit evaluation during ethical review of early human research. Regulators should develop standards for the design and reporting of preclinical efficacy studies in order to support the conduct of ethical clinical trials.
Collapse
Affiliation(s)
- Susanne Wieschowski
- Institute for Ethics, History, and Philosophy of Medicine, Hannover Medical School, Hannover, Germany
| | - William Wei Lim Chin
- Institute for Ethics, History, and Philosophy of Medicine, Hannover Medical School, Hannover, Germany
| | - Carole Federico
- Studies of Translation, Ethics, and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montreal, Québec, Canada
| | - Sören Sievers
- Institute for Ethics, History, and Philosophy of Medicine, Hannover Medical School, Hannover, Germany
| | - Jonathan Kimmelman
- Studies of Translation, Ethics, and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montreal, Québec, Canada
| | - Daniel Strech
- Institute for Ethics, History, and Philosophy of Medicine, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
37
|
Pound P, Nicol CJ. Retrospective harm benefit analysis of pre-clinical animal research for six treatment interventions. PLoS One 2018; 13:e0193758. [PMID: 29590200 PMCID: PMC5874012 DOI: 10.1371/journal.pone.0193758] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The harm benefit analysis (HBA) is the cornerstone of animal research regulation and is considered to be a key ethical safeguard for animals. The HBA involves weighing the anticipated benefits of animal research against its predicted harms to animals but there are doubts about how objective and accountable this process is. OBJECTIVES i. To explore the harms to animals involved in pre-clinical animal studies and to assess these against the benefits for humans accruing from these studies; ii. To test the feasibility of conducting this type of retrospective HBA. METHODS Data on harms were systematically extracted from a sample of pre-clinical animal studies whose clinical relevance had already been investigated by comparing systematic reviews of the animal studies with systematic reviews of human studies for the same interventions (antifibrinolytics for haemorrhage, bisphosphonates for osteoporosis, corticosteroids for brain injury, Tirilazad for stroke, antenatal corticosteroids for neonatal respiratory distress and thrombolytics for stroke). Clinical relevance was also explored in terms of current clinical practice. Harms were categorised for severity using an expert panel. The quality of the research and its impact were considered. Bateson's Cube was used to conduct the HBA. RESULTS The most common assessment of animal harms by the expert panel was 'severe'. Reported use of analgesia was rare and some animals (including most neonates) endured significant procedures with no, or only light, anaesthesia reported. Some animals suffered iatrogenic harms. Many were kept alive for long periods post-experimentally but only 1% of studies reported post-operative care. A third of studies reported that some animals died prior to endpoints. All the studies were of poor quality. Having weighed the actual harms to animals against the actual clinical benefits accruing from these studies, and taking into account the quality of the research and its impact, less than 7% of the studies were permissible according to Bateson's Cube: only the moderate bisphosphonate studies appeared to minimise harms to animals whilst being associated with benefit for humans. CONCLUSIONS This is the first time the accountability of the HBA has been systematically explored across a range of pre-clinical animal studies. The regulatory systems in place when these studies were conducted failed to safeguard animals from severe suffering or to ensure that only beneficial, scientifically rigorous research was conducted. Our findings indicate a pressing need to: i. review regulations, particularly those that permit animals to suffer severe harms; ii. reform the processes of prospectively assessing pre-clinical animal studies to make them fit for purpose; and iii. systematically evaluate the benefits of pre-clinical animal research to permit a more realistic assessment of its likely future benefits.
Collapse
Affiliation(s)
- Pandora Pound
- Population Health Sciences, University of Bristol, Canynge Hall, Bristol, United Kingdom
| | - Christine J. Nicol
- School of Veterinary Science, University of Bristol, Langford House, Langford, United Kingdom
| |
Collapse
|
38
|
Abstract
Translational failures and replication issues of published research are undermining preclinical research and, if the outcomes are questionable, raise ethical implications over the continued use of animals. Standardization of procedures, environmental conditions, and genetic background has traditionally been proposed as the gold standard approach, as it reduces variability, thereby enhancing sensitivity and supporting reproducibility when the environment is defined precisely. An alternative view is that standardization can identify idiosyncratic effects and hence decrease reproducibility. In support of this alternative view, Voelkl and colleagues present evidence from resampling a large quantity of research data exploring a variety of treatments. They demonstrate that by implementing multi-laboratory experiments with as few as two sites, we can increase reproducibility by embracing variation without increasing the sample size.
Collapse
Affiliation(s)
- Natasha A. Karp
- Quantitative Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Abstract
Academic medicine hinges on high-quality results from research. Surgeon scientists spend their career acquiring grants, writing papers, and educating a next generation of scientists. The real question is how well are we at playing this game? Does our research change surgical practice or affect patient care or government policy? Ideally, published research does and will continue to shape the way care is delivered. Key questions remain, however; what is the return on research investment in orthopaedics? How can surgeons decide which "evidence" matters, and does practice-change only refer to Level I evidence (randomized trials)? This review considers all these questions.
Collapse
|
40
|
Khoo SYS. Justifiability and Animal Research in Health: Can Democratisation Help Resolve Difficulties? Animals (Basel) 2018; 8:E28. [PMID: 29443894 PMCID: PMC5836036 DOI: 10.3390/ani8020028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Current animal research ethics frameworks emphasise consequentialist ethics through cost-benefit or harm-benefit analysis. However, these ethical frameworks along with institutional animal ethics approval processes cannot satisfactorily decide when a given potential benefit is outweighed by costs to animals. The consequentialist calculus should, theoretically, provide for situations where research into a disease or disorder is no longer ethical, but this is difficult to determine objectively. Public support for animal research is also falling as demand for healthcare is rising. Democratisation of animal research could help resolve these tensions through facilitating ethical health consumerism or giving the public greater input into deciding the diseases and disorders where animal research is justified. Labelling drugs to disclose animal use and providing a plain-language summary of the role of animals may help promote public understanding and would respect the ethical beliefs of objectors to animal research. National animal ethics committees could weigh the competing ethical, scientific, and public interests to provide a transparent mandate for animal research to occur when it is justifiable and acceptable. Democratic processes can impose ethical limits and provide mandates for acceptable research while facilitating a regulatory and scientific transition towards medical advances that require fewer animals.
Collapse
Affiliation(s)
- Shaun Yon-Seng Khoo
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
41
|
Stevens KN, Asher L, Griffin K, Friel M, O'Connell N, Collins LM. A comparison of inferential analysis methods for multilevel studies: Implications for drawing conclusions in animal welfare science. Appl Anim Behav Sci 2017. [DOI: 10.1016/j.applanim.2017.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
The Road to Hell Is Paved with Good Intentions: Why Harm-Benefit Analysis and Its Emphasis on Practical Benefit Jeopardizes the Credibility of Research. Animals (Basel) 2017; 7:ani7090070. [PMID: 28892015 PMCID: PMC5615301 DOI: 10.3390/ani7090070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The European legislation on project evaluation of animal research has recently changed. Every procedure on live non-human vertebrates and cephalopods has to be approved in a project evaluation (harm–benefit analysis (HBA)) that weighs the inflicted harms on animals against potential prospective benefits. Recent publications on the HBA prioritise “societal benefits” that have a foreseeable, positive impact on humans, animals, or the environment over gaining knowledge (e.g., basic research). However, we argue that whether potential prospective societal benefits are realized is (a) impossible to predict and (b) exceeds the scope and responsibility of researchers. Furthermore, the emphasis on practical benefits has the drawback of driving researchers into speculation on the practical benefit of their research and, therefore, into promising too much. Repeated failure to deliver proclaimed practical benefits will lead to a loss of trust and credibility in research. The concepts of benefit and benefit assessment in the HBA, as well as the HBA itself, require re-evaluation in a spirit that embraces the value of knowledge in our society. Research projects should be measured by the quality of the research they perform and by the contributions they make to a specific field of research or research program. Only then can promises regarding benefits (in terms of knowledge) be kept and continued public trust ensured. Time and again, scientific knowledge has been utilized to great benefit for humans, animals, and the environment. The HBA, as it currently stands, tends to turn this idea upside down and implies that research is of value only if the resulting findings bring about direct practical benefits, which science itself can neither provide nor guarantee. The road to hell is, as the saying goes, paved with good intentions. Abstract It is our concern that European Union Directive 2010/63/EU with its current project evaluation of animal research in the form of a harm–benefit analysis may lead to an erosion of the credibility of research. The HBA assesses whether the inflicted harm on animals is outweighed by potential prospective benefits. Recent literature on prospective benefit analysis prioritizes “societal benefits” that have a foreseeable, positive impact on humans, animals, or the environment over benefit in the form of knowledge. In this study, we will argue that whether practical benefits are realized is (a) impossible to predict and (b) exceeds the scope and responsibility of researchers. Furthermore, we believe that the emphasis on practical benefits has the drawback of driving researchers into speculation on the societal benefit of their research and, therefore, into promising too much, thereby leading to a loss of trust and credibility. Thus, the concepts of benefit and benefit assessment in the HBA require a re-evaluation in a spirit that embraces the value of knowledge in our society. The generation of scientific knowledge has been utilised to great benefit for humans, animals, and the environment. The HBA, as it currently stands, tends to turn this idea upside down and implies that research is of value only if the resulting findings bring about immediate societal benefit.
Collapse
|
43
|
Systematic heterogenization for better reproducibility in animal experimentation. Lab Anim (NY) 2017; 46:343-349. [DOI: 10.1038/laban.1330] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/15/2017] [Indexed: 11/09/2022]
|
44
|
Grimm H, Eggel M. White paper and colourful language: Toward a realistic view of animal research. Altern Lab Anim 2017; 45:101-103. [PMID: 28598195 DOI: 10.1177/026119291704500207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ostensibly high scientific standards and the promise of short-term benefits are significant challenges for animal research
Collapse
Affiliation(s)
- Herwig Grimm
- Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Matthias Eggel
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Collins A, Ross J, Lang SH. A systematic review of the asymmetric inheritance of cellular organelles in eukaryotes: A critique of basic science validity and imprecision. PLoS One 2017; 12:e0178645. [PMID: 28562636 PMCID: PMC5451095 DOI: 10.1371/journal.pone.0178645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/16/2017] [Indexed: 01/03/2023] Open
Abstract
We performed a systematic review to identify all original publications describing the asymmetric inheritance of cellular organelles in normal animal eukaryotic cells and to critique the validity and imprecision of the evidence. Searches were performed in Embase, MEDLINE and Pubmed up to November 2015. Screening of titles, abstracts and full papers was performed by two independent reviewers. Data extraction and validity were performed by one reviewer and checked by a second reviewer. Study quality was assessed using the SYRCLE risk of bias tool, for animal studies and by developing validity tools for the experimental model, organelle markers and imprecision. A narrative data synthesis was performed. We identified 31 studies (34 publications) of the asymmetric inheritance of organelles after mitotic or meiotic division. Studies for the asymmetric inheritance of centrosomes (n = 9); endosomes (n = 6), P granules (n = 4), the midbody (n = 3), mitochondria (n = 3), proteosomes (n = 2), spectrosomes (n = 2), cilia (n = 2) and endoplasmic reticulum (n = 2) were identified. Asymmetry was defined and quantified by variable methods. Assessment of the statistical reliability of the results indicated only two studies (7%) were judged to have low concern, the majority of studies (77%) were 'unclear' and five (16%) were judged to have 'high concerns'; the main reasons were low technical repeats (<10). Assessment of model validity indicated that the majority of studies (61%) were judged to be valid, ten studies (32%) were unclear and two studies (7%) were judged to have 'high concerns'; both described 'stem cells' without providing experimental evidence to confirm this (pluripotency and self-renewal). Assessment of marker validity indicated that no studies had low concern, most studies were unclear (96.5%), indicating there were insufficient details to judge if the markers were appropriate. One study had high concern for marker validity due to the contradictory results of two markers for the same organelle. For most studies the validity and imprecision of results could not be confirmed. In particular, data were limited due to a lack of reporting of interassay variability, sample size calculations, controls and functional validation of organelle markers. An evaluation of 16 systematic reviews containing cell assays found that only 50% reported adherence to PRISMA or ARRIVE reporting guidelines and 38% reported a formal risk of bias assessment. 44% of the reviews did not consider how relevant or valid the models were to the research question. 75% reviews did not consider how valid the markers were. 69% of reviews did not consider the impact of the statistical reliability of the results. Future systematic reviews in basic or preclinical research should ensure the rigorous reporting of the statistical reliability of the results in addition to the validity of the methods. Increased awareness of the importance of reporting guidelines and validation tools is needed for the scientific community.
Collapse
Affiliation(s)
- Anne Collins
- Department of Biology, University of York, Heslington, United Kingdom
| | | | | |
Collapse
|
46
|
|