1
|
Wang D, Li D, Mirifar A, Zhou C, Luan M. The neural dynamics of integrating prior and kinematic information during action anticipation in sport. Neuroimage 2025; 315:121291. [PMID: 40412671 DOI: 10.1016/j.neuroimage.2025.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 05/15/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025] Open
Abstract
Effective action anticipation in sports hinges on the integration of prior knowledge and kinematic cues, enabling athletes to respond swiftly and accurately in real-time scenarios. However, the neural mechanisms supporting this integrative process remain insufficiently understood. This study addressed this gap by using electroencephalography (EEG), combined with both multivariate and univariate analyses, to investigate how expert basketball players and non-athlete controls process prior and kinematic information during a sport-specific action anticipation task. Eighty-five participants (44 experts and 41 controls) were asked to predict the outcomes of basketball free throws presented via video clips, either with or without outcome-based prior information cues. Multivariate pattern classification and contingent negative variation (CNV) analyses revealed distinct anticipatory strategies between groups, with experts predominantly relying on kinematic information, whereas controls showed greater sensitivity to prior information. Additionally, time-frequency analysis of alpha-band activity indicated stronger desynchronization in experts, reflecting enhanced cortical engagement during kinematic processing. Notably, alpha ERD was significantly stronger for incongruent trials in the later phase of the task, suggesting increased cortical engagement when resolving conflicts between prior expectations and observed actions. These findings advance our understanding of the temporal dynamics and neural mechanisms underlying action anticipation, and highlight the value of combining EEG with multivariate decoding approaches to characterize individual differences in predictive processing.
Collapse
Affiliation(s)
- Danlei Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Dongwei Li
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Arash Mirifar
- Laboratory for Brain, Body, & Behavior, Department of Psychology, University of Florida, Gainesville, Florida, 32601, USA
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, China; Key Laboratory of Sports Cognition Assessment and Regulation of the General Administration of Sport of China, Shanghai University of Sport, Shanghai, China; Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China
| | - Mengkai Luan
- School of Psychology, Shanghai University of Sport, Shanghai, China; Key Laboratory of Sports Cognition Assessment and Regulation of the General Administration of Sport of China, Shanghai University of Sport, Shanghai, China; Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
2
|
Mondok C, Wiener M. A coupled oscillator model predicts the effect of neuromodulation and a novel human tempo-matching bias. J Neurophysiol 2025; 133:1607-1617. [PMID: 40298211 DOI: 10.1152/jn.00348.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/10/2024] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Humans are known to exhibit endogenous neural oscillations in response to rhythmic stimuli that are phase-locked and frequency matched to those stimuli, a process known as entrainment. Yet, whether entrainment, as measured by electrophysiological recordings, reflects actual processing of rhythms or merely a reflection of the periodic nature of the stimulus is debated. Prior evidence for entrainment as a perceptual phenomenon comes from studies requiring subjects to listen to, compare sequentially, or detect features in rhythmic stimuli. However, one paradigm so far not used is one where subjects must listen to two simultaneous rhythms at different frequencies and adjust them to match. Here, human participants performed this task during EEG recordings (experiment 1), demonstrating spectral peaks at both tempo frequencies at frontocentral electrodes that shifted into alignment over the course of each trial. Behaviorally, participants tended to anchor the matched tempo to the starting comparison frequency, such that they underestimated the tempo for slower initial conditions and overestimated for faster initial conditions. A model of phase-coupled oscillators, in which both tempos were pulled toward one another, replicated both effects. This model further predicted that by enhancing the coupling strength of the constant tempo oscillator, both bias effects could be reduced. To test this, a second group of subjects performed the task while receiving 2 Hz transcranial alternating current stimulation (tACS) to the frontocentral region. Consistent with model predictions, tACS attenuated both behavioral effects, particularly for initially slower conditions. These results support entrainment as an endogenous process that mediates beat perception.NEW & NOTEWORTHY This work proposes how humans perceive the difference between two simultaneously presented tempos and bring them into perceived synchrony. EEG data provide evidence of entrainment to both tempos that move into alignment, and transcranial alternating current stimulation (tACS) data provide causal evidence that strengthening one tempo improves performance.
Collapse
Affiliation(s)
- Chloe Mondok
- Department of Psychology, George Mason University, Fairfax, Virginia, United States
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, Virginia, United States
| |
Collapse
|
3
|
Ren R, Yu Y, Tang X, Suzumura S, Ejima Y, Wu J, Yang J. Electrophysiological evidence for the effect of tactile temporal prediction. Neuropsychologia 2025; 210:109095. [PMID: 39961525 DOI: 10.1016/j.neuropsychologia.2025.109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Predicting the timing of incoming information allows the brain to optimize information processing in dynamic environments. Temporal predictions have been shown to facilitate processing of events at predicted time points. Little is still known about how temporal predictions based on rhythm are neurally implemented and affect performance in tactile modality. Here, we manipulated the interstimulus interval to examine the mechanisms underlying the tactile temporal predictions. Using event-related potential (ERPs) technology, we looked at the effect of temporal prediction on tactile processing. At predicted time points, the temporal predictions led to attenuation of N1 component, enhancement of P2 component. Crucially, these electrophysiological modulations were obtained in tactile modality. The current research demonstrates that rhythms can drive temporal prediction, affecting early and late stages of tactile neural processing.
Collapse
Affiliation(s)
- Rongxia Ren
- School of Education Science, Yan'an University, Yan'an, China
| | - Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Xiaoyu Tang
- School of Psychology, Liaoning Collaborative Innovation Center of Children and Adolescents Healthy Personality Assessment and Cultivation, Liaoning Normal University, Dalian 116029, China
| | - Shinnosuke Suzumura
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Yoshimichi Ejima
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Jinglong Wu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
4
|
Solli S, Danielsen A, Leske S, Blenkmann AO, Doelling KB, Solbakk AK, Endestad T. Rhythm-based Temporal Expectations: Unique Contributions of Predictability and Periodicity. J Cogn Neurosci 2025; 37:555-581. [PMID: 39432692 DOI: 10.1162/jocn_a_02261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Anticipating events and focusing attention accordingly are crucial for navigating our dynamic environment. Rhythmic patterns of sensory input offer valuable cues for temporal expectations and facilitate perceptual processing. Rhythm-based temporal expectations may rely on oscillatory entrainment, where neural activity and perceptual sensitivity synchronize with periodic stimuli. However, whether entrainment models can account for aperiodic predictable rhythms remains unclear. Our study aimed to delineate the distinct roles of predictability and periodicity in rhythm-based expectations. Participants performed a pitch-identification task preceded by periodic predictable, aperiodic predictable, or aperiodic unpredictable temporal sequences. By manipulating the temporal position of the target sound, we observed how auditory perceptual performance was modulated by the target position's relative phase relationship to the preceding sequences. Results revealed a significant performance advantage for predictable sequences, both periodic and aperiodic, compared with unpredictable ones. However, only the periodic sequence induced an entrained modulation pattern, with performance peaking in synchrony with the inherent sequence continuation. Event-related brain potentials corroborated these findings. The target-evoked P3b, possibly a neural marker of attention allocation, mirrored the behavioral performance patterns. This supports our hypothesis that temporal attention guided by rhythm-based expectations modulates perceptual performance. Furthermore, the predictive sequences were associated with enhanced target-preceding negativity (akin to the contingent negative variation), indicating enhanced target preparation. The periodic-specific modulation likely reflects more precise temporal expectations, potentially involving neural entrainment and/or more focused attention. Our findings suggest that predictability and periodicity influence perception through distinct mechanisms.
Collapse
|
5
|
Criscuolo A, Schwartze M, Bonetti L, Kotz S. Aging Impacts Basic Auditory and Timing Processes. Eur J Neurosci 2025; 61:e70031. [PMID: 40026217 PMCID: PMC11874193 DOI: 10.1111/ejn.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/10/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Deterioration in the peripheral and central auditory systems is common in older adults and often leads to hearing and speech comprehension difficulties. Even when hearing remains intact, electrophysiological data of older adults frequently exhibit altered neural responses along the auditory pathway, reflected in variability in phase alignment of neural activity to speech sound onsets. However, it remains unclear whether challenges in speech processing in aging stem from more fundamental deficits in auditory and timing processes. Here, we investigated if and how aging individuals encoded temporal regularities in isochronous auditory sequences presented at 1.5Hz, and if they employed adaptive mechanisms of neural phase alignment in anticipation of next sound onsets. We recorded EEG in older and young individuals listening to simple isochronous tone sequences. We show that aging individuals displayed larger event-related neural responses, an increased 1/F slope, but reduced phase-coherence at the stimulation frequency (1.5Hz) and a reduced slope of phase-coherence over time in the delta and theta frequency-bands. These observations suggest altered top-down modulatory inhibition when processing repeated and predictable sounds in a sequence and altered mechanisms of continuous phase-alignment to expected sound onsets in aging. Given that deteriorations in these basic timing capacities may affect other higher-order cognitive processes (e.g., attention, perception, and action), these results underscore the need for future research examining the link between basic timing abilities and general cognition across the lifespan.
Collapse
Affiliation(s)
- Antonio Criscuolo
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Michael Schwartze
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical MedicineAarhus University & the Royal Academy of MusicAalborgDenmark
- Centre for Eudaimonia and Human Flourishing, Linacre CollegeUniversity of OxfordOxfordUK
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Sonja A. Kotz
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
- Department of NeuropsychologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
6
|
Xu Z, Huang J, Shen Y, Ren Y, Gao Y, Guo T. The effect of auditory rhythm on the temporal allocation of visual attention in aging. Front Psychol 2025; 16:1529967. [PMID: 40008337 PMCID: PMC11851195 DOI: 10.3389/fpsyg.2025.1529967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction Isochronous rhythm has been shown to induce temporal expectation, allocated attention to specific points in time to optimize behavioral performance, both within a single modality and across different modalities, in younger adults. However, it remains unclear how an isochronous rhythm in one modality influences the temporal allocation of attention in another modality among older adults. Moreover, whether the cross-modal temporal expectation effect in aging is influenced by tempo has not yet been explored. Methods To address these issues, both younger and older participants performed a rhythmic temporal expectation task in which auditory isochronous rhythms, presented at either 600 ms (faster) or 1,400 ms (slower) tempo, were used to trigger temporal expectation for a visual target. Results The results demonstrated a cross-modal temporal expectation effect, with participants exhibiting significantly faster responses when the visual target appeared in synchrony with the preceding auditory rhythm compared to out-of-synchrony trials. This effect was evident in both younger and older groups and was not influenced by tempo. Discussion These findings suggest that the ability to utilize auditory isochronous rhythms to drive the temporal allocation of visual attention can be preserved in normal aging, highlighting the robustness of cross-modal temporal expectations across both younger and older adults.
Collapse
Affiliation(s)
- Zhihan Xu
- Department of Foreign Language, Ningbo University of Technology, Ningbo, China
| | - Juan Huang
- Department of Foreign Language, Ningbo University of Technology, Ningbo, China
| | - Yuxuan Shen
- Department of Foreign Language, Ningbo University of Technology, Ningbo, China
| | - Yanna Ren
- Department of Psychology, College of Humanities and Management, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yulin Gao
- Department of Psychology, Jilin University, Changchun, China
| | - Ting Guo
- Department of Foreign Language, Ningbo University of Technology, Ningbo, China
| |
Collapse
|
7
|
Yang X, Sun Y, Yu W, Lin Y, Sun Y. Temporal attention modulates distraction resistance of visual working memory representations. Mem Cognit 2025:10.3758/s13421-025-01690-4. [PMID: 39904818 DOI: 10.3758/s13421-025-01690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
The regulation of Visual Working Memory (VWM) distraction resistance by internal attention remains debated with four hypotheses: the null hypothesis (attentional priorities don't affect distraction resistance), protection hypothesis (higher priority, greater distraction resistance), vulnerability hypothesis (higher priority, lower distraction resistance), and available resource threshold hypothesis (distraction resistance depends on attentional resource allocation exceed required thresholds). A recent study found that temporal attention can influence VWM priorities, yet this hasn't been explored from the perspective of temporal attention. This study used a continuous reporting task to examine these issues. Experiment 1 established stable attentional priority using an auditory cue, while Experiment 2 removed this cue to introduce dynamic priority changes. To explore neural mechanisms, Experiment 3 employed EEG to measure contingent negative variation (CNV) and decode priority representations during the delay period. Behavioral results confirmed that visual distractors increased memory deviation during maintenance, but deviations were smaller for anticipated high-priority items, suggesting better memory accuracy. High-priority items showed greater resistance to distraction at long intervals. Without the auditory cue, high-priority items resisted distraction better at short intervals. EEG results revealed enhanced CNV before long interval targets and better decoding of priority with distractors during long intervals. In summary, distraction affects different priority items equally when resources exceed requirements. High-priority items resist interference when adequately resourced but suffer if resources are insufficient, supporting the available resource threshold hypothesis. This study highlights the temporal dynamics of distraction resistance in VWM representations.
Collapse
Affiliation(s)
- Xue Yang
- School of Psychology, Shandong Normal University, Jinan, 250358, People's Republic of China
| | - Yangyang Sun
- School of Psychology, Shandong Normal University, Jinan, 250358, People's Republic of China
| | - Wenhao Yu
- School of Psychology, Shandong Normal University, Jinan, 250358, People's Republic of China
| | - Youting Lin
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Yanliang Sun
- School of Psychology, Shandong Normal University, Jinan, 250358, People's Republic of China.
| |
Collapse
|
8
|
Tang H, Zhao Z, Lin L, Chen S, Han H, Jin X. Tennis experience impacts time estimation within different timing processes: An ERP study. Neuropsychologia 2025; 207:109059. [PMID: 39637937 DOI: 10.1016/j.neuropsychologia.2024.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Elite tennis players demonstrate an outstanding ability to predict the timing of their shots during matches, especially during prolonged rallies. Exploring the characteristics of this temporal perception advantage and its cognitive processing mechanisms may help explain the influence of sports experience on temporal perception abilities. We recruited 28 tennis athletes and 28 controls with no sports experience and measured their behavioral performance and brain neural activity characteristics using a time-to-contact paradigm under different temporal context conditions. The results indicated that in the time estimation task, tennis athletes had significantly smaller absolute bias and lower delayed response ratios than non-athlete controls. Performance of both groups in the timing task without a beat context was significantly better than that with a rhythmic context. During the timing process, the amplitude of the contingent negative variation (CNV) was most closely associated with the processing of temporal information, where tennis athletes were significantly greater than that of non-athletes. The CNV amplitude induced in the left brain area was significantly smaller than that in the midline brain area and the right brain area. Overall, we found that tennis players showed a distinct advantage in timing accuracy, characterized by earlier prediction preparation and higher utilization of temporal information.
Collapse
Affiliation(s)
- Hongjie Tang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Zhongqi Zhao
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Liyue Lin
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Shuying Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Huixin Han
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xinhong Jin
- School of Psychology, Shanghai University of Sport, Shanghai, China; Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China; Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai, China.
| |
Collapse
|
9
|
Kershenbaum AM, Galassi M, Shattuck-Hufnagel S, Bachan S, Zipse L. The Effect of Prosodic Timing Structure on Unison Production in People With Aphasia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:3143-3169. [PMID: 38035543 DOI: 10.1044/2023_ajslp-22-00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
PURPOSE Unison production is a common aphasia treatment technique in which the clinician and the person with aphasia (PWA) produce phrases aloud together. It can be implemented using a typical "conversational," syntax-influenced prosodic timing structure, or with a "metrical," beat-based timing structure, but to date no study has directly compared these two approaches. This study compared the effects of metrical versus conversational prosodic timing during unison production on the (a) accuracy of participants' spoken output and (b) timing alignment of participants' productions with the stimuli. METHOD PWAs and controls listened to conversationally timed and metrically timed sentences and repeated them in unison with audio recordings. Productions were transcribed and scored in two ways: (a) Accuracy was calculated as the percentage of correctly produced syllables, and (b) timing alignment was determined by extracting the voice onset moment of identical target syllables in the unison stimuli and participant productions in both conditions and comparing the corresponding time points. RESULTS Metrical timing yielded a greater number of accurate syllables in both groups, with larger effect in PWAs than in controls. Both groups exhibited more anticipatory, less variable timing when speaking along with metrical stimuli, though evidence of such prediction was also present in the conversational condition. CONCLUSIONS Results suggest that unison production works via entrainment-a process that utilizes prediction to guide synchronous production of spoken output. Metrically regular stimuli may facilitate this process as they are more rhythmically predictable. Future work will examine key behavioral variables that predict benefit from unison production and metrical timing.
Collapse
Affiliation(s)
- Ayelet M Kershenbaum
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA
| | | | | | | | | |
Collapse
|
10
|
Galeano‐Otálvaro J, Martorell J, Meyer L, Titone L. Neural encoding of melodic expectations in music across EEG frequency bands. Eur J Neurosci 2024; 60:6734-6749. [PMID: 39469882 PMCID: PMC11612851 DOI: 10.1111/ejn.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
The human brain tracks regularities in the environment and extrapolates these to predict future events. Prior work on music cognition suggests that low-frequency (1-8 Hz) brain activity encodes melodic predictions beyond the stimulus acoustics. Building on this work, we aimed to disentangle the frequency-specific neural dynamics linked to melodic prediction uncertainty (modelled as entropy) and prediction error (modelled as surprisal) for temporal (note onset) and content (note pitch) information. By using multivariate temporal response function (TRF) models, we re-analysed the electroencephalogram (EEG) from 20 subjects (10 musicians) who listened to Western tonal music. Our results show that melodic expectation metrics improve the EEG reconstruction accuracy in all frequency bands below the gamma range (< 30 Hz). Crucially, we found that entropy contributed more strongly to the reconstruction accuracy enhancement compared to surprisal in all frequency bands. Additionally, we found that the encoding of temporal, but not content, information metrics was not limited to low frequencies, rather it extended to higher frequencies (> 8 Hz). An analysis of the TRF weights revealed that the temporal predictability of a note (entropy of note onset) may be encoded in the delta- (1-4 Hz) and beta-band (12-30 Hz) brain activity prior to the stimulus, suggesting that these frequency bands associate with temporal predictions. Strikingly, we also revealed that melodic expectations selectively enhanced EEG reconstruction accuracy in the beta band for musicians, and in the alpha band (8-12 Hz) for non-musicians, suggesting that musical expertise influences the neural dynamics underlying predictive processing in music cognition.
Collapse
Affiliation(s)
- Juan‐Daniel Galeano‐Otálvaro
- Max Planck Research Group Language CyclesMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Jordi Martorell
- Max Planck Research Group Language CyclesMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Basque Center on Cognition, Brain and Language (BCBL)Donostia‐San SebastiánSpain
| | - Lars Meyer
- Max Planck Research Group Language CyclesMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Clinic for Phoniatrics and PedaudiologyUniversity Hospital MünsterMünsterGermany
| | - Lorenzo Titone
- Max Planck Research Group Language CyclesMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
11
|
Sun Y, Wang K, Liang X, Zhou P, Sun Y. Unconscious temporal attention induced by invisible temporal association cues. Conscious Cogn 2024; 126:103786. [PMID: 39577389 DOI: 10.1016/j.concog.2024.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/22/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Temporal attention is the ability to prioritize information based on timing. While conscious perception of temporally structured information is known to generate temporal attention, whether it occurs unconsciously remains uncertain. This study used a temporal cueing paradigm with masking techniques to explore the differences between conscious and unconscious temporal attention mechanisms. Experiment 1 found that both visible and invisible cues triggered temporal attention, with stronger effects for visible cues. Experiment 2, using electroencephalogram (EEG) recordings, showed that both visible and invisible cues evoked contingent negative variation (CNV) component, albeit smaller with invisible cues. The P300 component further supported this pattern. Hierarchical drift-diffusion modeling (HDDM) analysis demonstrated that both conscious and unconscious temporal attention effects involve non-perceptual decision-making processes. These findings both align and challenge the Global Workspace Theory, suggesting that while consciousness enhances conscious attention via global broadcasting, unconscious attention may rely on more localized neural networks.
Collapse
Affiliation(s)
- Yangyang Sun
- School of Psychology, Shandong Normal University, Jinan, China
| | - Keshuo Wang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Xingjie Liang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Peng Zhou
- Department of Neurosurgery, The First Afliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
| | - Yanliang Sun
- School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
12
|
Wang X, Zhou C, Jin X. Resonance and beat perception of ballroom dancers: An EEG study. PLoS One 2024; 19:e0312302. [PMID: 39432504 PMCID: PMC11493285 DOI: 10.1371/journal.pone.0312302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
PURPOSE The ability to synchronize the perceptual and motor systems is important for full motor coordination and the core determinant of motor skill performance. Dance-related training has been found to effectively improve sensorimotor synchronization, however, the underlying characteristics behind these improvements still warrant further exploration. This study was conducted to investigate the behavioral and neuroactivity characteristics of ballroom dancers relative to those of non-dancers. PARTICIPANTS AND METHODS Thirty-two dancers (19.8 ± 1.8 years old) and 31 non-dancers (22.6 ± 3.1 years old) were recruited to perform a finger-tapping task in synchrony with audiovisual beat stimuli at two intervals: 400 and 800 ms, while simultaneously recording EEG data. Behavioral and neural activity data were recorded during the task. RESULTS The dancers employed a predictive strategy when synchronizing with the beat. EEG recordings revealed stronger brain resonance with external rhythmic stimuli, indicating heightened neural resonance compared to non-dancers (p < 0.05). The task was more challenging with an 800-ms beat interval, as observed through both behavioral metrics and corresponding neural signatures in the EEG data, leading to poorer synchronization performance and necessitating a greater allocation of attentional resources (ps < 0.05). CONCLUSION When performing the finger-tapping task involving audiovisual beats, the beat interval was the primary factor influencing movement synchronization, neural activity and attentional resource allocation. Although no significant behavioral differences were observed between dancers and non-dancers, dancers have enhanced neural resonance in response to rhythmic stimuli. Further research using more ecologically valid tasks and stimuli may better capture the full extent of dancers' synchronization abilities.
Collapse
Affiliation(s)
- Xuru Wang
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai, China
| | - Xinhong Jin
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai, China
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| |
Collapse
|
13
|
Denison RN, Tian KJ, Heeger DJ, Carrasco M. Anticipatory and evoked visual cortical dynamics of voluntary temporal attention. Nat Commun 2024; 15:9061. [PMID: 39433743 PMCID: PMC11494016 DOI: 10.1038/s41467-024-53406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
We can often anticipate the precise moment when a stimulus will be relevant for our behavioral goals. Voluntary temporal attention, the prioritization of sensory information at task-relevant time points, enhances visual perception. However, the neural mechanisms of voluntary temporal attention have not been isolated from those of temporal expectation, which reflects timing predictability rather than relevance. Here we use time-resolved steady-state visual evoked responses (SSVER) to investigate how temporal attention dynamically modulates visual activity when temporal expectation is controlled. We recorded magnetoencephalography while participants directed temporal attention to one of two sequential grating targets with predictable timing. Meanwhile, a co-localized SSVER probe continuously tracked visual cortical modulations both before and after the target stimuli. We find that in the pre-target period, the SSVER gradually ramps up as the targets approach, reflecting temporal expectation. Furthermore, we find a low-frequency modulation of the SSVER, which shifts approximately half a cycle in phase according to which target is attended. In the post-target period, temporal attention to the first target transiently modulates the SSVER shortly after target onset. Thus, temporal attention dynamically modulates visual cortical responses via both periodic pre-target and transient post-target mechanisms to prioritize sensory information at precise moments.
Collapse
Affiliation(s)
- Rachel N Denison
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
- Department of Psychology, New York University, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| | - Karen J Tian
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
- Department of Psychology, New York University, New York, NY, USA.
| | - David J Heeger
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
14
|
Duecker K, Doelling KB, Breska A, Coffey EBJ, Sivarao DV, Zoefel B. Challenges and Approaches in the Study of Neural Entrainment. J Neurosci 2024; 44:e1234242024. [PMID: 39358026 PMCID: PMC11450538 DOI: 10.1523/jneurosci.1234-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
When exposed to rhythmic stimulation, the human brain displays rhythmic activity across sensory modalities and regions. Given the ubiquity of this phenomenon, how sensory rhythms are transformed into neural rhythms remains surprisingly inconclusive. An influential model posits that endogenous oscillations entrain to external rhythms, thereby encoding environmental dynamics and shaping perception. However, research on neural entrainment faces multiple challenges, from ambiguous definitions to methodological difficulties when endogenous oscillations need to be identified and disentangled from other stimulus-related mechanisms that can lead to similar phase-locked responses. Yet, recent years have seen novel approaches to overcome these challenges, including computational modeling, insights from dynamical systems theory, sophisticated stimulus designs, and study of neuropsychological impairments. This review outlines key challenges in neural entrainment research, delineates state-of-the-art approaches, and integrates findings from human and animal neurophysiology to provide a broad perspective on the usefulness, validity, and constraints of oscillatory models in brain-environment interaction.
Collapse
Affiliation(s)
- Katharina Duecker
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Keith B Doelling
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Paris F-75012, France
| | - Assaf Breska
- Max-Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany
| | | | - Digavalli V Sivarao
- Department of Pharmaceutical Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| | - Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition (CerCo), UMR 5549 CNRS - Université Paul Sabatier Toulouse III, Toulouse F-31052, France
| |
Collapse
|
15
|
Guo L, Bao M, Chen Z, Chen L. Contingent magnetic variation and beta-band oscillations in sensorimotor temporal decision-making. Brain Res Bull 2024; 215:111021. [PMID: 38942396 DOI: 10.1016/j.brainresbull.2024.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
The ability to accurately encode the temporal information of sensory events and hence to make prompt action is fundamental to humans' prompt behavioral decision-making. Here we examined the ability of ensemble coding (averaging multiple inter-intervals in a sound sequence) and subsequent immediate reproduction of target duration at half, equal, or double that of the perceived mean interval in a sensorimotor loop. With magnetoencephalography (MEG), we found that the contingent magnetic variation (CMV) in the central scalp varied as a function of the averaging tasks, with a faster rate for buildup amplitudes and shorter peak latencies in the "half" condition as compared to the "double" condition. ERD (event-related desynchronization) -to-ERS (event-related synchronization) latency was shorter in the "half" condition. A robust beta band (15-23 Hz) power suppression and recovery between the final tone and the action of key pressing was found for time reproduction. The beta modulation depth (i.e., the ERD-to-ERS power difference) was larger in motor areas than in primary auditory areas. Moreover, results of phase slope index (PSI) indicated that beta oscillations in the left supplementary motor area (SMA) led those in the right superior temporal gyrus (STG), showing SMA to STG directionality for the processing of sequential (temporal) auditory interval information. Our findings provide the first evidence to show that CMV and beta oscillations predict the coupling between perception and action in time averaging.
Collapse
Affiliation(s)
- Lu Guo
- The Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Acoustics,Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Bao
- School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou 215163, China.
| | - Zhifei Chen
- School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou 215163, China
| | - Lihan Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China; Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; National Engineering Laboratory for Big Data Analysis and Applications, Peking University, Beijing 100871, China; State Key Laboratory of General Artificial Intelligence, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Terranova S, Botta A, Putzolu M, Bonassi G, Cosentino C, Mezzarobba S, Ravizzotti E, Pelosin E, Avanzino L. Cerebellar Direct Current Stimulation Reveals the Causal Role of the Cerebellum in Temporal Prediction. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1386-1398. [PMID: 38147293 DOI: 10.1007/s12311-023-01649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
Temporal prediction (TP) influences our perception and cognition. The cerebellum could mediate this multi-level ability in a context-dependent manner. We tested whether a modulation of the cerebellar neural activity, induced by transcranial Direct Current Stimulation (tDCS), changed the TP ability according to the temporal features of the context and the duration of target interval. Fifteen healthy participants received anodal, cathodal, and sham tDCS (15 min × 2 mA intensity) over the right cerebellar hemisphere during a TP task. We recorded reaction times (RTs) to a target during the task in two contextual conditions of temporal anticipation: rhythmic (i.e., interstimulus intervals (ISIs) were constant) and single-interval condition (i.e., the estimation of the timing of the target was based on the prior exposure of the train of stimuli). Two ISIs durations were explored: 600 ms (short trials) and 900 ms (long trials). Cathodal tDCS improved the performance during the TP task (shorter RTs) specifically in the rhythmic condition only for the short trials and in the single-interval condition only for the long trials. Our results suggest that the inhibition of cerebellar activity induced a different improvement in the TP ability according to the temporal features of the context. In the rhythmic context, the cerebellum could integrate the temporal estimation with the anticipatory motor responses critically for the short target interval. In the single-interval context, for the long trials, the cerebellum could play a main role in integrating representation of time interval in memory with the elapsed time providing an accurate temporal prediction.
Collapse
Affiliation(s)
- Sara Terranova
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132, Genoa, Italy
| | | | - Martina Putzolu
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132, Genoa, Italy
| | - Gaia Bonassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Carola Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Susanna Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Elisa Ravizzotti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Elisa Pelosin
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy.
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
17
|
Lamekina Y, Titone L, Maess B, Meyer L. Speech Prosody Serves Temporal Prediction of Language via Contextual Entrainment. J Neurosci 2024; 44:e1041232024. [PMID: 38839302 PMCID: PMC11236583 DOI: 10.1523/jneurosci.1041-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024] Open
Abstract
Temporal prediction assists language comprehension. In a series of recent behavioral studies, we have shown that listeners specifically employ rhythmic modulations of prosody to estimate the duration of upcoming sentences, thereby speeding up comprehension. In the current human magnetoencephalography (MEG) study on participants of either sex, we show that the human brain achieves this function through a mechanism termed entrainment. Through entrainment, electrophysiological brain activity maintains and continues contextual rhythms beyond their offset. Our experiment combined exposure to repetitive prosodic contours with the subsequent presentation of visual sentences that either matched or mismatched the duration of the preceding contour. During exposure to prosodic contours, we observed MEG coherence with the contours, which was source-localized to right-hemispheric auditory areas. During the processing of the visual targets, activity at the frequency of the preceding contour was still detectable in the MEG; yet sources shifted to the (left) frontal cortex, in line with a functional inheritance of the rhythmic acoustic context for prediction. Strikingly, when the target sentence was shorter than expected from the preceding contour, an omission response appeared in the evoked potential record. We conclude that prosodic entrainment is a functional mechanism of temporal prediction in language comprehension. In general, acoustic rhythms appear to endow language for employing the brain's electrophysiological mechanisms of temporal prediction.
Collapse
Affiliation(s)
- Yulia Lamekina
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Lorenzo Titone
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Burkhard Maess
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Lars Meyer
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- University Clinic Münster, Münster 48149, Germany
| |
Collapse
|
18
|
Pagnotta MF, Riddle J, D’Esposito M. Multiplexed Levels of Cognitive Control through Delta and Theta Neural Oscillations. J Cogn Neurosci 2024; 36:916-935. [PMID: 38319885 PMCID: PMC11284805 DOI: 10.1162/jocn_a_02124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Cognitive control allows behavior to be guided according to environmental contexts and internal goals. During cognitive control tasks, fMRI analyses typically reveal increased activation in frontal and parietal networks, and EEG analyses reveal increased amplitude of neural oscillations in the delta/theta band (2-3, 4-7 Hz) in frontal electrodes. Previous studies proposed that theta-band activity reflects the maintenance of rules associating stimuli to appropriate actions (i.e., the rule set), whereas delta synchrony is specifically associated with the control over the context for when to apply a set of rules (i.e., the rule abstraction). We tested these predictions using EEG and fMRI data collected during the performance of a hierarchical cognitive control task that manipulated the level of abstraction of task rules and their set-size. Our results show a clear separation of delta and theta oscillations in the control of rule abstraction and of stimulus-action associations, respectively, in distinct frontoparietal association networks. These findings support a model by which frontoparietal networks operate through dynamic, multiplexed neural processes.
Collapse
|
19
|
Momtaz S, Bidelman GM. Effects of Stimulus Rate and Periodicity on Auditory Cortical Entrainment to Continuous Sounds. eNeuro 2024; 11:ENEURO.0027-23.2024. [PMID: 38253583 PMCID: PMC10913036 DOI: 10.1523/eneuro.0027-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The neural mechanisms underlying the exogenous coding and neural entrainment to repetitive auditory stimuli have seen a recent surge of interest. However, few studies have characterized how parametric changes in stimulus presentation alter entrained responses. We examined the degree to which the brain entrains to repeated speech (i.e., /ba/) and nonspeech (i.e., click) sounds using phase-locking value (PLV) analysis applied to multichannel human electroencephalogram (EEG) data. Passive cortico-acoustic tracking was investigated in N = 24 normal young adults utilizing EEG source analyses that isolated neural activity stemming from both auditory temporal cortices. We parametrically manipulated the rate and periodicity of repetitive, continuous speech and click stimuli to investigate how speed and jitter in ongoing sound streams affect oscillatory entrainment. Neuronal synchronization to speech was enhanced at 4.5 Hz (the putative universal rate of speech) and showed a differential pattern to that of clicks, particularly at higher rates. PLV to speech decreased with increasing jitter but remained superior to clicks. Surprisingly, PLV entrainment to clicks was invariant to periodicity manipulations. Our findings provide evidence that the brain's neural entrainment to complex sounds is enhanced and more sensitized when processing speech-like stimuli, even at the syllable level, relative to nonspeech sounds. The fact that this specialization is apparent even under passive listening suggests a priority of the auditory system for synchronizing to behaviorally relevant signals.
Collapse
Affiliation(s)
- Sara Momtaz
- School of Communication Sciences & Disorders, University of Memphis, Memphis, Tennessee 38152
- Boys Town National Research Hospital, Boys Town, Nebraska 68131
| | - Gavin M Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, Indiana 47408
- Program in Neuroscience, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
20
|
Aharoni M, Breska A, Müller MM, Schröger E. Mechanisms of sustained perceptual entrainment after stimulus offset. Eur J Neurosci 2024; 59:1047-1060. [PMID: 37150801 DOI: 10.1111/ejn.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023]
Abstract
Temporal alignment of neural activity to rhythmic stimulation has been suggested to result from a resonating internal neural oscillator mechanism, but can also be explained by interval-based temporal prediction. Here, we investigate behavioural and brain responses in the post-stimulation period to compare an oscillatory versus an interval-based account. Hickok et al.'s (2015) behavioural paradigm yielded results that relate to a neural oscillatory entrainment mechanism. We adapted the paradigm to an event-related potential (ERP) suitable design: a periodic sequence was followed, in half of the trials, by near-threshold targets embedded in noise. The targets were played in various phases in relation to the preceding sequences' period. Participants had to detect whether targets were played or not, and their EEG was recorded. Both behavioural results and the P300 component of the ERP were not only partially consistent with an oscillatory mechanism but also partially consistent with an interval-based attentional gain mechanism. Instead, data obtained in the post-entrainment period can best be explained with a combination of both mechanisms.
Collapse
Affiliation(s)
- Moran Aharoni
- Edmund and Lilly Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Assaf Breska
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Matthias M Müller
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Erich Schröger
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
21
|
Xu Z, Si W, Ren Y, Jiang Y, Guo T. Effect of tempo on the age-related changes in temporal expectation driven by rhythms. PLoS One 2024; 19:e0297368. [PMID: 38329980 PMCID: PMC10852340 DOI: 10.1371/journal.pone.0297368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Temporal expectation refers to the capacity to allocate resources at a particular point in time, enabling us to enhance our behavior performance. Empirical evidence indicates that, among younger adults, temporal expectation can be driven by rhythm (i.e., regular sequences of stimuli). However, whether there are age-related changes in rhythm-based temporal expectation has not been clearly established. Furthermore, whether tempo can influence the relationship between rhythm-based temporal expectation and aging remains unexplored. To address these questions, both younger and older participants took part in a rhythm-based temporal expectation task, engaging three distinct tempos: 600 ms (fast), 1800 ms (moderate), or 3000 ms (slow). The results demonstrated that temporal expectation effects (i.e., participants exhibited significantly faster responses during the regular trials compared to the irregular trials) were observed in both the younger and older participants under the moderate tempo condition. However, in the fast and slow tempo conditions, the temporal expectation effects were solely observed in the younger participants. These findings revealed that rhythm-based temporal expectations can be preserved during aging but within a specific tempo range. When the tempo falls within the range of either being too fast or too slow, it can manifest age-related declines in temporal expectations driven by rhythms.
Collapse
Affiliation(s)
- Zhihan Xu
- Department of Foreign Language, Ningbo University of Technology, Ningbo, Zhejiang, China
| | - Wenying Si
- Department of Foreign Language, Ningbo University of Technology, Ningbo, Zhejiang, China
| | - Yanna Ren
- Department of Psychology, Medical Humanities College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuqing Jiang
- Department of Foreign Language, Ningbo University of Technology, Ningbo, Zhejiang, China
| | - Ting Guo
- Department of Foreign Language, Ningbo University of Technology, Ningbo, Zhejiang, China
| |
Collapse
|
22
|
Zoefel B, Kösem A. Neural tracking of continuous acoustics: properties, speech-specificity and open questions. Eur J Neurosci 2024; 59:394-414. [PMID: 38151889 DOI: 10.1111/ejn.16221] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Human speech is a particularly relevant acoustic stimulus for our species, due to its role of information transmission during communication. Speech is inherently a dynamic signal, and a recent line of research focused on neural activity following the temporal structure of speech. We review findings that characterise neural dynamics in the processing of continuous acoustics and that allow us to compare these dynamics with temporal aspects in human speech. We highlight properties and constraints that both neural and speech dynamics have, suggesting that auditory neural systems are optimised to process human speech. We then discuss the speech-specificity of neural dynamics and their potential mechanistic origins and summarise open questions in the field.
Collapse
Affiliation(s)
- Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS UMR 5549, Toulouse, France
- Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, Bron, France
| |
Collapse
|
23
|
Háden GP, Bouwer FL, Honing H, Winkler I. Beat processing in newborn infants cannot be explained by statistical learning based on transition probabilities. Cognition 2024; 243:105670. [PMID: 38016227 DOI: 10.1016/j.cognition.2023.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Newborn infants have been shown to extract temporal regularities from sound sequences, both in the form of learning regular sequential properties, and extracting periodicity in the input, commonly referred to as a regular pulse or the 'beat'. However, these two types of regularities are often indistinguishable in isochronous sequences, as both statistical learning and beat perception can be elicited by the regular alternation of accented and unaccented sounds. Here, we manipulated the isochrony of sound sequences in order to disentangle statistical learning from beat perception in sleeping newborn infants in an EEG experiment, as previously done in adults and macaque monkeys. We used a binary accented sequence that induces a beat when presented with isochronous timing, but not when presented with randomly jittered timing. We compared mismatch responses to infrequent deviants falling on either accented or unaccented (i.e., odd and even) positions. Results showed a clear difference between metrical positions in the isochronous sequence, but not in the equivalent jittered sequence. This suggests that beat processing is present in newborns. Despite previous evidence for statistical learning in newborns the effects of this ability were not detected in the jittered condition. These results show that statistical learning by itself does not fully explain beat processing in newborn infants.
Collapse
Affiliation(s)
- Gábor P Háden
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Magyar tudósok körútja 2, 1117 Budapest, Hungary.
| | - Fleur L Bouwer
- Music Cognition Group, Institute for Logic, Language, and Computation, University of Amsterdam, P.O. Box 94242, 1090 GE Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, P.O. Box 15900, 1001 NK Amsterdam, the Netherlands; Department of Psychology, Brain & Cognition, University of Amsterdam, P.O. Box 15900, 1001 NK Amsterdam, the Netherlands; Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, 2333 AK Leiden, the Netherlands.
| | - Henkjan Honing
- Music Cognition Group, Institute for Logic, Language, and Computation, University of Amsterdam, P.O. Box 94242, 1090 GE Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, P.O. Box 15900, 1001 NK Amsterdam, the Netherlands.
| | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| |
Collapse
|
24
|
de Lafuente V, Jazayeri M, Merchant H, García-Garibay O, Cadena-Valencia J, Malagón AM. Keeping time and rhythm by internal simulation of sensory stimuli and behavioral actions. SCIENCE ADVANCES 2024; 10:eadh8185. [PMID: 38198556 PMCID: PMC10780886 DOI: 10.1126/sciadv.adh8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Effective behavior often requires synchronizing our actions with changes in the environment. Rhythmic changes in the environment are easy to predict, and we can readily time our actions to them. Yet, how the brain encodes and maintains rhythms is not known. Here, we trained primates to internally maintain rhythms of different tempos and performed large-scale recordings of neuronal activity across the sensory-motor hierarchy. Results show that maintaining rhythms engages multiple brain areas, including visual, parietal, premotor, prefrontal, and hippocampal regions. Each recorded area displayed oscillations in firing rates and oscillations in broadband local field potential power that reflected the temporal and spatial characteristics of an internal metronome, which flexibly encoded fast, medium, and slow tempos. The presence of widespread metronome-related activity, in the absence of stimuli and motor activity, suggests that internal simulation of stimuli and actions underlies timekeeping and rhythm maintenance.
Collapse
Affiliation(s)
- Victor de Lafuente
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugo Merchant
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Otto García-Garibay
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Jaime Cadena-Valencia
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
- Faculty of Science and Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg 1700, Switzerland
- Cognitive Neuroscience Laboratory, German Primate Center—Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Ana M. Malagón
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| |
Collapse
|
25
|
Bouwer FL, Háden GP, Honing H. Probing Beat Perception with Event-Related Potentials (ERPs) in Human Adults, Newborns, and Nonhuman Primates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:227-256. [PMID: 38918355 DOI: 10.1007/978-3-031-60183-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The aim of this chapter is to give an overview of how the perception of rhythmic temporal regularity such as a regular beat in music can be studied in human adults, human newborns, and nonhuman primates using event-related brain potentials (ERPs). First, we discuss different aspects of temporal structure in general, and musical rhythm in particular, and we discuss the possible mechanisms underlying the perception of regularity (e.g., a beat) in rhythm. Additionally, we highlight the importance of dissociating beat perception from the perception of other types of structure in rhythm, such as predictable sequences of temporal intervals, ordinal structure, and rhythmic grouping. In the second section of the chapter, we start with a discussion of auditory ERPs elicited by infrequent and frequent sounds: ERP responses to regularity violations, such as mismatch negativity (MMN), N2b, and P3, as well as early sensory responses to sounds, such as P1 and N1, have been shown to be instrumental in probing beat perception. Subsequently, we discuss how beat perception can be probed by comparing ERP responses to sounds in regular and irregular sequences, and by comparing ERP responses to sounds in different metrical positions in a rhythm, such as on and off the beat or on strong and weak beats. Finally, we will discuss previous research that has used the aforementioned ERPs and paradigms to study beat perception in human adults, human newborns, and nonhuman primates. In doing so, we consider the possible pitfalls and prospects of the technique, as well as future perspectives.
Collapse
Affiliation(s)
- Fleur L Bouwer
- Cognitive Psychology Unit, Institute of Psychology, Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
- Department of Psychology, Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands.
| | - Gábor P Háden
- Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Henkjan Honing
- Music Cognition group (MCG), Institute for Logic, Language and Computation (ILLC), Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Beker S, Molholm S. Do we all synch alike? Brain-body-environment interactions in ASD. Front Neural Circuits 2023; 17:1275896. [PMID: 38186630 PMCID: PMC10769494 DOI: 10.3389/fncir.2023.1275896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by rigidity of routines and restricted interests, and atypical social communication and interaction. Recent evidence for altered synchronization of neuro-oscillatory brain activity with regularities in the environment and of altered peripheral nervous system function in ASD present promising novel directions for studying pathophysiology and its relationship to ASD clinical phenotype. Human cognition and action are significantly influenced by physiological rhythmic processes that are generated by both the central nervous system (CNS) and the autonomic nervous system (ANS). Normally, perception occurs in a dynamic context, where brain oscillations and autonomic signals synchronize with external events to optimally receive temporally predictable rhythmic information, leading to improved performance. The recent findings on the time-sensitive coupling between the brain and the periphery in effective perception and successful social interactions in typically developed highlight studying the interactions within the brain-body-environment triad as a critical direction in the study of ASD. Here we offer a novel perspective of autism as a case where the temporal dynamics of brain-body-environment coupling is impaired. We present evidence from the literature to support the idea that in autism the nervous system fails to operate in an adaptive manner to synchronize with temporally predictable events in the environment to optimize perception and behavior. This framework could potentially lead to novel biomarkers of hallmark deficits in ASD such as cognitive rigidity and altered social interaction.
Collapse
Affiliation(s)
- Shlomit Beker
- Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | | |
Collapse
|
27
|
Cappotto D, Luo D, Lai HW, Peng F, Melloni L, Schnupp JWH, Auksztulewicz R. "What" and "when" predictions modulate auditory processing in a mutually congruent manner. Front Neurosci 2023; 17:1180066. [PMID: 37781257 PMCID: PMC10540699 DOI: 10.3389/fnins.2023.1180066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/04/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Extracting regularities from ongoing stimulus streams to form predictions is crucial for adaptive behavior. Such regularities exist in terms of the content of the stimuli and their timing, both of which are known to interactively modulate sensory processing. In real-world stimulus streams such as music, regularities can occur at multiple levels, both in terms of contents (e.g., predictions relating to individual notes vs. their more complex groups) and timing (e.g., pertaining to timing between intervals vs. the overall beat of a musical phrase). However, it is unknown whether the brain integrates predictions in a manner that is mutually congruent (e.g., if "beat" timing predictions selectively interact with "what" predictions falling on pulses which define the beat), and whether integrating predictions in different timing conditions relies on dissociable neural correlates. Methods To address these questions, our study manipulated "what" and "when" predictions at different levels - (local) interval-defining and (global) beat-defining - within the same stimulus stream, while neural activity was recorded using electroencephalogram (EEG) in participants (N = 20) performing a repetition detection task. Results Our results reveal that temporal predictions based on beat or interval timing modulated mismatch responses to violations of "what" predictions happening at the predicted time points, and that these modulations were shared between types of temporal predictions in terms of the spatiotemporal distribution of EEG signals. Effective connectivity analysis using dynamic causal modeling showed that the integration of "what" and "when" predictions selectively increased connectivity at relatively late cortical processing stages, between the superior temporal gyrus and the fronto-parietal network. Discussion Taken together, these results suggest that the brain integrates different predictions with a high degree of mutual congruence, but in a shared and distributed cortical network. This finding contrasts with recent studies indicating separable mechanisms for beat-based and memory-based predictive processing.
Collapse
Affiliation(s)
- Drew Cappotto
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Ear Institute, University College London, London, United Kingdom
| | - Dan Luo
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Hiu Wai Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Fei Peng
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| | | | - Ryszard Auksztulewicz
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Su Z, Zhou X, Wang L. Dissociated amplitude and phase effects of alpha oscillation in a nested structure of rhythm- and sequence-based temporal expectation. Cereb Cortex 2023; 33:9741-9755. [PMID: 37415070 DOI: 10.1093/cercor/bhad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
The human brain can utilize various information to form temporal expectations and optimize perceptual performance. Here we show dissociated amplitude and phase effects of prestimulus alpha oscillation in a nested structure of rhythm- and sequence-based expectation. A visual stream of rhythmic stimuli was presented in a fixed sequence such that their temporal positions could be predicted by either the low-frequency rhythm, the sequence, or the combination. The behavioral modeling indicated that rhythmic and sequence information additively led to increased accumulation speed of sensory evidence and alleviated threshold for the perceptual discrimination of the expected stimulus. The electroencephalographical results showed that the alpha amplitude was modulated mainly by rhythmic information, with the amplitude fluctuating with the phase of the low-frequency rhythm (i.e. phase-amplitude coupling). The alpha phase, however, was affected by both rhythmic and sequence information. Importantly, rhythm-based expectation improved the perceptual performance by decreasing the alpha amplitude, whereas sequence-based expectation did not further decrease the amplitude on top of rhythm-based expectation. Moreover, rhythm-based and sequence-based expectations collaboratively improved the perceptual performance by biasing the alpha oscillation toward the optimal phase. Our findings suggested flexible coordination of multiscale brain oscillations in dealing with a complex environment.
Collapse
Affiliation(s)
- Zhongbin Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - Xiaolin Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lihui Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201602, China
| |
Collapse
|
29
|
Rosso M, Moens B, Leman M, Moumdjian L. Neural entrainment underpins sensorimotor synchronization to dynamic rhythmic stimuli. Neuroimage 2023; 277:120226. [PMID: 37321359 DOI: 10.1016/j.neuroimage.2023.120226] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Neural entrainment, defined as unidirectional synchronization of neural oscillations to an external rhythmic stimulus, is a topic of major interest in the field of neuroscience. Despite broad scientific consensus on its existence, on its pivotal role in sensory and motor processes, and on its fundamental definition, empirical research struggles in quantifying it with non-invasive electrophysiology. To this date, broadly adopted state-of-the-art methods still fail to capture the dynamic underlying the phenomenon. Here, we present event-related frequency adjustment (ERFA) as a methodological framework to induce and to measure neural entrainment in human participants, optimized for multivariate EEG datasets. By applying dynamic phase and tempo perturbations to isochronous auditory metronomes during a finger-tapping task, we analyzed adaptive changes in instantaneous frequency of entrained oscillatory components during error correction. Spatial filter design allowed us to untangle, from the multivariate EEG signal, perceptual and sensorimotor oscillatory components attuned to the stimulation frequency. Both components dynamically adjusted their frequency in response to perturbations, tracking the stimulus dynamics by slowing down and speeding up the oscillation over time. Source separation revealed that sensorimotor processing enhanced the entrained response, supporting the notion that the active engagement of the motor system plays a critical role in processing rhythmic stimuli. In the case of phase shift, motor engagement was a necessary condition to observe any response, whereas sustained tempo changes induced frequency adjustment even in the perceptual oscillatory component. Although the magnitude of the perturbations was controlled across positive and negative direction, we observed a general bias in the frequency adjustments towards positive changes, which points at the effect of intrinsic dynamics constraining neural entrainment. We conclude that our findings provide compelling evidence for neural entrainment as mechanism underlying overt sensorimotor synchronization, and highlight that our methodology offers a paradigm and a measure for quantifying its oscillatory dynamics by means of non-invasive electrophysiology, rigorously informed by the fundamental definition of entrainment.
Collapse
Affiliation(s)
- Mattia Rosso
- IPEM Institute for Systematic Musicology, Ghent University, Ghent, Belgium; Université de Lille, ULR 4072 - PSITEC - Psychologie: Interactions, Temps, Emotions, Cognition, Lille, France.
| | - Bart Moens
- IPEM Institute for Systematic Musicology, Ghent University, Ghent, Belgium
| | - Marc Leman
- IPEM Institute for Systematic Musicology, Ghent University, Ghent, Belgium
| | - Lousin Moumdjian
- IPEM Institute for Systematic Musicology, Ghent University, Ghent, Belgium; REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium; UMSC Hasselt, Pelt, Belgium
| |
Collapse
|
30
|
Nandi B, Ostrand A, Johnson V, Ford TJ, Gazzaley A, Zanto TP. Musical Training Facilitates Exogenous Temporal Attention via Delta Phase Entrainment within a Sensorimotor Network. J Neurosci 2023; 43:3365-3378. [PMID: 36977585 PMCID: PMC10162458 DOI: 10.1523/jneurosci.0220-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 03/30/2023] Open
Abstract
Temporal orienting of attention plays an important role in our day-to-day lives and can use timing information from exogenous or endogenous sources. Yet, it is unclear what neural mechanisms give rise to temporal attention, and it is debated whether both exogenous and endogenous forms of temporal attention share a common neural source. Here, older adult nonmusicians (N = 47, 24 female) were randomized to undergo 8 weeks of either rhythm training, which places demands on exogenous temporal attention, or word search training as a control. The goal was to assess (1) the neural basis of exogenous temporal attention and (2) whether training-induced improvements in exogenous temporal attention can transfer to enhanced endogenous temporal attention abilities, thereby providing support for a common neural mechanism of temporal attention. Before and after training, exogenous temporal attention was assessed using a rhythmic synchronization paradigm, whereas endogenous temporal attention was evaluated via a temporally cued visual discrimination task. Results showed that rhythm training improved performance on the exogenous temporal attention task, which was associated with increased intertrial coherence within the δ (1-4 Hz) band as assessed by EEG recordings. Source localization revealed increased δ-band intertrial coherence arose from a sensorimotor network, including premotor cortex, anterior cingulate cortex, postcentral gyrus, and the inferior parietal lobule. Despite these improvements in exogenous temporal attention, such benefits were not transferred to endogenous attentional ability. These results support the notion that exogenous and endogenous temporal attention uses independent neural sources, with exogenous temporal attention relying on the precise timing of δ band oscillations within a sensorimotor network.SIGNIFICANCE STATEMENT Allocating attention to specific points in time is known as temporal attention, and may arise from external (exogenous) or internal (endogenous) sources. Despite its importance to our daily lives, it is unclear how the brain gives rise to temporal attention and whether exogenous- or endogenous-based sources for temporal attention rely on shared brain regions. Here, we demonstrate that musical rhythm training improves exogenous temporal attention, which was associated with more consistent timing of neural activity in sensory and motor processing brain regions. However, these benefits did not extend to endogenous temporal attention, indicating that temporal attention relies on different brain regions depending on the source of timing information.
Collapse
Affiliation(s)
- Bijurika Nandi
- Department of Neurology, University of California-San Francisco, San Francisco, California 94158
- Neuroscape, University of California-San Francisco, San Francisco, California 94158
| | - Avery Ostrand
- Department of Neurology, University of California-San Francisco, San Francisco, California 94158
- Neuroscape, University of California-San Francisco, San Francisco, California 94158
| | - Vinith Johnson
- Department of Neurology, University of California-San Francisco, San Francisco, California 94158
- Neuroscape, University of California-San Francisco, San Francisco, California 94158
| | - Tiffany J Ford
- Department of Neurology, University of California-San Francisco, San Francisco, California 94158
- Neuroscape, University of California-San Francisco, San Francisco, California 94158
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, San Francisco, California 94158
- Neuroscape, University of California-San Francisco, San Francisco, California 94158
- Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, California 94158
| | - Theodore P Zanto
- Department of Neurology, University of California-San Francisco, San Francisco, California 94158
- Neuroscape, University of California-San Francisco, San Francisco, California 94158
| |
Collapse
|
31
|
Nobre AC, van Ede F. Attention in flux. Neuron 2023; 111:971-986. [PMID: 37023719 DOI: 10.1016/j.neuron.2023.02.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 04/08/2023]
Abstract
Selective attention comprises essential infrastructural functions supporting cognition-anticipating, prioritizing, selecting, routing, integrating, and preparing signals to guide adaptive behavior. Most studies have examined its consequences, systems, and mechanisms in a static way, but attention is at the confluence of multiple sources of flux. The world advances, we operate within it, our minds change, and all resulting signals progress through multiple pathways within the dynamic networks of our brains. Our aim in this review is to raise awareness of and interest in three important facets of how timing impacts our understanding of attention. These include the challenges posed to attention by the timing of neural processing and psychological functions, the opportunities conferred to attention by various temporal structures in the environment, and how tracking the time courses of neural and behavioral modulations with continuous measures yields surprising insights into the workings and principles of attention.
Collapse
Affiliation(s)
- Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK.
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081BT, the Netherlands.
| |
Collapse
|
32
|
Son S, Moon J, Kim YJ, Kang MS, Lee J. Frontal-to-visual information flow explains predictive motion tracking. Neuroimage 2023; 269:119914. [PMID: 36736637 DOI: 10.1016/j.neuroimage.2023.119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Predictive tracking demonstrates our ability to maintain a line of vision on moving objects even when they temporarily disappear. Models of smooth pursuit eye movements posit that our brain achieves this ability by directly streamlining motor programming from continuously updated sensory motion information. To test this hypothesis, we obtained sensory motion representation from multivariate electroencephalogram activity while human participants covertly tracked a temporarily occluded moving stimulus with their eyes remaining stationary at the fixation point. The sensory motion representation of the occluded target evolves to its maximum strength at the expected timing of reappearance, suggesting a timely modulation of the internal model of the visual target. We further characterize the spatiotemporal dynamics of the task-relevant motion information by computing the phase gradients of slow oscillations. We discovered a predominant posterior-to-anterior phase gradient immediately after stimulus occlusion; however, at the expected timing of reappearance, the axis reverses the gradient, becoming anterior-to-posterior. The behavioral bias of smooth pursuit eye movements, which is a signature of the predictive process of the pursuit, was correlated with the posterior division of the gradient. These results suggest that the sensory motion area modulated by the prediction signal is involved in updating motor programming.
Collapse
Affiliation(s)
- Sangkyu Son
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Joonsik Moon
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Yee-Joon Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Min-Suk Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea; Department of Psychology, Sungkyunkwan University, Seoul 03063, South Korea.
| | - Joonyeol Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
33
|
Kazanina N, Tavano A. What neural oscillations can and cannot do for syntactic structure building. Nat Rev Neurosci 2023; 24:113-128. [PMID: 36460920 DOI: 10.1038/s41583-022-00659-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 12/04/2022]
Abstract
Understanding what someone says requires relating words in a sentence to one another as instructed by the grammatical rules of a language. In recent years, the neurophysiological basis for this process has become a prominent topic of discussion in cognitive neuroscience. Current proposals about the neural mechanisms of syntactic structure building converge on a key role for neural oscillations in this process, but they differ in terms of the exact function that is assigned to them. In this Perspective, we discuss two proposed functions for neural oscillations - chunking and multiscale information integration - and evaluate their merits and limitations taking into account a fundamentally hierarchical nature of syntactic representations in natural languages. We highlight insights that provide a tangible starting point for a neurocognitive model of syntactic structure building.
Collapse
Affiliation(s)
- Nina Kazanina
- University of Bristol, Bristol, UK.
- Higher School of Economics, Moscow, Russia.
| | | |
Collapse
|
34
|
Efficient use of peripheral information for temporal prediction. Biol Psychol 2023; 177:108484. [PMID: 36621665 DOI: 10.1016/j.biopsycho.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
We adapt to the environment by predicting subsequent events. Generally, intervals between predictions and events make it difficult to predict the events accurately. Previous studies reported that using peripheral information is useful for maintaining predictions of subsequent events; however, it remains unclear how this information maintains the accuracy of the prediction. I presented peripheral visual stimuli in a discrimination task and manipulated the number of times these stimuli were presented while participants were waiting for a task-relevant visual stimulus, and compared participants' response times and event-related brain potentials in Experiment 1. In addition, the influence of the difficulty of predicting the task-relevant visual stimulus was examined in Experiment 2. In both experiments, contingent negative variation (CNV) amplitude immediately before the task-relevant visual stimulus appeared was larger under the condition where many peripheral visual stimuli were presented, and the response time was shorter under this condition. In addition, the largest CNV amplitude under this condition was elicited by the third peripheral visual stimulus, followed in order by the first and second peripheral visual stimuli. These results show that we can predict the timing of events that occur with a delay after the prediction by using peripheral information. Moreover, this peripheral information is processed according to the importance of predicting a task-relevant stimulus, and attentional resources are allocated efficiently. These results provide evidence of the predictive function for temporal prediction of using peripheral information and the allocation of cognitive resources.
Collapse
|
35
|
It's time for attentional control: Temporal expectation in the attentional blink. Conscious Cogn 2023; 107:103461. [PMID: 36584439 DOI: 10.1016/j.concog.2022.103461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The attentional blink (AB) reveals a limitation in conscious processing of sequential targets. Although it is widely held that the AB derives from a structural bottleneck of central capacity, how the central processing is constrained is still unclear. As the AB reflects the dilemma of deploying attentional resources in the time dimension, research on temporal allocation provides an important avenue for understanding the mechanism. Here we reviewed studies regarding the role of temporal expectation in modulating the AB performance primarily based on two temporal processing strategies: interval-based and rhythm-based timings. We showed that both temporal expectations can help to organize limited resources among multiple attentional episodes, thereby mitigating the AB effect. As it turns out, scrutinizing on the AB from a temporal perspective is a promising way to comprehend the mechanisms behind the AB and conscious cognition. We also highlighted some unresolved issues and discussed potential directions for future research.
Collapse
|
36
|
Ren X, Zhang H, Luo H. Dynamic emergence of relational structure network in human brains. Prog Neurobiol 2022; 219:102373. [DOI: 10.1016/j.pneurobio.2022.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
|
37
|
Vilà‐Balló A, Marti‐Marca A, Torralba Cuello M, Soto‐Faraco S, Pozo‐Rosich P. The influence of temporal unpredictability on the electrophysiological mechanisms of neural entrainment. Psychophysiology 2022; 59:e14108. [PMID: 35678104 PMCID: PMC9787398 DOI: 10.1111/psyp.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/05/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Neural entrainment, or the synchronization of endogenous oscillations to exogenous rhythmic events, has been postulated as a powerful mechanism underlying stimulus prediction. Nevertheless, studies that have explored the benefits of neural entrainment on attention, perception, and other cognitive functions have received criticism, which could compromise their theoretical and clinical value. Therefore, the aim of the present study was [1] to confirm the presence of entrainment using a set of pre-established criteria and [2] to establish whether the reported behavioral benefits of entrainment remain when temporal predictability related to target appearance is reduced. To address these points, we adapted a previous neural entrainment paradigm to include: a variable entrainer length and increased target-absent trials, and instructing participants to respond only if they had detected a target, to avoid guessing. Thirty-six right-handed women took part in this study. Our results indicated a significant alignment of neural activity to the external periodicity as well as a persistence of phase alignment beyond the offset of the driving signal. This would appear to indicate that neural entrainment triggers preexisting endogenous oscillations, which cannot simply be explained as a succession of event-related potentials associated with the stimuli, expectation and/or motor response. However, we found no behavioral benefit for targets in-phase with entrainers, which would suggest that the effect of neural entrainment on overt behavior may be more limited than expected. These results help to clarify the mechanistic processes underlying neural entrainment and provide new insights on its applications.
Collapse
Affiliation(s)
- Adrià Vilà‐Balló
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of MedicineAutonomous University of BarcelonaBarcelonaSpain,Department of Psychology, Faculty of Education and PsychologyUniversity of GironaGironaSpain
| | - Angela Marti‐Marca
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
| | - Mireia Torralba Cuello
- Multisensory Research Group, Center for Brain and CognitionPompeu Fabra UniversityBarcelonaSpain
| | - Salvador Soto‐Faraco
- Multisensory Research Group, Center for Brain and CognitionPompeu Fabra UniversityBarcelonaSpain,Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Patricia Pozo‐Rosich
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of MedicineAutonomous University of BarcelonaBarcelonaSpain,Headache Unit, Department of NeurologyVall d'Hebron University HospitalBarcelonaSpain
| |
Collapse
|
38
|
Hassall CD, Harley J, Kolling N, Hunt LT. Temporal scaling of human scalp-recorded potentials. Proc Natl Acad Sci U S A 2022; 119:e2214638119. [PMID: 36256817 PMCID: PMC9618087 DOI: 10.1073/pnas.2214638119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Much of human behavior is governed by common processes that unfold over varying timescales. Standard event-related potential analysis assumes fixed-duration responses relative to experimental events. However, recent single-unit recordings in animals have revealed neural activity scales to span different durations during behaviors demanding flexible timing. Here, we employed a general linear modeling approach using a combination of fixed-duration and variable-duration regressors to unmix fixed-time and scaled-time components in human magneto-/electroencephalography (M/EEG) data. We use this to reveal consistent temporal scaling of human scalp-recorded potentials across four independent electroencephalogram (EEG) datasets, including interval perception, production, prediction, and value-based decision making. Between-trial variation in the temporally scaled response predicts between-trial variation in subject reaction times, demonstrating the relevance of this temporally scaled signal for temporal variation in behavior. Our results provide a general approach for studying flexibly timed behavior in the human brain.
Collapse
Affiliation(s)
- Cameron D. Hassall
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Jack Harley
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Nils Kolling
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Laurence T. Hunt
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
39
|
Exposure to multisensory and visual static or moving stimuli enhances processing of nonoptimal visual rhythms. Atten Percept Psychophys 2022; 84:2655-2669. [PMID: 36241841 PMCID: PMC9630188 DOI: 10.3758/s13414-022-02569-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Research has shown that visual moving and multisensory stimuli can efficiently mediate rhythmic information. It is possible, therefore, that the previously reported auditory dominance in rhythm perception is due to the use of nonoptimal visual stimuli. Yet it remains unknown whether exposure to multisensory or visual-moving rhythms would benefit the processing of rhythms consisting of nonoptimal static visual stimuli. Using a perceptual learning paradigm, we tested whether the visual component of the multisensory training pair can affect processing of metric simple two integer-ratio nonoptimal visual rhythms. Participants were trained with static (AVstat), moving-inanimate (AVinan), or moving-animate (AVan) visual stimuli along with auditory tones and a regular beat. In the pre- and posttraining tasks, participants responded whether two static-visual rhythms differed or not. Results showed improved posttraining performance for all training groups irrespective of the type of visual stimulation. To assess whether this benefit was auditory driven, we introduced visual-only training with a moving or static stimulus and a regular beat (Vinan). Comparisons between Vinan and Vstat showed that, even in the absence of auditory information, training with visual-only moving or static stimuli resulted in an enhanced posttraining performance. Overall, our findings suggest that audiovisual and visual static or moving training can benefit processing of nonoptimal visual rhythms.
Collapse
|
40
|
Saberi K, Hickok G. A critical analysis of Lin et al.'s (2021) failure to observe forward entrainment in pitch discrimination. Eur J Neurosci 2022; 56:5191-5200. [PMID: 35857282 PMCID: PMC9804316 DOI: 10.1111/ejn.15778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 01/07/2023]
Abstract
Forward entrainment refers to that part of the entrainment process that outlasts the entraining stimulus. Several studies have demonstrated psychophysical forward entrainment in a pitch-discrimination task. In a recent paper, Lin et al. (2021) challenged these findings by demonstrating that a sequence of 4 entraining pure tones does not affect the ability to determine whether a frequency modulated pulse, presented after termination of the entraining sequence, has swept up or down in frequency. They concluded that rhythmic sequences do not facilitate pitch discrimination. Here, we describe several methodological and stimulus design flaws in Lin et al.'s study that may explain their failure to observe forward entrainment in pitch discrimination.
Collapse
Affiliation(s)
- Kourosh Saberi
- Department of Cognitive SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Gregory Hickok
- Department of Cognitive SciencesUniversity of CaliforniaIrvineCaliforniaUSA,Department of Language ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
41
|
Gugnowska K, Novembre G, Kohler N, Villringer A, Keller PE, Sammler D. Endogenous sources of interbrain synchrony in duetting pianists. Cereb Cortex 2022; 32:4110-4127. [PMID: 35029645 PMCID: PMC9476614 DOI: 10.1093/cercor/bhab469] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
When people interact with each other, their brains synchronize. However, it remains unclear whether interbrain synchrony (IBS) is functionally relevant for social interaction or stems from exposure of individual brains to identical sensorimotor information. To disentangle these views, the current dual-EEG study investigated amplitude-based IBS in pianists jointly performing duets containing a silent pause followed by a tempo change. First, we manipulated the similarity of the anticipated tempo change and measured IBS during the pause, hence, capturing the alignment of purely endogenous, temporal plans without sound or movement. Notably, right posterior gamma IBS was higher when partners planned similar tempi, it predicted whether partners' tempi matched after the pause, and it was modulated only in real, not in surrogate pairs. Second, we manipulated the familiarity with the partner's actions and measured IBS during joint performance with sound. Although sensorimotor information was similar across conditions, gamma IBS was higher when partners were unfamiliar with each other's part and had to attend more closely to the sound of the performance. These combined findings demonstrate that IBS is not merely an epiphenomenon of shared sensorimotor information but can also hinge on endogenous, cognitive processes crucial for behavioral synchrony and successful social interaction.
Collapse
Affiliation(s)
- Katarzyna Gugnowska
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome 00161, Italy
| | - Natalie Kohler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Peter E Keller
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW 2751, Australia
| | - Daniela Sammler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| |
Collapse
|
42
|
Yin B, Shi Z, Wang Y, Meck WH. Oscillation/Coincidence-Detection Models of Reward-Related Timing in Corticostriatal Circuits. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The major tenets of beat-frequency/coincidence-detection models of reward-related timing are reviewed in light of recent behavioral and neurobiological findings. This includes the emphasis on a core timing network embedded in the motor system that is comprised of a corticothalamic-basal ganglia circuit. Therein, a central hub provides timing pulses (i.e., predictive signals) to the entire brain, including a set of distributed satellite regions in the cerebellum, cortex, amygdala, and hippocampus that are selectively engaged in timing in a manner that is more dependent upon the specific sensory, behavioral, and contextual requirements of the task. Oscillation/coincidence-detection models also emphasize the importance of a tuned ‘perception’ learning and memory system whereby target durations are detected by striatal networks of medium spiny neurons (MSNs) through the coincidental activation of different neural populations, typically utilizing patterns of oscillatory input from the cortex and thalamus or derivations thereof (e.g., population coding) as a time base. The measure of success of beat-frequency/coincidence-detection accounts, such as the Striatal Beat-Frequency model of reward-related timing (SBF), is their ability to accommodate new experimental findings while maintaining their original framework, thereby making testable experimental predictions concerning diagnosis and treatment of issues related to a variety of dopamine-dependent basal ganglia disorders, including Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Bin Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhuanghua Shi
- Department of Psychology, Ludwig Maximilian University of Munich, 80802 Munich, Germany
| | - Yaxin Wang
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
43
|
Lin WM, Oetringer DA, Bakker‐Marshall I, Emmerzaal J, Wilsch A, ElShafei HA, Rassi E, Haegens S. No behavioural evidence for rhythmic facilitation of perceptual discrimination. Eur J Neurosci 2022. [PMID: 33772897 PMCID: PMC9540985 DOI: 10.1111/ejn.15208 10.1101/2020.12.10.418947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
It has been hypothesized that internal oscillations can synchronize (i.e., entrain) to external environmental rhythms, thereby facilitating perception and behaviour. To date, evidence for the link between the phase of neural oscillations and behaviour has been scarce and contradictory; moreover, it remains an open question whether the brain can use this tentative mechanism for active temporal prediction. In our present study, we conducted a series of auditory pitch discrimination tasks with 181 healthy participants in an effort to shed light on the proposed behavioural benefits of rhythmic cueing and entrainment. In the three versions of our task, we observed no perceptual benefit of purported entrainment: targets occurring in-phase with a rhythmic cue provided no perceptual benefits in terms of discrimination accuracy or reaction time when compared with targets occurring out-of-phase or targets occurring randomly, nor did we find performance differences for targets preceded by rhythmic versus random cues. However, we found a surprising effect of cueing frequency on reaction time, in which participants showed faster responses to cue rhythms presented at higher frequencies. We therefore provide no evidence of entrainment, but instead a tentative effect of covert active sensing in which a faster external rhythm leads to a faster communication rate between motor and sensory cortices, allowing for sensory inputs to be sampled earlier in time.
Collapse
Affiliation(s)
- Wy Ming Lin
- Graduate Training Centre of NeuroscienceUniversity of TübingenTübingenGermany,Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Djamari A. Oetringer
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Iske Bakker‐Marshall
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jill Emmerzaal
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Anna Wilsch
- Department of PsychologyNew York UniversityNew YorkNYUSA
| | - Hesham A. ElShafei
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Elie Rassi
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Saskia Haegens
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands,Department of PsychiatryColumbia UniversityNew YorkNYUSA,Division of Systems NeuroscienceNew York State Psychiatric InstituteNew YorkNYUSA
| |
Collapse
|
44
|
Lin WM, Oetringer DA, Bakker‐Marshall I, Emmerzaal J, Wilsch A, ElShafei HA, Rassi E, Haegens S. No behavioural evidence for rhythmic facilitation of perceptual discrimination. Eur J Neurosci 2022; 55:3352-3364. [PMID: 33772897 PMCID: PMC9540985 DOI: 10.1111/ejn.15208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
It has been hypothesized that internal oscillations can synchronize (i.e., entrain) to external environmental rhythms, thereby facilitating perception and behaviour. To date, evidence for the link between the phase of neural oscillations and behaviour has been scarce and contradictory; moreover, it remains an open question whether the brain can use this tentative mechanism for active temporal prediction. In our present study, we conducted a series of auditory pitch discrimination tasks with 181 healthy participants in an effort to shed light on the proposed behavioural benefits of rhythmic cueing and entrainment. In the three versions of our task, we observed no perceptual benefit of purported entrainment: targets occurring in-phase with a rhythmic cue provided no perceptual benefits in terms of discrimination accuracy or reaction time when compared with targets occurring out-of-phase or targets occurring randomly, nor did we find performance differences for targets preceded by rhythmic versus random cues. However, we found a surprising effect of cueing frequency on reaction time, in which participants showed faster responses to cue rhythms presented at higher frequencies. We therefore provide no evidence of entrainment, but instead a tentative effect of covert active sensing in which a faster external rhythm leads to a faster communication rate between motor and sensory cortices, allowing for sensory inputs to be sampled earlier in time.
Collapse
Affiliation(s)
- Wy Ming Lin
- Graduate Training Centre of NeuroscienceUniversity of TübingenTübingenGermany,Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Djamari A. Oetringer
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Iske Bakker‐Marshall
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jill Emmerzaal
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Anna Wilsch
- Department of PsychologyNew York UniversityNew YorkNYUSA
| | - Hesham A. ElShafei
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Elie Rassi
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Saskia Haegens
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands,Department of PsychiatryColumbia UniversityNew YorkNYUSA,Division of Systems NeuroscienceNew York State Psychiatric InstituteNew YorkNYUSA
| |
Collapse
|
45
|
Wass SV, Perapoch Amadó M, Ives J. Oscillatory entrainment to our early social or physical environment and the emergence of volitional control. Dev Cogn Neurosci 2022; 54:101102. [PMID: 35398645 PMCID: PMC9010552 DOI: 10.1016/j.dcn.2022.101102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
An individual's early interactions with their environment are thought to be largely passive; through the early years, the capacity for volitional control develops. Here, we consider: how is the emergence of volitional control characterised by changes in the entrainment observed between internal activity (behaviour, physiology and brain activity) and the sights and sounds in our everyday environment (physical and social)? We differentiate between contingent responsiveness (entrainment driven by evoked responses to external events) and oscillatory entrainment (driven by internal oscillators becoming temporally aligned with external oscillators). We conclude that ample evidence suggests that children show behavioural, physiological and neural entrainment to their physical and social environment, irrespective of volitional attention control; however, evidence for oscillatory entrainment beyond contingent responsiveness is currently lacking. Evidence for how oscillatory entrainment changes over developmental time is also lacking. Finally, we suggest a mechanism through which periodic environmental rhythms might facilitate both sensory processing and the development of volitional control even in the absence of oscillatory entrainment.
Collapse
Affiliation(s)
- S V Wass
- Department of Psychology, University of East London, UK.
| | | | - J Ives
- Department of Psychology, University of East London, UK
| |
Collapse
|
46
|
Jones KT, Smith CC, Gazzaley A, Zanto TP. Research outside the laboratory: Longitudinal at-home neurostimulation. Behav Brain Res 2022; 428:113894. [DOI: 10.1016/j.bbr.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022]
|
47
|
Kliger Amrani A, Zion Golumbic E. Memory-Paced Tapping to Auditory Rhythms: Effects of Rate, Speech, and Motor Engagement. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:923-939. [PMID: 35133867 DOI: 10.1044/2021_jslhr-21-00406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE Humans have a near-automatic tendency to entrain their motor actions to rhythms in the environment. Entrainment has been hypothesized to play an important role in processing naturalistic stimuli, such as speech and music, which have intrinsically rhythmic properties. Here, we studied two facets of entraining one's rhythmic motor actions to an external stimulus: (a) synchronized finger tapping to auditory rhythmic stimuli and (b) memory-paced reproduction of a previously heard rhythm. METHOD Using modifications of the Synchronization-Continuation tapping paradigm, we studied how these two rhythmic behaviors were affected by different stimulus and task features. We tested synchronization and memory-paced tapping for a broad range of rates, from stimulus onset asynchrony of subsecond to suprasecond, both for strictly isochronous tone sequences and for rhythmic speech stimuli (counting from 1 to 10), which are more ecological yet less isochronous. We also asked what role motor engagement plays in forming a stable internal representation for rhythms and guiding memory-paced tapping. RESULTS AND CONCLUSIONS Our results show that individuals can flexibly synchronize their motor actions to a very broad range of rhythms. However, this flexibility does not extend to memory-paced tapping, which is accurate only in a narrower range of rates, around ~1.5 Hz. This pattern suggests that intrinsic rhythmic defaults in the auditory and/or motor system influence the internal representation of rhythms, in the absence of an external pacemaker. Interestingly, memory-paced tapping for speech rhythms and simple tone sequences shared similar "optimal rates," although with reduced accuracy, suggesting that internal constraints on rhythmic entrainment generalize to more ecological stimuli. Last, we found that actively synchronizing to tones versus passively listening to them led to more accurate memory-paced tapping performance, which emphasizes the importance of action-perception interactions in forming stable entrainment to external rhythms.
Collapse
Affiliation(s)
- Anat Kliger Amrani
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Elana Zion Golumbic
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
48
|
Yao F, Zhou B, Zhuang Y, Wang X. Immediate Temporal Information Modulates the Target Identification in the Attentional Blink. Brain Sci 2022; 12:brainsci12020278. [PMID: 35204041 PMCID: PMC8870607 DOI: 10.3390/brainsci12020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
It has been shown that learned temporal information can be exploited to help facilitate the target identification in the attentional blink task. Here, we tested whether similar exploitation also worked on short-term temporal information, even when it did not reliably predict the target onset. In two experiments, we randomly manipulated either the interval between targets (T1 and T2; Experiment 1) or the temporal regularity of stimulus presentation (Experiment 2) in each trial. The results revealed evidence of effects of immediate temporal experience mainly on T2 performances but also occasionally on T1 performances. In general, the accuracy of T2 was enhanced when a longer inter-target interval was explicitly processed in the preceding trial (Experiment 1) or the temporal regularity, regardless of being explicitly or implicitly processed, was present in the stimulus stream, especially after T1 (Experiment 2). These results suggest that, under high temporal uncertainty, both interval and rhythmic cues can still be exploited to regulate the allocation of processing resources, thus, modulating the target identification in the attentional blink task, consistent with the view of flexible attentional allocation, and further highlighting the importance of the interplay between temporal processing and attentional control in the conscious visual perception.
Collapse
Affiliation(s)
- Fangshu Yao
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (Y.Z.)
| | - Bin Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (B.Z.); (X.W.)
| | - Yiyun Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (Y.Z.)
| | - Xiaochun Wang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; (F.Y.); (Y.Z.)
- Correspondence: (B.Z.); (X.W.)
| |
Collapse
|
49
|
Herbst SK, Stefanics G, Obleser J. Endogenous modulation of delta phase by expectation–A replication of Stefanics et al., 2010. Cortex 2022; 149:226-245. [DOI: 10.1016/j.cortex.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
|
50
|
Otsuka S, Nakagawa S, Furukawa S. Expectations of the timing and intensity of a stimulus propagate to the auditory periphery through the medial olivocochlear reflex. Cereb Cortex 2022; 32:5121-5131. [PMID: 35094068 PMCID: PMC9667176 DOI: 10.1093/cercor/bhac002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022] Open
Abstract
Expectations concerning the timing of a stimulus enhance attention at the time at which the event occurs, which confers significant sensory and behavioral benefits. Herein, we show that temporal expectations modulate even the sensory transduction in the auditory periphery via the descending pathway. We measured the medial olivocochlear reflex (MOCR), a sound-activated efferent feedback that controls outer hair cell motility and optimizes the dynamic range of the sensory system. MOCR was noninvasively assessed using otoacoustic emissions. We found that the MOCR was enhanced by a visual cue presented at a fixed interval before a sound but was unaffected if the interval was changing between trials. The MOCR was also observed to be stronger when the learned timing expectation matched with the timing of the sound but remained unvaried when these two factors did not match. This implies that the MOCR can be voluntarily controlled in a stimulus- and goal-directed manner. Moreover, we found that the MOCR was enhanced by the expectation of a strong but not a weak, sound intensity. This asymmetrical enhancement could facilitate antimasking and noise protective effects without disrupting the detection of faint signals. Therefore, the descending pathway conveys temporal and intensity expectations to modulate auditory processing.
Collapse
Affiliation(s)
- Sho Otsuka
- Address correspondence to Sho Otsuka, Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan.
| | - Seiji Nakagawa
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Shigeto Furukawa
- NTT Communication Science Laboratoires, NTT Corporation, Kanagawa, Japan
| |
Collapse
|