1
|
Adell T, Cebrià F, Abril JF, Araújo SJ, Corominas M, Morey M, Serras F, González-Estévez C. Cell death in regeneration and cell turnover: Lessons from planarians and Drosophila. Semin Cell Dev Biol 2025; 169:103605. [PMID: 40139139 DOI: 10.1016/j.semcdb.2025.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
Programmed cell death plays a crucial role during tissue turnover in all animal species, and it is also essential during regeneration, serving as a key signalling mechanism to promote tissue repair and regrowth. In freshwater planarians, remarkable regenerative abilities are supported by neoblasts, a population of adult stem cells, which enable high somatic cell turnover. Cell death in planarians occurs continuously during regeneration and adult homeostasis, underscoring its critical role in tissue remodeling and repair. However, the exact mechanisms regulating cell death in these organisms remain elusive. In contrast, Drosophila melanogaster serves as a powerful model for studying programmed cell death in development, metamorphosis, and adult tissue maintenance, leveraging advanced genetic tools and visualization techniques. In Drosophila, cell death sculpts tissues, eliminates larval structures during metamorphosis, and supports homeostasis in adulthood. Despite limited regenerative capacity compared to planarians, Drosophila provides unique insights into cell death's regulatory mechanisms. Comparative analysis of these two systems highlights both conserved and divergent roles of programmed cell death in tissue renewal and regeneration. This review synthesizes the latest knowledge of programmed cell death in planarians and Drosophila, aiming to illuminate shared principles and system-specific adaptations, with relevance to tissue repair across biological systems.
Collapse
Affiliation(s)
- Teresa Adell
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain.
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Josep F Abril
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Marta Morey
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain.
| |
Collapse
|
2
|
Moreno-Blas D, Adell T, González-Estévez C. Autophagy in Tissue Repair and Regeneration. Cells 2025; 14:282. [PMID: 39996754 PMCID: PMC11853389 DOI: 10.3390/cells14040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Autophagy is a cellular recycling system that, through the sequestration and degradation of intracellular components regulates multiple cellular functions to maintain cellular homeostasis and survival. Dysregulation of autophagy is closely associated with the development of physiological alterations and human diseases, including the loss of regenerative capacity. Tissue regeneration is a highly complex process that relies on the coordinated interplay of several cellular processes, such as injury sensing, defense responses, cell proliferation, differentiation, migration, and cellular senescence. These processes act synergistically to repair or replace damaged tissues and restore their morphology and function. In this review, we examine the evidence supporting the involvement of the autophagy pathway in the different cellular mechanisms comprising the processes of regeneration and repair across different regenerative contexts. Additionally, we explore how modulating autophagy can enhance or accelerate regeneration and repair, highlighting autophagy as a promising therapeutic target in regenerative medicine for the development of autophagy-based treatments for human diseases.
Collapse
Affiliation(s)
| | | | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; (D.M.-B.); (T.A.)
| |
Collapse
|
3
|
Nussinov R, Yavuz BR, Jang H. Anticancer drugs: How to select small molecule combinations? Trends Pharmacol Sci 2024; 45:503-519. [PMID: 38782689 PMCID: PMC11162304 DOI: 10.1016/j.tips.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Small molecules are at the forefront of anticancer therapies. Successive treatments with single molecules incur drug resistance, calling for combination. Here, we explore the tough choices oncologists face - not just which drugs to use but also the best treatment plans, based on factors such as target proteins, pathways, and gene expression. We consider the reality of cancer's disruption of normal cellular processes, highlighting why it's crucial to understand the ins and outs of current treatment methods. The discussion on using combination drug therapies to target multiple pathways sheds light on a promising approach while also acknowledging the hurdles that come with it, such as dealing with pathway crosstalk. We review options and provide examples and the mechanistic basis, altogether providing the first comprehensive guide to combinatorial therapy selection.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
4
|
Avalos PN, Wong LL, Forsthoefel DJ. Extracellular vesicles promote proliferation in an animal model of regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586206. [PMID: 38712279 PMCID: PMC11071309 DOI: 10.1101/2024.03.22.586206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles (EVs) are secreted nanoparticles composed of a lipid bilayer that carry lipid, protein, and nucleic acid cargo between cells as a mode of intercellular communication. Although EVs can promote tissue repair in mammals, their roles in animals with greater regenerative capacity are not well understood. Planarian flatworms are capable of whole body regeneration due to pluripotent somatic stem cells called neoblasts that proliferate in response to injury. Here, using transmission electron microscopy, nanoparticle tracking analysis, and protein content examination, we showed that EVs enriched from the tissues of the planarian Schmidtea mediterranea had similar morphology and size as other eukaryotic EVs, and that these EVs carried orthologs of the conserved EV biogenesis regulators ALIX and TSG101. PKH67-labeled EVs were taken up more quickly by S/G2 neoblasts than G1 neoblasts/early progeny and differentiated cells. When injected into living planarians, EVs from regenerating tissue fragments enhanced upregulation of neoblast-associated transcripts. In addition, EV injection increased the number of F-ara-EdU-labelled cells by 49% as compared to buffer injection only. Our findings demonstrate that regenerating planarians produce EVs that promote stem cell proliferation, and suggest the planarian as an amenable in vivo model for the study of EV function during regeneration.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Lily L. Wong
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - David J. Forsthoefel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
5
|
Guo P, Jiang J, Chu R, He F, Ge M, Fang R, Guan Q, Cheng H, Jiang C, Su T, Zhu Z, Liu H, Wei W, Zhang S, Wang Q. GRK2 mediated degradation of SAV1 initiates hyperplasia of fibroblast-like synoviocytes in rheumatoid arthritis. Acta Pharm Sin B 2024; 14:1222-1240. [PMID: 38486990 PMCID: PMC10935169 DOI: 10.1016/j.apsb.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/27/2023] [Accepted: 11/29/2023] [Indexed: 03/17/2024] Open
Abstract
Hyperplasia and migration of fibroblast-like synoviocytes (FLSs) are the key drivers in the pathogenesis of rheumatoid arthritis (RA) and joint destruction. Abundant Yes-associated protein (YAP), which is a powerful transcription co-activator for proliferative genes, was observed in the nucleus of inflammatory FLSs with unknown upstream mechanisms. Using Gene Expression Omnibus database analysis, it was found that Salvador homolog-1 (SAV1), the pivotal negative regulator of the Hippo-YAP pathway, was slightly downregulated in RA synovium. However, SAV1 protein expression is extremely reduced. Subsequently, it was revealed that SAV1 is phosphorylated, ubiquitinated, and degraded by interacting with an important serine-threonine kinase, G protein-coupled receptor (GPCR) kinase 2 (GRK2), which was predominately upregulated by GPCR activation induced by ligands such as prostaglandin E2 (PGE2) in RA. This process further contributes to the decreased phosphorylation, nuclear translocation, and transcriptional potency of YAP, and leads to aberrant FLSs proliferation. Genetic depletion of GRK2 or inhibition of GRK2 by paroxetine rescued SAV1 expression and restored YAP phosphorylation and finally inhibited RA FLSs proliferation and migration. Similarly, paroxetine treatment effectively reduced the abnormal proliferation of FLSs in a rat model of collagen-induced arthritis which was accompanied by a significant improvement in clinical manifestations. Collectively, these results elucidate the significance of GRK2 regulation of Hippo-YAP signaling in FLSs proliferation and migration and the potential application of GRK2 inhibition in the treatment of FLSs-driven joint destruction in RA.
Collapse
Affiliation(s)
- Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Ji Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Rui Chu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Feng He
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Mingli Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Ruhong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Qiuyun Guan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Huijuan Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Chunru Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Tiantian Su
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Zhenduo Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Shihao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei 230032, China
- The Third Affiliated Hospital of Anhui Medical University (the First People's Hospital of Hefei), Hefei 230061, China
| |
Collapse
|
6
|
Seifert AW, Duncan EM, Zayas RM. Enduring questions in regenerative biology and the search for answers. Commun Biol 2023; 6:1139. [PMID: 37945686 PMCID: PMC10636051 DOI: 10.1038/s42003-023-05505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
The potential for basic research to uncover the inner workings of regenerative processes and produce meaningful medical therapies has inspired scientists, clinicians, and patients for hundreds of years. Decades of studies using a handful of highly regenerative model organisms have significantly advanced our knowledge of key cell types and molecular pathways involved in regeneration. However, many questions remain about how regenerative processes unfold in regeneration-competent species, how they are curtailed in non-regenerative organisms, and how they might be induced (or restored) in humans. Recent technological advances in genomics, molecular biology, computer science, bioengineering, and stem cell research hold promise to collectively provide new experimental evidence for how different organisms accomplish the process of regeneration. In theory, this new evidence should inform the design of new clinical approaches for regenerative medicine. A deeper understanding of how tissues and organs regenerate will also undoubtedly impact many adjacent scientific fields. To best apply and adapt these new technologies in ways that break long-standing barriers and answer critical questions about regeneration, we must combine the deep knowledge of developmental and evolutionary biologists with the hard-earned expertise of scientists in mechanistic and technical fields. To this end, this perspective is based on conversations from a workshop we organized at the Banbury Center, during which a diverse cross-section of the regeneration research community and experts in various technologies discussed enduring questions in regenerative biology. Here, we share the questions this group identified as significant and unanswered, i.e., known unknowns. We also describe the obstacles limiting our progress in answering these questions and how expanding the number and diversity of organisms used in regeneration research is essential for deepening our understanding of regenerative capacity. Finally, we propose that investigating these problems collaboratively across a diverse network of researchers has the potential to advance our field and produce unexpected insights into important questions in related areas of biology and medicine.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Elizabeth M Duncan
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
7
|
Font-Martín D, Pascual-Carreras E, Saló E. Combining Fluorescent In Situ Hybridization with Immunofluorescence and Lectin Staining in Planarians. Methods Mol Biol 2023; 2680:67-79. [PMID: 37428371 DOI: 10.1007/978-1-0716-3275-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The capability to simultaneously apply different molecular tools to visualize a wide variety of changes in genetic expression and tissue composition in Schmidtea mediterranea has always been of great interest. The most commonly used techniques are fluorescent in situ hybridization (FISH) and immunofluorescence (IF) detection. Here, we describe a novel way to perform both protocols together adding the possibility to combine them with fluorescent-conjugated lectin staining to further broaden the detection of tissues. We also present a novel lectin fixation protocol to enhance the signal, which could be useful when single-cell resolution is required.
Collapse
Affiliation(s)
- Daniel Font-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalunya, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Catalunya, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Catalunya, Spain.
| |
Collapse
|
8
|
Ge XY, Han X, Zhao YL, Cui GS, Yang YG. An insight into planarian regeneration. Cell Prolif 2022; 55:e13276. [PMID: 35811385 PMCID: PMC9436907 DOI: 10.1111/cpr.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Planarian has attracted increasing attentions in the regeneration field for its usefulness as an important biological model organism attributing to its strong regeneration ability. Both the complexity of multiple regulatory networks and their coordinate functions contribute to the maintenance of normal cellular homeostasis and the process of regeneration in planarian. The polarity, size, location and number of regeneration tissues are regulated by diverse mechanisms. In this review we summarize the recent advances about the importance genetic and molecular mechanisms for regeneration control on various tissues in planarian. Methods A comprehensive literature search of original articles published in recent years was performed in regards to the molecular mechanism of each cell types during the planarian regeneration, including neoblast, nerve system, eye spot, excretory system and epidermal. Results Available molecular mechanisms gave us an overview of regeneration process in every tissue. The sense of injuries and initiation of regeneration is regulated by diverse genes like follistatin and ERK signaling. The Neoblasts differentiate into tissue progenitors under the regulation of genes such as egfr‐3. The regeneration polarity is controlled by Wnt pathway, BMP pathway and bioelectric signals. The neoblast within the blastema differentiate into desired cell types and regenerate the missing tissues. Those tissue specific genes regulate the tissue progenitor cells to differentiate into desired cell types to complete the regeneration process. Conclusion All tissue types in planarian participate in the regeneration process regulated by distinct molecular factors and cellular signaling pathways. The neoblasts play vital roles in tissue regeneration and morphology maintenance. These studies provide new insights into the molecular mechanisms for regulating planarian regeneration.
Collapse
Affiliation(s)
- Xin-Yang Ge
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Xiao Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Liang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Guan-Shen Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| |
Collapse
|
9
|
A World of Viruses Nested within Parasites: Unraveling Viral Diversity within Parasitic Flatworms (Platyhelminthes). Microbiol Spectr 2022; 10:e0013822. [PMID: 35536058 PMCID: PMC9241645 DOI: 10.1128/spectrum.00138-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Because parasites have an inextricable relationship with their host, they have the potential to serve as viral reservoirs or facilitate virus host shifts. And yet, little is known about viruses infecting parasitic hosts except for blood-feeding arthropods that are well-known vectors of zoonotic viruses. Herein, we uncovered viruses of flatworms (phylum Platyhelminthes, group Neodermata) that specialize in parasitizing vertebrates and their ancestral free-living relatives. We discovered 115 novel viral sequences, including 1 in Macrostomorpha, 5 in Polycladida, 44 in Tricladida, 1 in Monogenea, 15 in Cestoda, and 49 in Trematoda, through data mining. The majority of newly identified viruses constitute novel families or genera. Phylogenetic analyses show that the virome of flatworms changed dramatically during the transition of neodermatans to a parasitic lifestyle. Most Neodermata viruses seem to codiversify with their host, with the exception of rhabdoviruses, which may switch hosts more often, based on phylogenetic relationships. Neodermata rhabdoviruses also have a position ancestral to vertebrate-associated rhabdo viruses, including lyssaviruses, suggesting that vertebrate-associated rhabdoviruses emerged from a flatworm rhabdovirus in a parasitized host. This study reveals an extensive diversity of viruses in Platyhelminthes and highlights the need to evaluate the role of viral infection in flatworm-associated diseases. IMPORTANCE Little is known about the diversity of parasite-associated viruses and how these viruses may impact parasite fitness, parasite-host interactions, and virus evolution. The discovery of over a hundred viruses associated with a range of free-living and parasitic flatworms, including parasites of economic and clinical relevance, allowed us to compare the viromes of flatworms with contrasting lifestyles. The results suggest that flatworms acquired novel viruses after their transition to a parasitic lifestyle and highlight the possibility that they acquired viruses from their hosts and vice versa. An interesting example is the discovery of flatworm rhabdoviruses that have a position ancestral to rabies viruses and other vertebrate-associated rhabdoviruses, demonstrating that flatworm-associated viruses have emerged in a vertebrate host at least once in history. Therefore, parasitic flatworms may play a role in virus diversity and emergence. The roles that parasite-infecting viruses play in parasite-associated diseases remain to be investigated.
Collapse
|
10
|
Wu C, Qin C, Fu X, Huang X, Tian K. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Vet Res 2022; 18:167. [PMID: 35524260 PMCID: PMC9074311 DOI: 10.1186/s12917-022-03253-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Among the world's finest natural fiber composites is derived from the secondary hair follicles (SHFs) of cashmere goats yield one of the world's best natural fibres. Their development and cycling are characterized by photoperiodism with diverse, well-orchestrated stimulatory and inhibitory signals. Long non-coding RNA (lncRNAs) and mRNAs play important roles in hair follicle (HF) development. However, not many studies have explored their specific functions in cashmere development and cycling. This study detected mRNAs and lncRNAs with their candidate genes and related pathways in SHF development and cycling of cashmere goat. We utilized RNA sequencing (RNA-Seq) and bioinformatics analysis on lncRNA and mRNA expressions in goat hair follicles to discover candidate genes and metabolic pathways that could affect development and cycling (anagen, catagen, and telogen). RESULTS We identified 228 differentially expressed (DE) mRNAs and 256 DE lncRNA. For mRNAs, catagen and anagen had 16 upregulated and 35 downregulated DEGs, catagen and telogen had 18 upregulated and 9 downregulated DEGs and telogen and anagen had 52 upregulated and 98 downregulated DEGs. LncRNA witnessed 22 upregulated and 39 downregulated DEGs for catagen and anagen, 36 upregulated and 29 downregulated DEGs for catagen and telogen as well as 66 upregulated and 97 downregulated DEGs for telogen and anagen. Several key genes, including MSTRG.5451.2, MSTRG.45465.3, MSTRG.11609.2, CHST1, SH3BP4, CDKN1A, GAREM1, GSK-3β, DEFB103A KRTAP9-2, YAP1, S100A7A, FA2H, LOC102190037, LOC102179090, LOC102173866, KRT2, KRT39, FAM167A, FAT4 and EGFL6 were shown to be potentially important in hair follicle development and cycling. They were related to, WNT/β-catenin, mTORC1, ERK/MAPK, Hedgehog, TGFβ, NFkB/p38MAPK, caspase-1, and interleukin (IL)-1a signaling pathways. CONCLUSION This work adds to existing understanding of the regulation of HF development and cycling in cashmere goats via lncRNAs and mRNAs. It also serves as theoretical foundation for future SHF research in cashmere goats.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China. .,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
11
|
Davidian D, LeGro M, Barghouth PG, Rojas S, Ziman B, Maciel EI, Ardell D, Escobar AL, Oviedo NJ. Restoration of DNA integrity and cell cycle by electric stimulation in planarian tissues damaged by ionizing radiation. J Cell Sci 2022; 135:274829. [PMID: 35322853 PMCID: PMC9264365 DOI: 10.1242/jcs.259304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/05/2022] [Indexed: 10/18/2022] Open
Abstract
Exposure to high levels of ionizing γ-radiation leads to irreversible DNA damage and cell death. Here, we establish that exogenous application of electric stimulation enables cellular plasticity to reestablish stem cell activity in tissues damaged by ionizing radiation. We show that sub-threshold direct current stimulation (DCS) rapidly restores pluripotent stem cell populations previously eliminated by lethally γ-irradiated tissues of the planarian flatworm Schmidtea mediterranea. Our findings reveal that DCS enhances DNA repair, transcriptional activity, and cell cycle entry in post-mitotic cells. These responses involve rapid increases in cytosolic [Ca2+] through the activation of L-type Cav channels and intracellular Ca2+ stores leading to the activation of immediate early genes and ectopic expression of stem cell markers in postmitotic cells. Overall, we show the potential of electric current stimulation to reverse the damaging effects of high dose γ-radiation in adult tissues. Furthermore, our results provide mechanistic insights describing how electric stimulation effectively translates into molecular responses capable of regulating fundamental cellular functions without the need for genetic or pharmacological intervention.
Collapse
Affiliation(s)
- Devon Davidian
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Melanie LeGro
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Paul G Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Salvador Rojas
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Benjamin Ziman
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Eli Isael Maciel
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - David Ardell
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Health Sciences Research Institute, University of California, Merced, USA
| | - Ariel L Escobar
- Department of Bioengineering, University of California, Merced, USA.,Health Sciences Research Institute, University of California, Merced, USA
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Health Sciences Research Institute, University of California, Merced, USA
| |
Collapse
|
12
|
Chan M, Yuan H, Soifer I, Maile TM, Wang RY, Ireland A, O'Brien JJ, Goudeau J, Chan LJ, Vijay T, Freund A, Kenyon C, Bennett BD, McAllister FE, Kelley DR, Roy M, Cohen RL, Levinson AD, Botstein D, Hendrickson DG. Novel insights from a multiomics dissection of the hayflick limit. eLife 2022; 11:70283. [PMID: 35119359 PMCID: PMC8933007 DOI: 10.7554/elife.70283] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
The process wherein dividing cells exhaust proliferative capacity and enter into replicative senescence has become a prominent model for cellular aging in vitro. Despite decades of study, this cellular state is not fully understood in culture and even much less so during aging. Here, we revisit Leonard Hayflick’s original observation of replicative senescence in WI-38 human lung fibroblasts equipped with a battery of modern techniques including RNA-seq, single-cell RNA-seq, proteomics, metabolomics, and ATAC-seq. We find evidence that the transition to a senescent state manifests early, increases gradually, and corresponds to a concomitant global increase in DNA accessibility in nucleolar and lamin associated domains. Furthermore, we demonstrate that senescent WI-38 cells acquire a striking resemblance to myofibroblasts in a process similar to the epithelial to mesenchymal transition (EMT) that is regulated by t YAP1/TEAD1 and TGF-β2. Lastly, we show that verteporfin inhibition of YAP1/TEAD1 activity in aged WI-38 cells robustly attenuates this gene expression program.
Collapse
Affiliation(s)
- Michelle Chan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Han Yuan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Ilya Soifer
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Tobias M Maile
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Rebecca Y Wang
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Andrea Ireland
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - Jérôme Goudeau
- Calico Life Sciences LLC, South San Francisco, United States
| | - Leanne Jg Chan
- Calico Life Sciences LLC, South San Francisco, United States
| | - Twaritha Vijay
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Adam Freund
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Cynthia Kenyon
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - David R Kelley
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Margaret Roy
- Calico Life Sciences LLC, South San Francisco, United States
| | - Robert L Cohen
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - David Botstein
- Calico Life Sciences, LLC, South San Francisco, United States
| | | |
Collapse
|
13
|
Abel C, Powers K, Gurung G, Pellettieri J. Defined diets for freshwater planarians. Dev Dyn 2022; 251:390-402. [PMID: 34258816 PMCID: PMC8758798 DOI: 10.1002/dvdy.400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Planarian flatworms are popular invertebrate models for basic research on stem cell biology and regeneration. These animals are commonly maintained on a diet of homogenized calf liver or boiled egg yolk in the laboratory, introducing a source of uncontrolled experimental variability. RESULTS Here, we report the development of defined diets, prepared entirely from standardized, commercially sourced ingredients, for the freshwater species Schmidtea mediterranea, Dugesia japonica, and Girardia dorotocephala. These food sources provide an opportunity to test the effects of specific nutritional variables on biological phenomena of interest. Defined diet consumption was not sufficient for growth and only partially induced the increase in stem cell division that normally accompanies feeding, suggesting these responses are not solely determined by caloric intake. Our defined diet formulations enable delivery of double-stranded RNA for gene knockdown in a manner that provides unique advantages in some experimental contexts. We also present a new approach for preserving tissue integrity during hydrogen peroxide bleaching of liver-fed animals. CONCLUSIONS These tools will empower research on the connections between diet, metabolism, and stem cell biology in the experimentally tractable planarian system.
Collapse
Affiliation(s)
- Chris Abel
- Department of Biology, Keene State College, Keene, NH, USA
| | - Kaleigh Powers
- Department of Biology, Keene State College, Keene, NH, USA
| | - Gargi Gurung
- Department of Biology, Keene State College, Keene, NH, USA
| | | |
Collapse
|
14
|
Molina MD, Cebrià F. Decoding Stem Cells: An Overview on Planarian Stem Cell Heterogeneity and Lineage Progression. Biomolecules 2021; 11:1532. [PMID: 34680165 PMCID: PMC8533874 DOI: 10.3390/biom11101532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/26/2023] Open
Abstract
Planarians are flatworms capable of whole-body regeneration, able to regrow any missing body part after injury or amputation. The extraordinary regenerative capacity of planarians is based upon the presence in the adult of a large population of somatic pluripotent stem cells. These cells, called neoblasts, offer a unique system to study the process of stem cell specification and differentiation in vivo. In recent years, FACS-based isolation of neoblasts, RNAi functional analyses as well as high-throughput approaches such as single-cell sequencing have allowed a rapid progress in our understanding of many different aspects of neoblast biology. Here, we summarize our current knowledge on the molecular signatures that define planarian neoblasts heterogeneity, which includes a percentage of truly pluripotent stem cells, and guide the commitment of pluripotent neoblasts into lineage-specific progenitor cells, as well as their differentiation into specific planarian cell types.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| |
Collapse
|
15
|
Gutiérrez-Gutiérrez Ó, Felix DA, Salvetti A, Amro EM, Thems A, Pietsch S, Koeberle A, Rudolph KL, González-Estévez C. Regeneration in starved planarians depends on TRiC/CCT subunits modulating the unfolded protein response. EMBO Rep 2021; 22:e52905. [PMID: 34190393 PMCID: PMC8344900 DOI: 10.15252/embr.202152905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Planarians are able to stand long periods of starvation by maintaining adult stem cell pools and regenerative capacity. The molecular pathways that are needed for the maintenance of regeneration during starvation are not known. Here, we show that down‐regulation of chaperonin TRiC/CCT subunits abrogates the regeneration capacity of planarians during starvation, but TRiC/CCT subunits are dispensable for regeneration in fed planarians. Under starvation, they are required to maintain mitotic fidelity and for blastema formation. We show that TRiC subunits modulate the unfolded protein response (UPR) and are required to maintain ATP levels in starved planarians. Regenerative defects in starved CCT‐depleted planarians can be rescued by either chemical induction of mild endoplasmic reticulum stress, which leads to induction of the UPR, or by the supplementation of fatty acids. Together, these results indicate that CCT‐dependent UPR induction promotes regeneration of planarians under food restriction.
Collapse
Affiliation(s)
| | - Daniel A Felix
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Elias M Amro
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Anne Thems
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Stefan Pietsch
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany.,Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - K Lenhard Rudolph
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | | |
Collapse
|
16
|
Krishnan M, Kumar S, Kangale LJ, Ghigo E, Abnave P. The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models. Biomolecules 2021; 11:biom11050667. [PMID: 33946143 PMCID: PMC8144950 DOI: 10.3390/biom11050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).
Collapse
Affiliation(s)
- Meera Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Sahil Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Luis Johnson Kangale
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13385 Marseille, France;
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
| | - Eric Ghigo
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
- TechnoJouvence, 13385 Marseille, France
| | - Prasad Abnave
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
- Correspondence:
| |
Collapse
|
17
|
Analysis of Fox genes in Schmidtea mediterranea reveals new families and a conserved role of Smed-foxO in controlling cell death. Sci Rep 2021; 11:2947. [PMID: 33536473 PMCID: PMC7859237 DOI: 10.1038/s41598-020-80627-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
The forkhead box (Fox) genes encode transcription factors that control several key aspects of development. Present in the ancestor of all eukaryotes, Fox genes underwent several duplications followed by loss and diversification events that gave rise to the current 25 families. However, few Fox members have been identified from the Lophotrochozoa clade, and specifically from planarians, which are a unique model for understanding development, due to the striking plasticity of the adult. The aim of this study was to identify and perform evolutionary and functional studies of the Fox genes of lophotrochozoan species and, specifically, of the planarian Schmidtea mediterranea. Generating a pipeline for identifying Forkhead domains and using phylogenetics allowed us the phylogenetic reconstruction of Fox genes. We corrected the annotation for misannotated genes and uncovered a new family, the QD, present in all metazoans. According to the new phylogeny, the 27 Fox genes found in Schmidtea mediterranea were classified into 12 families. In Platyhelminthes, family losses were accompanied by extensive gene diversification and the appearance of specific families, the A(P) and N(P). Among the newly identified planarian Fox genes, we found a single copy of foxO, which shows an evolutionary conserved role in controlling cell death.
Collapse
|
18
|
Cwiklinski K, Robinson MW, Donnelly S, Dalton JP. Complementary transcriptomic and proteomic analyses reveal the cellular and molecular processes that drive growth and development of Fasciola hepatica in the host liver. BMC Genomics 2021; 22:46. [PMID: 33430759 PMCID: PMC7797711 DOI: 10.1186/s12864-020-07326-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background The major pathogenesis associated with Fasciola hepatica infection results from the extensive tissue damage caused by the tunnelling and feeding activity of immature flukes during their migration, growth and development in the liver. This is compounded by the pathology caused by host innate and adaptive immune responses that struggle to simultaneously counter infection and repair tissue damage. Results Complementary transcriptomic and proteomic approaches defined the F. hepatica factors associated with their migration in the liver, and the resulting immune-pathogenesis. Immature liver-stage flukes express ~ 8000 transcripts that are enriched for transcription and translation processes reflective of intensive protein production and signal transduction pathways. Key pathways that regulate neoblast/pluripotent cells, including the PI3K-Akt signalling pathway, are particularly dominant and emphasise the importance of neoblast-like cells for the parasite’s rapid development. The liver-stage parasites display different secretome profiles, reflecting their distinct niche within the host, and supports the view that cathepsin peptidases, cathepsin peptidase inhibitors, saposins and leucine aminopeptidases play a central role in the parasite’s destructive migration, and digestion of host tissue and blood. Immature flukes are also primed for countering immune attack by secreting immunomodulating fatty acid binding proteins (FABP) and helminth defence molecules (FhHDM). Combined with published host microarray data, our results suggest that considerable immune cell infiltration and subsequent fibrosis of the liver tissue exacerbates oxidative stress within parenchyma that compels the expression of a range of antioxidant molecules within both host and parasite. Conclusions The migration of immature F. hepatica parasites within the liver is associated with an increase in protein production, expression of signalling pathways and neoblast proliferation that drive their rapid growth and development. The secretion of a defined set of molecules, particularly cathepsin L peptidases, peptidase-inhibitors, saponins, immune-regulators and antioxidants allow the parasite to negotiate the liver micro-environment, immune attack and increasing levels of oxidative stress. This data contributes to the growing F. hepatica -omics information that can be exploited to understand parasite development more fully and for the design of novel control strategies to prevent host liver tissue destruction and pathology.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sheila Donnelly
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,The School of Life Sciences, University of Technology, Sydney, Australia
| | - John P Dalton
- Zoology Department, School of Natural Sciences, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
19
|
Molecular impact of launch related dynamic vibrations and static hypergravity in planarians. NPJ Microgravity 2020; 6:25. [PMID: 32964111 PMCID: PMC7478964 DOI: 10.1038/s41526-020-00115-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Although many examples of simulated and real microgravity demonstrating their profound effect on biological systems are described in literature, few reports deal with hypergravity and vibration effects, the levels of which are severely increased during the launch preceding the desired microgravity period. Here, we used planarians, flatworms that can regenerate any body part in a few days. Planarians are an ideal model to study the impact of launch-related hypergravity and vibration during a regenerative process in a "whole animal" context. Therefore, planarians were subjected to 8.5 minutes of 4 g hypergravity (i.e. a human-rated launch level) in the Large Diameter Centrifuge (LDC) and/or to vibrations (20-2000 Hz, 11.3 G rms) simulating the conditions of a standard rocket launch. The transcriptional levels of genes (erg-1, runt-1, fos, jnk, and yki) related with the early stress response were quantified through qPCR. The results show that early response genes are severely deregulated after static and dynamic loads but more so after a combined exposure of dynamic (vibration) and static (hypergravity) loads, more closely simulating real launch exposure profiles. Importantly, at least four days after the exposure, the transcriptional levels of those genes are still deregulated. Our results highlight the deep impact that short exposures to hypergravity and vibration have in organisms, and thus the implications that space flight launch could have. These phenomena should be taken into account when planning for well-controlled microgravity studies.
Collapse
|
20
|
Wouters A, Ploem JP, Langie SAS, Artois T, Aboobaker A, Smeets K. Regenerative responses following DNA damage - β-catenin mediates head regrowth in the planarian Schmidtea mediterranea. J Cell Sci 2020; 133:jcs237545. [PMID: 32107291 DOI: 10.1242/jcs.237545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea Exposure to the genotoxic compound methyl methanesulfonate (MMS) revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component β-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt signalling gradient along the body axis modulate stem cell responses to MMS.
Collapse
Affiliation(s)
- Annelies Wouters
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jan-Pieter Ploem
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Sabine A S Langie
- Vito Health, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Tom Artois
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Karen Smeets
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
21
|
Pascual-Carreras E, Marin-Barba M, Herrera-Úbeda C, Font-Martín D, Eckelt K, de Sousa N, García-Fernández J, Saló E, Adell T. Planarian cell number depends on blitzschnell, a novel gene family that balances cell proliferation and cell death. Development 2020; 147:dev.184044. [PMID: 32122990 DOI: 10.1242/dev.184044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/19/2020] [Indexed: 01/14/2023]
Abstract
Control of cell number is crucial to define body size during animal development and to restrict tumoral transformation. The cell number is determined by the balance between cell proliferation and cell death. Although many genes are known to regulate those processes, the molecular mechanisms underlying the relationship between cell number and body size remain poorly understood. This relationship can be better understood by studying planarians, flatworms that continuously change their body size according to nutrient availability. We identified a novel gene family, blitzschnell (bls), that consists of de novo and taxonomically restricted genes that control cell proliferation:cell death ratio. Their silencing promotes faster regeneration and increases cell number during homeostasis. Importantly, this increase in cell number leads to an increase in body size only in a nutrient-rich environment; in starved planarians, silencing results in a decrease in cell size and cell accumulation that ultimately produces overgrowths. bls expression is downregulated after feeding and is related to activity of the insulin/Akt/mTOR network, suggesting that the bls family evolved in planarians as an additional mechanism for restricting cell number in nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Marta Marin-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Daniel Font-Martín
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Kay Eckelt
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Nidia de Sousa
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Jordi García-Fernández
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| |
Collapse
|
22
|
Xiao Z, Wei Z, Deng D, Zheng Z, Zhao Y, Jiang S, Zhang D, Zhang LJ, Fan M, Chen S, Wang S, Ding Y, Ye Y, Jiao H. Downregulation of Siah1 promotes colorectal cancer cell proliferation and migration by regulating AKT and YAP ubiquitylation and proteasome degradation. Cancer Cell Int 2020; 20:50. [PMID: 32082080 PMCID: PMC7020597 DOI: 10.1186/s12935-020-1124-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors in the world. Siah E3 ubiquitin protein ligase 1 (Siah1) has been identified as a tumor suppressor gene and plays an important role in the development of malignant tumors. However, the potential role and molecular mechanism of Siah1 in the development and progression of CRC is still unclear. Methods To explore the role and molecular mechanism of Siah1 in the development and progression of CRC, we examined the expression of Siah1 in CRC tissue samples and analyzed its association with progression and prognosis in CRC. In addition, overexpression and knockdown of Siah1 was used to investigate its activity in CRC cells. We also use bioinformatics to analyze and verify the significant roles of Siah1 in critical signaling pathways of CRC. Results We found that the expression of Siah1 was significantly downregulated in CRC tissues, and low expression of Siah1 was associated with aggressive TNM staging and poor survival of CRC patients. Moreover, we revealed that overexpression of Siah1 in CRC cells markedly inhibited CRC cell proliferation and invasion in vitro and in vivo, while knockdown of Siah1 enhanced CRC cell proliferation and invasion. Furthermore, we found that Siah1 prohibited cell proliferation and invasion in CRC partially through promoting AKT (the serine-threonine protein kinase) and YAP (yes associated protein) ubiquitylation and proteasome degradation to regulate the activity of MAPK(mitogen-activated protein kinase 1), PI3K-AKT (phosphatidylinositol 3-kinase-the serine-threonine protein kinase) and Hippo signaling pathways. Conclusions These findings suggested that Siah1 is a novel potential prognostic biomarker and plays a tumor suppressor role in the development and progression of CRC.
Collapse
Affiliation(s)
- Zhiyuan Xiao
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.,3Department of Pathology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong China
| | - Zhigang Wei
- 4Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danling Deng
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.,Department of Pathology, Shaoyang Central Hospital, Affiliated Shaoyang Hospital of University of South China, Shaoyang, Hunan China
| | - Zhe Zheng
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yali Zhao
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shenglu Jiang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dan Zhang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ling-Jie Zhang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Mingmei Fan
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Siqi Chen
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - ShuYang Wang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yanqing Ding
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yaping Ye
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hongli Jiao
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| |
Collapse
|
23
|
Schad EG, Petersen CP. STRIPAK Limits Stem Cell Differentiation of a WNT Signaling Center to Control Planarian Axis Scaling. Curr Biol 2020; 30:254-263.e2. [PMID: 31928872 DOI: 10.1016/j.cub.2019.11.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/14/2019] [Accepted: 11/22/2019] [Indexed: 01/26/2023]
Abstract
Regeneration involves regulating tissue proportionality across considerable size ranges through unknown mechanisms. In planarians, which scale reversibly over 40× through regeneration, we identify the Striatin-interacting phosphatase and kinase (STRIPAK) complex as a potent negative regulator of axis length. Inhibition of two proteins in the STRIPAK complex, mob4 and striatin, dramatically increased posterior length, through expansion of a posterior wnt1+ signaling center within midline muscle cells. wnt1 was required for tail expansion after mob4 inhibition and dynamically reestablishes proportionality after amputation in normal animals, indicating STRIPAK represses Wnt signaling for scaling. Regulation of wnt1 expansion was stem cell dependent, demonstrating that control of signaling-center production through stem cell differentiation underlies proportional growth in adult regenerative tissue.
Collapse
Affiliation(s)
- Erik G Schad
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston IL 60208, USA.
| |
Collapse
|
24
|
Guo Q, Ni J, Zhang F, Guo Y, Zhang Y, Fang H, Tian Q, Zhang S. DjERas plays an important role in planarian regeneration and homeostasis. Biochem Biophys Res Commun 2019; 514:205-209. [PMID: 31029418 DOI: 10.1016/j.bbrc.2019.04.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
Abstract
The mechanisms of cell turnover including cell proliferation and cell differentiation were complex. Planarians possess amazing regeneration ability and undergo cell turnover throughout life. We identified a homologous gene of ERas by RNAi in Dugesia japonica. Knocking-down DjERas resulted in regeneration and homeostasis defects. Furthermore, we found that the expression of neoblasts and late progeny marker gene decreased in DjERas RNAi planarians. Our studies indicated that down-regulation of DjERas inhibited the proliferation and differentiation of stem cells through the conserved signaling pathway, resulted in the inability of the planarian to regenerate and maintain homeostasis. Our results suggest that DjERas plays a crucial role in the process of cell turnover.
Collapse
Affiliation(s)
- Qi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiajia Ni
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanan Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhe Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
25
|
The Cellular and Molecular Basis for Planarian Regeneration. Cell 2019; 175:327-345. [PMID: 30290140 DOI: 10.1016/j.cell.2018.09.021] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/03/2023]
Abstract
Regeneration is one of the great mysteries of biology. Planarians are flatworms capable of dramatic feats of regeneration, which have been studied for over 2 centuries. Recent findings identify key cellular and molecular principles underlying these feats. A stem cell population (neoblasts) generates new cells and is comprised of pluripotent stem cells (cNeoblasts) and fate-specified cells (specialized neoblasts). Positional information is constitutively active and harbored primarily in muscle, where it acts to guide stem cell-mediated tissue turnover and regeneration. I describe here a model in which positional information and stem cells combine to enable regeneration.
Collapse
|
26
|
Cote LE, Simental E, Reddien PW. Muscle functions as a connective tissue and source of extracellular matrix in planarians. Nat Commun 2019; 10:1592. [PMID: 30962434 PMCID: PMC6453901 DOI: 10.1038/s41467-019-09539-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 12/24/2022] Open
Abstract
Regeneration and tissue turnover require new cell production and positional information. Planarians are flatworms capable of regenerating all body parts using a population of stem cells called neoblasts. The positional information required for tissue patterning is primarily harbored by muscle cells, which also control body contraction. Here we produce an in silico planarian matrisome and use recent whole-animal single-cell-transcriptome data to determine that muscle is a major source of extracellular matrix (ECM). No other ECM-secreting, fibroblast-like cell type was detected. Instead, muscle cells express core ECM components, including all 19 collagen-encoding genes. Inhibition of muscle-expressed hemicentin-1 (hmcn-1), which encodes a highly conserved ECM glycoprotein, results in ectopic peripheral localization of cells, including neoblasts, outside of the muscle layer. ECM secretion and hmcn-1-dependent maintenance of tissue separation indicate that muscle functions as a planarian connective tissue, raising the possibility of broad roles for connective tissue in adult positional information. How the cellular source of positional information compares across regenerative animals is unclear. Here, the authors find that planarian muscle, which harbours positional information, acts as a connective tissue by being a major site of matrisome gene expression and by maintaining tissue architecture.
Collapse
Affiliation(s)
- Lauren E Cote
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA, 02142, USA
| | - Eric Simental
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA, 02142, USA.,University of California San Francisco, 600 16th Street, San Francisco, CA, 94143, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA, 02142, USA.
| |
Collapse
|
27
|
de Sousa N, Rodriguez-Esteban G, Colagè I, D'Ambrosio P, van Loon JJWA, Saló E, Adell T, Auletta G. Transcriptomic Analysis of Planarians under Simulated Microgravity or 8 g Demonstrates That Alteration of Gravity Induces Genomic and Cellular Alterations That Could Facilitate Tumoral Transformation. Int J Mol Sci 2019; 20:E720. [PMID: 30743987 PMCID: PMC6386889 DOI: 10.3390/ijms20030720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/01/2022] Open
Abstract
The possibility of humans to live outside of Earth on another planet has attracted the attention of numerous scientists around the world. One of the greatest difficulties is that humans cannot live in an extra-Earth environment without proper equipment. In addition, the consequences of chronic gravity alterations in human body are not known. Here, we used planarians as a model system to test how gravity fluctuations could affect complex organisms. Planarians are an ideal system, since they can regenerate any missing part and they are continuously renewing their tissues. We performed a transcriptomic analysis of animals submitted to simulated microgravity (Random Positioning Machine, RPM) (s-µg) and hypergravity (8 g), and we observed that the transcriptional levels of several genes are affected. Surprisingly, we found the major differences in the s-µg group. The results obtained in the transcriptomic analysis were validated, demonstrating that our transcriptomic data is reliable. We also found that, in a sensitive environment, as under Hippo signaling silencing, gravity fluctuations potentiate the increase in cell proliferation. Our data revealed that changes in gravity severely affect genetic transcription and that these alterations potentiate molecular disorders that could promote the development of multiple diseases such as cancer.
Collapse
Affiliation(s)
- Nídia de Sousa
- Department of Genetics, Microbiology and Statistics, and Institute of Biomedicine, University of Barcelona, Catalonia, 08028 Barcelona, Spain.
| | - Gustavo Rodriguez-Esteban
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.
| | - Ivan Colagè
- Pontifical University Antonianum, via Merulana 124, 00185 Rome, Italy.
- Pontifical University of the Holy Cross, DISF Centre, Via dei Pianellari 41, 00186 Rome, Italy.
| | - Paolo D'Ambrosio
- Pontifical University Antonianum, via Merulana 124, 00185 Rome, Italy.
- University of Cassino, Via Zamosch 43, 03043 Cassino, Italy.
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC location VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA), 1081 LA Amsterdam, The Netherlands.
- European Space Agency-ESA-Technology Center-ESTEC, TEC-MMG-Lab, 2200 AG Noordwijk, The Netherlands.
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics, and Institute of Biomedicine, University of Barcelona, Catalonia, 08028 Barcelona, Spain.
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics, and Institute of Biomedicine, University of Barcelona, Catalonia, 08028 Barcelona, Spain.
| | - Gennaro Auletta
- University of Cassino, Via Zamosch 43, 03043 Cassino, Italy.
- Pontifical Gregorian University, Piazza della Pilotta 4, 00187 Roma, Italy.
| |
Collapse
|
28
|
Tran TA, Gentile L. A lineage CLOUD for neoblasts. Semin Cell Dev Biol 2018; 87:22-29. [PMID: 29727726 DOI: 10.1016/j.semcdb.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022]
Abstract
In planarians, pluripotency can be studied in vivo in the adult animal, making these animals a unique model system where pluripotency-based regeneration (PBR)-and its therapeutic potential-can be investigated. This review focuses on recent findings to build a cloud model of fate restriction likelihood for planarian stem and progenitor cells. Recently, a computational approach based on functional and molecular profiling at the single cell level was proposed for human hematopoietic stem cells. Based on data generated both in vivo and ex vivo, we hypothesized that planarian stem cells could acquire multiple direction lineage biases, following a "badlands" landscape. Instead of a discrete tree-like hierarchy, where the potency of stem/progenitor cells reduces stepwise, we propose a Continuum of LOw-primed UnDifferentiated Planarian Stem/Progenitor Cells (CLOUD-PSPCs). Every subclass of neoblast/progenitor cells is a cloud of likelihood, as the single cell transcriptomics data indicate. The CLOUD-HSPCs concept was substantiated by in vitro data from cell culture; therefore, to confirm the CLOUD-PSPCs model, the planarian community needs to develop new tools, like live cell tracking. Future studies will allow a deeper understanding of PBR in planarian, and the possible implications for regenerative therapies in human.
Collapse
Affiliation(s)
- Thao Anh Tran
- Pluripotency and Regeneration Group, Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg, 1, 66280, Sulzbach, Germany
| | - Luca Gentile
- Pluripotency and Regeneration Group, Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg, 1, 66280, Sulzbach, Germany; Planarian Stem Cell Laboratory, Max Planck Institute for Molecular Biomedicine, von-Esmarch-str. 54, 48149, Münster, Germany; Hasselt University - Campus Diepenbeek, Agoralaan building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
29
|
DNA damage and tissue repair: What we can learn from planaria. Semin Cell Dev Biol 2018; 87:145-159. [PMID: 29727725 DOI: 10.1016/j.semcdb.2018.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
Faithful renewal of aging and damaged tissues is central to organismal lifespan. Stem cells (SCs) generate the cellular progeny that replenish adult tissues across the body but this task becomes increasingly compromised over time. The age related decline in SC-mediated tissue maintenance is a multifactorial event that commonly affects genome integrity. The presence of DNA damage in SCs that are under continuous demand to divide poses a great risk for age-related disorders such as cancer. However, performing analysis of SCs with genomic instability and the DNA damage response during tissue renewal present significant challenges. Here we introduce an alternative experimental system based on the planaria flatworm Schmidtea mediterranea to address at the organismal level studies intersecting SC-mediated tissue renewal in the presence of genomic instability. Planaria have abundant SCs (neoblasts) that maintain high rates of cellular turnover and a variety of molecular tools have been developed to induce DNA damage and dissect how neoblasts respond to this stressor. S. mediterranea displays high evolutionary conservation of DNA repair mechanisms and signaling pathways regulating adult SCs. We describe genetically induced-DNA damage models and highlight body-wide signals affecting cellular decisions such as survival, proliferation, and death in the presence of genomic instability. We also discuss transcriptomic changes in the DNA damage response during injury repair and propose DNA repair as key component of tissue regeneration. Additional studies using planaria will provide insights about mechanisms regulating survival and growth of cells with DNA damage during tissue renewal and regeneration.
Collapse
|
30
|
Strand NS, Allen JM, Zayas RM. Post-translational regulation of planarian regeneration. Semin Cell Dev Biol 2018; 87:58-68. [PMID: 29705300 DOI: 10.1016/j.semcdb.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Most mammals cannot easily overcome degenerative disease or traumatic injuries. In contrast, an innate ability to regenerate is observed across animal phyla. Freshwater planarians are amongst the organisms that are capable of stem cell-mediated whole-body regeneration and have served as an exemplary model to study how pluripotency is maintained and regulated in vivo. Here, we review findings on the role of post-translational modifications and the genes regulating phosphorylation, ubiquitylation, and chromatin remodeling in planarian regeneration. Furthermore, we discuss how technological advances for identifying cellular targets of these processes will fill gaps in our knowledge of the signaling mechanisms that underlie regeneration in planarians, which should inform how tissue repair can be stimulated in non-regenerative model organisms and in humans.
Collapse
Affiliation(s)
- Nicholas S Strand
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - John M Allen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|