1
|
Paulouskaya O, Romero-Soriano V, Ramirez-Lanzas C, Price TAR, Betancourt AJ. Levels of P-element-induced hybrid dysgenesis in Drosophila simulans are uncorrelated with levels of P-element piRNAs. G3 (BETHESDA, MD.) 2023; 13:jkac324. [PMID: 36478025 PMCID: PMC9911080 DOI: 10.1093/g3journal/jkac324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Transposable elements (TEs) are genomic parasites that proliferate within host genomes, and which can also invade new species. The P-element, a DNA-based TE, recently invaded two Drosophila species: Drosophila melanogaster in the 20th century, and D. simulans in the 21st. In both species, lines collected before the invasion are susceptible to "hybrid dysgenesis", a syndrome of abnormal phenotypes apparently due to P-element-inflicted DNA damage. In D. melanogaster, lines collected after the invasion have evolved a maternally acting mechanism that suppresses hybrid dysgenesis, with extensive work showing that PIWI-interacting small RNAs (piRNAs) are a key factor in this suppression. Most of these studies use lines collected many generations after the initial P-element invasion. Here, we study D. simulans collected early, as well as late in the P-element invasion of this species. Like D. melanogaster, D. simulans from late in the invasion show strong resistance to hybrid dysgenesis and abundant P-element-derived piRNAs. Lines collected early in the invasion, however, show substantial variation in how much they suffer from hybrid dysgenesis, with some lines highly resistant. Surprisingly, although, these resistant lines do not show high levels of cognate maternal P-element piRNAs; in these lines, it may be that other mechanisms suppress hybrid dysgenesis.
Collapse
Affiliation(s)
- Olga Paulouskaya
- Department of Evolution, Ecology and Behaviour, University of Liverpool, L69 7ZB Liverpool, UK
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| | - Valèria Romero-Soriano
- Department of Evolution, Ecology and Behaviour, University of Liverpool, L69 7ZB Liverpool, UK
| | | | - Tom A R Price
- Department of Evolution, Ecology and Behaviour, University of Liverpool, L69 7ZB Liverpool, UK
| | - Andrea J Betancourt
- Department of Evolution, Ecology and Behaviour, University of Liverpool, L69 7ZB Liverpool, UK
| |
Collapse
|
2
|
Lama J, Srivastav S, Tasnim S, Hubbard D, Hadjipanteli S, Smith BR, Macdonald SJ, Green L, Kelleher ES. Genetic variation in P-element dysgenic sterility is associated with double-strand break repair and alternative splicing of TE transcripts. PLoS Genet 2022; 18:e1010080. [PMID: 36477699 PMCID: PMC9762592 DOI: 10.1371/journal.pgen.1010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/19/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
The germline mobilization of transposable elements (TEs) by small RNA mediated silencing pathways is conserved across eukaryotes and critical for ensuring the integrity of gamete genomes. However, genomes are recurrently invaded by novel TEs through horizontal transfer. These invading TEs are not targeted by host small RNAs, and their unregulated activity can cause DNA damage in germline cells and ultimately lead to sterility. Here we use hybrid dysgenesis-a sterility syndrome of Drosophila caused by transposition of invading P-element DNA transposons-to uncover host genetic variants that modulate dysgenic sterility. Using a panel of highly recombinant inbred lines of Drosophila melanogaster, we identified two linked quantitative trait loci (QTL) that determine the severity of dysgenic sterility in young and old females, respectively. We show that ovaries of fertile genotypes exhibit increased expression of splicing factors that suppress the production of transposase encoding transcripts, which likely reduces the transposition rate and associated DNA damage. We also show that fertile alleles are associated with decreased sensitivity to double-stranded breaks and enhanced DNA repair, explaining their ability to withstand high germline transposition rates. Together, our work reveals a diversity of mechanisms whereby host genotype modulates the cost of an invading TE, and points to genetic variants that were likely beneficial during the P-element invasion.
Collapse
Affiliation(s)
- Jyoti Lama
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Satyam Srivastav
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sadia Tasnim
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Donald Hubbard
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Savana Hadjipanteli
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Stuart J. Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Llewellyn Green
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Erin S. Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
3
|
Torri A, Jaeger J, Pradeu T, Saleh MC. The origin of RNA interference: Adaptive or neutral evolution? PLoS Biol 2022; 20:e3001715. [PMID: 35767561 PMCID: PMC9275709 DOI: 10.1371/journal.pbio.3001715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
The origin of RNA interference (RNAi) is usually explained by a defense-based hypothesis, in which RNAi evolved as a defense against transposable elements (TEs) and RNA viruses and was already present in the last eukaryotic common ancestor (LECA). However, since RNA antisense regulation and double-stranded RNAs (dsRNAs) are ancient and widespread phenomena, the origin of defensive RNAi should have occurred in parallel with its regulative functions to avoid imbalances in gene regulation. Thus, we propose a neutral evolutionary hypothesis for the origin of RNAi in which qualitative system drift from a prokaryotic antisense RNA gene regulation mechanism leads to the formation of RNAi through constructive neutral evolution (CNE). We argue that RNAi was already present in the ancestor of LECA before the need for a new defense system arose and that its presence helped to shape eukaryotic genomic architecture and stability. Where does RNA interference come from? This Essay describes a new step-by-step evolutionary model of how RNA interference might have originated in early eukaryotes through neutral events from the molecular machinery present in prokaryotes.
Collapse
Affiliation(s)
- Alessandro Torri
- Virus & RNA interference Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
- * E-mail: (AT); (M-CS)
| | | | - Thomas Pradeu
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
- Institut d’histoire et de philosophie des sciences et des techniques, CNRS UMR 8590, Pantheon-Sorbonne University, Paris, France
| | - Maria-Carla Saleh
- Virus & RNA interference Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
- * E-mail: (AT); (M-CS)
| |
Collapse
|
4
|
Bubnell JE, Ulbing CKS, Fernandez Begne P, Aquadro CF. Functional Divergence of the bag-of-marbles Gene in the Drosophila melanogaster Species Group. Mol Biol Evol 2022; 39:6609986. [PMID: 35714266 PMCID: PMC9250105 DOI: 10.1093/molbev/msac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In Drosophila melanogaster, a key germline stem cell (GSC) differentiation factor, bag of marbles (bam) shows rapid bursts of amino acid fixations between sibling species D. melanogaster and Drosophila simulans, but not in the outgroup species Drosophila ananassae. Here, we test the null hypothesis that bam's differentiation function is conserved between D. melanogaster and four additional Drosophila species in the melanogaster species group spanning approximately 30 million years of divergence. Surprisingly, we demonstrate that bam is not necessary for oogenesis or spermatogenesis in Drosophila teissieri nor is bam necessary for spermatogenesis in D. ananassae. Remarkably bam function may change on a relatively short time scale. We further report tests of neutral sequence evolution at bam in additional species of Drosophila and find a positive, but not perfect, correlation between evidence for positive selection at bam and its essential role in GSC regulation and fertility for both males and females. Further characterization of bam function in more divergent lineages will be necessary to distinguish between bam's critical gametogenesis role being newly derived in D. melanogaster, D. simulans, Drosophila yakuba, and D. ananassae females or it being basal to the genus and subsequently lost in numerous lineages.
Collapse
Affiliation(s)
| | - Cynthia K S Ulbing
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
5
|
Yang N, Srivastav SP, Rahman R, Ma Q, Dayama G, Li S, Chinen M, Lei EP, Rosbash M, Lau NC. Transposable element landscapes in aging Drosophila. PLoS Genet 2022; 18:e1010024. [PMID: 35239675 PMCID: PMC8893327 DOI: 10.1371/journal.pgen.1010024] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic mechanisms that repress transposable elements (TEs) in young animals decline during aging, as reflected by increased TE expression in aged animals. Does increased TE expression during aging lead to more genomic TE copies in older animals? To address this question, we quantified TE Landscapes (TLs) via whole genome sequencing of young and aged Drosophila strains of wild-type and mutant backgrounds. We quantified TLs in whole flies and dissected brains and validated the feasibility of our approach in detecting new TE insertions in aging Drosophila genomes when small RNA and RNA interference (RNAi) pathways are compromised. We also describe improved sequencing methods to quantify extra-chromosomal DNA circles (eccDNAs) in Drosophila as an additional source of TE copies that accumulate during aging. Lastly, to combat the natural progression of aging-associated TE expression, we show that knocking down PAF1, a conserved transcription elongation factor that antagonizes RNAi pathways, may bolster suppression of TEs during aging and extend lifespan. Our study suggests that in addition to a possible influence by different genetic backgrounds, small RNA and RNAi mechanisms may mitigate genomic TL expansion despite the increase in TE transcripts during aging. Transposable elements, also called transposons, are genetic parasites found in all animal genomes. Normally, transposons are compacted away in silent chromatin in young animals. But, as animals age and transposon-silencing defense mechanisms break down, transposon RNAs accumulate to significant levels in old animals like fruit flies. An open question is whether the increased levels of transposon RNAs in older animals also correspond to increased genomic copies of transposons. This study approached this question by sequencing the whole genomes of young and old wild-type and mutant flies lacking a functional RNA interference (RNAi) pathway, which naturally silences transposon RNAs. Although the wild-type flies with intact RNAi activity had little new accumulation of transposon copies, the sequencing approach was able to detect several transposon accumulation occurrences in some RNAi mutants. In addition, we found that some fly transposon families can also accumulate as extra-chromosomal circular DNA copies. Lastly, we showed that genetically augmenting the expression of RNAi factors can counteract the rising transposon RNA levels in aging and promote longevity. This study improves our understanding of the animal host genome relationship with transposons during natural aging processes.
Collapse
Affiliation(s)
- Nachen Yang
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Satyam P. Srivastav
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Reazur Rahman
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Qicheng Ma
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Gargi Dayama
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Sizheng Li
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Madoka Chinen
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Michael Rosbash
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Nelson C. Lau
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
- Boston University Genome Science Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Mérel V, Gibert P, Buch I, Rada VR, Estoup A, Gautier M, Fablet M, Boulesteix M, Vieira C. The worldwide invasion of Drosophila suzukii is accompanied by a large increase of transposable element load and a small number of putatively adaptive insertions. Mol Biol Evol 2021; 38:4252-4267. [PMID: 34021759 PMCID: PMC8476158 DOI: 10.1093/molbev/msab155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transposable Elements (TEs) are ubiquitous and mobile repeated sequences. They are major determinants of host fitness. Here, we characterized the TE content of the spotted wing fly Drosophila suzukii. Using a recently improved genome assembly, we reconstructed TE sequences de novo, and found that TEs occupy 47% of the genome and are mostly located in gene poor regions. The majority of TE insertions segregate at low frequencies, indicating a recent and probably ongoing TE activity. To explore TE dynamics in the context of biological invasions, we studied variation of TE abundance in genomic data from 16 invasive and six native populations of D. suzukii. We found a large increase of the TE load in invasive populations correlated with a reduced Watterson estimate of genetic diversity θ̂w a proxy of effective population size. We did not find any correlation between TE contents and bioclimatic variables, indicating a minor effect of environmentally induced TE activity. A genome-wide association study revealed that ca. 2,000 genomic regions are associated with TE abundance. We did not find, however, any evidence in such regions of an enrichment for genes known to interact with TE activity (e.g. transcription factor encoding genes or genes of the piRNA pathway). Finally, the study of TE insertion frequencies revealed 15 putatively adaptive TE insertions, six of them being likely associated with the recent invasion history of the species.
Collapse
Affiliation(s)
- Vincent Mérel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Patricia Gibert
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Inessa Buch
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Valentina Rodriguez Rada
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Arnaud Estoup
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Mathieu Gautier
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Matthieu Boulesteix
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
7
|
Hill T, Rosales-Stephens HL, Unckless RL. Rapid divergence of the male reproductive proteins in the Drosophila dunni group and implications for postmating incompatibilities between species. G3 (BETHESDA, MD.) 2021; 11:jkab050. [PMID: 33599779 PMCID: PMC8759818 DOI: 10.1093/g3journal/jkab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Proteins involved in post-copulatory interactions between males and females are among the fastest evolving genes in many species, usually attributed to their involvement in reproductive conflict. As a result, these proteins are thought to often be involved in the formation of postmating-prezygotic incompatibilities between species. The Drosophila dunni subgroup consists of a dozen recently diverged species found across the Caribbean islands with varying levels of hybrid incompatibility. We performed experimental crosses between species in the dunni group and see some evidence of hybrid incompatibilities. We also find evidence of reduced survival following hybrid mating, likely due to postmating-prezygotic incompatibilities. We assessed rates of evolution between these species genomes and find evidence of rapid evolution and divergence of some reproductive proteins, specifically the seminal fluid proteins. This work suggests the rapid evolution of seminal fluid proteins may be associated with postmating-prezygotic isolation, which acts as a barrier for gene flow between even the most closely related species.
Collapse
Affiliation(s)
- Tom Hill
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | - Robert L Unckless
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
8
|
Schwarz F, Wierzbicki F, Senti KA, Kofler R. Tirant Stealthily Invaded Natural Drosophila melanogaster Populations during the Last Century. Mol Biol Evol 2021; 38:1482-1497. [PMID: 33247725 PMCID: PMC8042734 DOI: 10.1093/molbev/msaa308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It was long thought that solely three different transposable elements (TEs)-the I-element, the P-element, and hobo-invaded natural Drosophila melanogaster populations within the last century. By sequencing the "living fossils" of Drosophila research, that is, D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbor degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, likely predating the split of D. melanogaster and D. simulans. These degraded insertions produce distinct piRNAs that were unable to prevent the novel Tirant invasion. In contrast to the I-element, P-element, and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs, and phenotypic effects, we provide a comprehensive study of a natural TE invasion.
Collapse
Affiliation(s)
- Florian Schwarz
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | | | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
9
|
Chakraborty M, Chang CH, Khost DE, Vedanayagam J, Adrion JR, Liao Y, Montooth KL, Meiklejohn CD, Larracuente AM, Emerson JJ. Evolution of genome structure in the Drosophila simulans species complex. Genome Res 2021; 31:380-396. [PMID: 33563718 PMCID: PMC7919458 DOI: 10.1101/gr.263442.120] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
Abstract
The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the Drosophila simulans species complex (D. simulans, D. mauritiana, and D. sechellia), which speciated ∼250,000 yr ago. Our assemblies are comparable in contiguity and accuracy to the current D. melanogaster genome, allowing us to directly compare repetitive sequences between these four species. We find that at least 15% of the D. simulans complex species genomes fail to align uniquely to D. melanogaster owing to structural divergence-twice the number of single-nucleotide substitutions. We also find rapid turnover of satellite DNA and extensive structural divergence in heterochromatic regions, whereas the euchromatic gene content is mostly conserved. Despite the overall preservation of gene synteny, euchromatin in each species has been shaped by clade- and species-specific inversions, transposable elements, expansions and contractions of satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence among Y-linked genes, including copy number variation and recent gene duplications from autosomes. Our assemblies provide a valuable resource for studying genome evolution and its consequences for phenotypic evolution in these genetic model species.
Collapse
Affiliation(s)
- Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| | - Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Danielle E Khost
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
- FAS Informatics and Scientific Applications, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jeffrey Vedanayagam
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jeffrey R Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403, USA
| | - Yi Liao
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68502, USA
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68502, USA
| | | | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
10
|
Hays M, Young JM, Levan PF, Malik HS. A natural variant of the essential host gene MMS21 restricts the parasitic 2-micron plasmid in Saccharomyces cerevisiae. eLife 2020; 9:62337. [PMID: 33063663 PMCID: PMC7652418 DOI: 10.7554/elife.62337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Antagonistic coevolution with selfish genetic elements (SGEs) can drive evolution of host resistance. Here, we investigated host suppression of 2-micron (2μ) plasmids, multicopy nuclear parasites that have co-evolved with budding yeasts. We developed SCAMPR (Single-Cell Assay for Measuring Plasmid Retention) to measure copy number heterogeneity and 2μ plasmid loss in live cells. We identified three S. cerevisiae strains that lack endogenous 2μ plasmids and reproducibly inhibit mitotic plasmid stability. Focusing on the Y9 ragi strain, we determined that plasmid restriction is heritable and dominant. Using bulk segregant analysis, we identified a high-confidence Quantitative Trait Locus (QTL) with a single variant of MMS21 associated with increased 2μ instability. MMS21 encodes a SUMO E3 ligase and an essential component of the Smc5/6 complex, involved in sister chromatid cohesion, chromosome segregation, and DNA repair. Our analyses leverage natural variation to uncover a novel means by which budding yeasts can overcome highly successful genetic parasites.
Collapse
Affiliation(s)
- Michelle Hays
- Molecular and Cellular Biology program, University of Washington, Seattle, United States.,Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Janet M Young
- Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Paula F Levan
- Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
11
|
Serrato-Capuchina A, Wang J, Earley E, Peede D, Isbell K, Matute DR. Paternally Inherited P-Element Copy Number Affects the Magnitude of Hybrid Dysgenesis in Drosophila simulans and D. melanogaster. Genome Biol Evol 2020; 12:808-826. [PMID: 32339225 PMCID: PMC7313671 DOI: 10.1093/gbe/evaa084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are repetitive regions of DNA that are able to self-replicate and reinsert themselves throughout host genomes. Since the discovery of TEs, a prevalent question has been whether increasing TE copy number has an effect on the fitness of their hosts. P-elements (PEs) in Drosophila are a well-studied TE that has strong phenotypic effects. When a female without PEs (M) is crossed to a male with them (P), the resulting females are often sterile, a phenomenon called hybrid dysgenesis (HD). Here, we used short- and long-read sequencing to infer the number of PEs in the genomes of dozens of isofemale lines from two Drosophila species and measured whether the magnitude of HD was correlated with the number of PEs in the paternal genome. Consistent with previous reports, we find evidence for a positive correlation between the paternal PE copy number and the magnitude of HD in progeny from ♀M × ♂ P crosses for both species. Other crosses are not affected by the number of PE copies. We also find that the correlation between the strength of HD and PE copy number differs between species, which suggests that there are genetic differences that might make some genomes more resilient to the potentially deleterious effects of TEs. Our results suggest that PE copy number interacts with other factors in the genome and the environment to cause HD and that the importance of these interactions is species specific.
Collapse
Affiliation(s)
| | - Jeremy Wang
- Genetics Department, University of North Carolina, Chapel Hill
| | - Eric Earley
- Genomics in Public Health and Medicine RTI International, Research Triangle Park, North Carolina
| | - David Peede
- Biology Department, University of North Carolina, Chapel Hill
| | - Kristin Isbell
- Biology Department, University of North Carolina, Chapel Hill
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill
| |
Collapse
|
12
|
Myc plays an important role in Drosophila P-M hybrid dysgenesis to eliminate germline cells with genetic damage. Commun Biol 2020; 3:185. [PMID: 32322015 PMCID: PMC7176646 DOI: 10.1038/s42003-020-0923-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/24/2020] [Indexed: 11/08/2022] Open
Abstract
Genetic damage in the germline induced by P-element mobilization causes a syndrome known as P-M hybrid dysgenesis (HD), which manifests as elevated mutation frequency and loss of germline cells. In this study, we found that Myc plays an important role in eliminating germline cells in the context of HD. P-element mobilization resulted in downregulation of Myc expression in the germline. Myc knockdown caused germline elimination; conversely, Myc overexpression rescued the germline loss caused by P-element mobilization. Moreover, restoration of fertility by Myc resulted in the production of gametes with elevated mutation frequency and reduced ability to undergo development. Our results demonstrate that Myc downregulation mediates elimination of germline cells with accumulated genetic damage, and that failure to remove these cells results in increased production of aberrant gametes. Therefore, we propose that elimination of germline cells mediated by Myc downregulation is a quality control mechanism that maintains the genomic integrity of the germline.
Collapse
|
13
|
Kelleher ES, Lama J, Wang L. Uninvited guests: how transposable elements take advantage of Drosophila germline stem cells, and how stem cells fight back. CURRENT OPINION IN INSECT SCIENCE 2020; 37:49-56. [PMID: 32113144 DOI: 10.1016/j.cois.2019.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Transposable elements (TEs) are mobile genetic parasites that spread through host genomes by replicating in germline cells. New TE copies that arise in the genomes of germline stem cells (GSCs) are of particular value, because they are potentially transmitted to multiple offspring through the plethora of gametes arising from the same progenitor GSC. However, the fidelity of GSC genomes is also of utmost importance to the host in ensuring the production of abundant and fit offspring. Here we review tactics that TEs employ to replicate in Drosophila female GSCs, as well as mechanisms those cells use to defend against TEs. We also discuss the relationship between transposition and GSC loss, which is arbitrated through reduced signaling for self renewal, increased signaling for differentiation, and DNA damage response pathways.
Collapse
Affiliation(s)
- Erin S Kelleher
- Department of Biology and Biochemistry, University of Houston, United States.
| | - Jyoti Lama
- Department of Biology and Biochemistry, University of Houston, United States
| | - Luyang Wang
- Department of Biology and Biochemistry, University of Houston, United States
| |
Collapse
|
14
|
Meiklejohn CD, Blumenstiel JP. Invasion of the P elements: Tolerance is not futile. PLoS Biol 2018; 16:e3000036. [PMID: 30376563 PMCID: PMC6207293 DOI: 10.1371/journal.pbio.3000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Organisms are locked in an eternal struggle with parasitic DNA sequences that live inside their genomes and wreak havoc on their host's chromosomes as they spread through populations. To combat these parasites, host species have evolved elaborate mechanisms of resistance that suppress their activity. A new study in Drosophila indicates that, prior to the acquisition of resistance, individuals can vary in their ability to tolerate the activity of these genomic parasites, ignoring or repairing the damage they induce. This tolerance results from variation at genes involved in germline development and DNA damage checkpoints and suggests that these highly conserved cellular processes may be influenced by current and historical intragenomic parasite loads.
Collapse
Affiliation(s)
- Colin D. Meiklejohn
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|