1
|
Bhattacharya I, Hautke A, Rossi E, Stevens L, Marick A, Bera A, Das T, Ferrarini A, Sulpizi M, Ebbinghaus S, Mitra RK. Non-monotonous Concentration Dependent Solvation of ATP Could Help to Rationalize Its Anomalous Impact on Various Biophysical Processes. J Phys Chem Lett 2025; 16:4305-4314. [PMID: 40266569 DOI: 10.1021/acs.jpclett.5c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Adenosine triphosphate (ATP), one of the biologically most important molecules, offers certain anomalous behavior during folding and liquid-liquid phase separation of proteins and RNAs. ATP can act as a "biological hydrotrope", i.e., it solubilizes hydrophobic proteins or other biomolecules. However, upon exceeding the physiological concentration range (2-10 mM), aggregation of proteins and RNAs is promoted, an effect that is not understood yet. Here we present a time-domain and frequency-domain Terahertz (THz) spectroscopic investigation to understand the solvation of ATP with varying concentration in the range of 2-15 mM. Both time and frequency domain studies of the solvation of adenosine (Adn), sodium triphosphate (TPP), and ATP elucidate that both the adenosine as well as the triphosphate moiety contribute to nearly equal propensity towards the solvation structure of ATP at low concentrations. However, at higher concentrations (>10 mM), the effect of the adenosine moiety dominates, which leads to a more structured solvation shell followed by slower relaxation dynamics. This is due to the triphosphate-driven ATP aggregation with a reduced amount of water-exposed triphosphate groups, as revealed by molecular dynamics simulations. These observations could lead to an understanding of the complex role of ATP in different biological systems.
Collapse
Affiliation(s)
- Indrani Bhattacharya
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Alexander Hautke
- Chair of Biophysical Chemistry, Ruhr-Universität Bochum, and Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - Emma Rossi
- Università degli Studi di Padova, Department of Chemical Sciences, 35131 Padova, Italy
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Laurie Stevens
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Aritra Marick
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Asesh Bera
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Tanushree Das
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| | - Alberta Ferrarini
- Università degli Studi di Padova, Department of Chemical Sciences, 35131 Padova, Italy
| | - Marialore Sulpizi
- Physics Department, Ruhr-Universität Bochum, Universitätstrasse 150, 44780 Bochum, Germany
| | - Simon Ebbinghaus
- Chair of Biophysical Chemistry, Ruhr-Universität Bochum, and Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - Rajib Kumar Mitra
- S. N. Bose National Centre for Basic Sciences, Department of Chemical, Biological and Macromolecular Sciences, Block JD, Sector III, Salt Lake City, Kolkata 700098, India
| |
Collapse
|
2
|
Cheng Z, Wang H, Zhang Y, Ren B, Fu Z, Li Z, Tu C. Deciphering the role of liquid-liquid phase separation in sarcoma: Implications for pathogenesis and treatment. Cancer Lett 2025; 616:217585. [PMID: 39999920 DOI: 10.1016/j.canlet.2025.217585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a significant reversible and dynamic process in organisms. Cells form droplets that are distinct from membrane-bound cell organelles by phase separation to keep biochemical processes in order. Nevertheless, the pathological state of LLPS contributes to the progression of a variety of tumor-related pathogenic issues. Sarcoma is one kind of highly malignant tumor characterized by aggressive metastatic potential and resistance to conventional therapeutic agents. Despite the significant clinical relevance, research on phase separation in sarcomas currently faces several major challenges. These include the limited availability of sarcoma samples, insufficient attention from the research community, and the complex genetic heterogeneity of sarcomas. Recently, emerging evidence have elaborated the specific effects and pathways of phase separation on different sarcoma subtypes, including the effect of sarcoma fusion proteins and other physicochemical factors on phase separation. This review aims to summarize the multiple roles of phase separation in sarcoma and novel molecular inhibitors that target phase separation. These insights will broaden the understanding of the mechanisms concerning sarcoma and offer new perspectives for future therapeutic strategies.
Collapse
Affiliation(s)
- Zehao Cheng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Bolin Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zheng Fu
- Shanghai Xinyi Biomedical Technology Co., Ltd, Shanghai, 201306, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
3
|
Guillaud L, Garanzini A, Zakhia S, De la Fuente S, Dimitrov D, Boerner S, Terenzio M. Loss of intracellular ATP affects axoplasmic viscosity and pathological protein aggregation in mammalian neurons. SCIENCE ADVANCES 2025; 11:eadq6077. [PMID: 40267187 PMCID: PMC12017319 DOI: 10.1126/sciadv.adq6077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Neurodegenerative diseases display synaptic deficits, mitochondrial defects, and protein aggregation. We show that intracellular adenosine triphosphate (ATP) regulates axoplasmic viscosity and protein aggregation in mammalian neurons. Decreased intracellular ATP upon mitochondrial inhibition leads to axoterminal cytosol, synaptic vesicles, and active zone component condensation, modulating the functional organization of mouse glutamatergic synapses. Proteins involved in the pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) condensed and underwent ATP-dependent liquid phase separation in vitro. Human inducible pluripotent stem cell-derived neurons from patients with PD and ALS displayed reduced axoplasmic fluidity and decreased intracellular ATP. Last, nicotinamide mononucleotide treatment successfully rescued intracellular ATP levels and axoplasmic viscosity in neurons from patients with PD and ALS and reduced TAR DNA-binding protein 43 (TDP-43) aggregation in human motor neurons derived from a patient with ALS. Thus, our data suggest that the hydrotropic activity of ATP contributes to the regulation of neuronal homeostasis under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Anna Garanzini
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Sarah Zakhia
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Sandra De la Fuente
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Dimitar Dimitrov
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Susan Boerner
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| |
Collapse
|
4
|
Driver MD, Onck PR. Selective phase separation of transcription factors is driven by orthogonal molecular grammar. Nat Commun 2025; 16:3087. [PMID: 40164612 PMCID: PMC11958648 DOI: 10.1038/s41467-025-58445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
Protein production is critically dependent on gene transcription rates, which are regulated by RNA polymerase and a large collection of different transcription factors (TFs). How these transcription factors selectively address different genes is only partially known. Recent discoveries show that the differential condensation of separate TF families through phase separation may contribute to selectivity. Here we address this by conducting phase separation studies on six TFs from three different TF families with residue-scale coarse-grained molecular dynamics simulations. Our exploration of ternary TF phase diagrams reveals four dominant sticker motifs and two orthogonal driving forces that dictate the resultant condensate morphology, pointing to sequence-dependent orthogonal molecular grammar as a generic molecular mechanism that drives selective transcriptional condensation in gene expression.
Collapse
Affiliation(s)
- Mark D Driver
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9746AG, Groningen, Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9746AG, Groningen, Netherlands.
| |
Collapse
|
5
|
Hornisch M, Piazza I. Regulation of gene expression through protein-metabolite interactions. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:7. [PMID: 40052108 PMCID: PMC11879850 DOI: 10.1038/s44324-024-00047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/20/2024] [Indexed: 03/09/2025]
Abstract
Organisms have to adapt to changes in their environment. Cellular adaptation requires sensing, signalling and ultimately the activation of cellular programs. Metabolites are environmental signals that are sensed by proteins, such as metabolic enzymes, protein kinases and nuclear receptors. Recent studies have discovered novel metabolite sensors that function as gene regulatory proteins such as chromatin associated factors or RNA binding proteins. Due to their function in regulating gene expression, metabolite-induced allosteric control of these proteins facilitates a crosstalk between metabolism and gene expression. Here we discuss the direct control of gene regulatory processes by metabolites and recent progresses that expand our abilities to systematically characterize metabolite-protein interaction networks. Obtaining a profound map of such networks is of great interest for aiding metabolic disease treatment and drug target identification.
Collapse
Affiliation(s)
- Maximilian Hornisch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, Berlin, 13092 Germany
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, Berlin, 13092 Germany
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, 171 65 Sweden
| |
Collapse
|
6
|
Lin YH, Kim TH, Das S, Pal T, Wessén J, Rangadurai AK, Kay LE, Forman-Kay JD, Chan HS. Electrostatics of salt-dependent reentrant phase behaviors highlights diverse roles of ATP in biomolecular condensates. eLife 2025; 13:RP100284. [PMID: 40028898 PMCID: PMC11875540 DOI: 10.7554/elife.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP's involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Department of Biochemistry, University of TorontoTorontoCanada
- Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
| | - Tae Hun Kim
- Department of Biochemistry, University of TorontoTorontoCanada
- Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Department of Chemistry, University of TorontoTorontoCanada
| | - Suman Das
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Chemistry, Gandhi Institute of Technology and ManagementVisakhapatnamIndia
| | - Tanmoy Pal
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Jonas Wessén
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Atul Kaushik Rangadurai
- Department of Biochemistry, University of TorontoTorontoCanada
- Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Department of Chemistry, University of TorontoTorontoCanada
| | - Lewis E Kay
- Department of Biochemistry, University of TorontoTorontoCanada
- Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Department of Chemistry, University of TorontoTorontoCanada
| | - Julie D Forman-Kay
- Department of Biochemistry, University of TorontoTorontoCanada
- Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
| | - Hue Sun Chan
- Department of Biochemistry, University of TorontoTorontoCanada
| |
Collapse
|
7
|
Lin S, Hu G, Zhang M, Li J. ATP Binding and Inhibition of Intrinsically Disordered Protein Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3315-3324. [PMID: 39885825 DOI: 10.1021/acs.langmuir.4c04216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Recent studies have shown that ATP at high physiological concentrations (>5 mM) can inhibit liquid-liquid phase separation (LLPS) driven by interactions between intrinsically disordered proteins (IDPs). However, the mechanism underlying such inhibitory effect still remains elusive. Here, we used all-atom molecular dynamics simulation to study the interaction of ATP with two typical IDPs (i.e., FUS PLD and RGG domain of hnRNP G), and its impacts on IDP interactions. ATP exhibits a considerable tendency to bind to both IDPs and effectively inhibits their interactions. For the RGG domain, Arg residues are critical for both ATP binding and IDP interactions. The inhibitory effect of ATP is largely attributed to its competitive binding mode to Arg residues. Similar competitive binding of ATP is also observed in FUS PLD. Both ATP binding and the PLD interaction share the residues including Gln, Ser, and Tyr residues, while the competition is rather modest due to the abundance of these residues in the sequence. Interestingly, ATP undergoes considerable diffusion on the surface of PLD, which is an order of magnitude faster than the evolution of the contact area of PLDs. The temporal separation of these two processes remarkably promotes the inhibitory effect of ATP on PLD interaction. Given the representativeness of these two IDPs, competitive binding may serve as a general mechanism underlying ATP inhibition on IDP interactions at high physiological levels.
Collapse
Affiliation(s)
- Shiyan Lin
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Guorong Hu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Moxin Zhang
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
8
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
9
|
Liu HL, Nan H, Zhao WW, Wan XB, Fan XJ. Phase separation in DNA double-strand break response. Nucleus 2024; 15:2296243. [PMID: 38146123 PMCID: PMC10761171 DOI: 10.1080/19491034.2023.2296243] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023] Open
Abstract
DNA double-strand break (DSB) is the most dangerous type of DNA damage, which may lead to cell death or oncogenic mutations. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are two typical DSB repair mechanisms. Recently, many studies have revealed that liquid-liquid phase separation (LLPS) plays a pivotal role in DSB repair and response. Through LLPS, the crucial biomolecules are quickly recruited to damaged sites with a high concentration to ensure DNA repair is conducted quickly and efficiently, which facilitates DSB repair factors activating downstream proteins or transmitting signals. In addition, the dysregulation of the DSB repair factor's phase separation has been reported to promote the development of a variety of diseases. This review not only provides a comprehensive overview of the emerging roles of LLPS in the repair of DSB but also sheds light on the regulatory patterns of phase separation in relation to the DNA damage response (DDR).
Collapse
Affiliation(s)
- Huan-Lei Liu
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, P.R. China
- College of Life Sciences, Northwest AF University, Yangling, Shaanxi, China
| | - Hao Nan
- College of Life Sciences, Northwest AF University, Yangling, Shaanxi, China
| | - Wan-Wen Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, P.R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
10
|
Song J. In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate. Int J Mol Sci 2024; 25:12817. [PMID: 39684527 DOI: 10.3390/ijms252312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid-liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments?
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
11
|
Kierans SJ, Taylor CT. Glycolysis: A multifaceted metabolic pathway and signaling hub. J Biol Chem 2024; 300:107906. [PMID: 39442619 PMCID: PMC11605472 DOI: 10.1016/j.jbc.2024.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Glycolysis is a highly conserved metabolic pathway responsible for the anaerobic production of adenosine triphosphate (ATP) from the breakdown of glucose molecules. While serving as a primary metabolic pathway in prokaryotes, glycolysis is also utilized by respiring eukaryotic cells, providing pyruvate to fuel oxidative metabolism. Furthermore, glycolysis is the primary source of ATP production in multiple cellular states (e.g., hypoxia) and is particularly important in maintaining bioenergetic homeostasis in the most abundant cell type in the human body, the erythrocyte. Beyond its role in ATP production, glycolysis also functions as a signaling hub, producing several metabolic intermediates which serve roles in both signaling and metabolic processes. These signals emanating from the glycolytic pathway can profoundly impact cell function, phenotype, and fate and have previously been overlooked. In this review, we will discuss the role of the glycolytic pathway as a source of signaling molecules in eukaryotic cells, emphasizing the newfound recognition of glycolysis' multifaceted nature and its importance in maintaining cellular homeostasis, beyond its traditional role in ATP synthesis.
Collapse
Affiliation(s)
- Sarah J Kierans
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Xu Z, Tang J, Gong Y, Zhang J, Zou Y. Atomistic Insights into the Stabilization of TDP-43 Protofibrils by ATP. J Chem Inf Model 2024; 64:7639-7649. [PMID: 39292611 DOI: 10.1021/acs.jcim.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The aberrant accumulation of the transactive response deoxyribonucleic acid (DNA)-binding protein of 43 kDa (TDP-43) aggregates in the cytoplasm of motor neurons is the main pathological hallmark of amyotrophic lateral sclerosis (ALS). Previous experiments reported that adenosine triphosphate (ATP), the universal energy currency for all living cells, could induce aggregation and enhance the folding of TDP-43 fibrillar aggregates. However, the significance of ATP on TDP-43 fibrillation and the mechanism behind it remain elusive. In this work, we conducted multiple atomistic molecular dynamics (MD) simulations totaling 20 μs to search the critical nucleus size of TDP-43282-360 and investigate the impact of ATP molecules on preformed protofibrils. The results reveal that the trimer is the critical nucleus for TDP-43282-360 fibril formation and the tetramer is the minimal stable nucleus. When ATP molecules bind to the TDP-43282-360 trimer and tetramer, they can consolidate the TDP-43282-360 protofibrils by increasing the content of the β-sheet structure and promoting the formation of hydrogen bonds (H-bonds). Binding site analyses show that the N-terminus of TDP-43282-360 protofibrils is the main binding site of ATP, and R293 dominates the direct binding of ATP. Further analyses reveal that the π-π, cation-π, salt bridge, and H-bonding interactions together contribute to the binding of ATP to TDP-43282-360 protofibrils. This study decoded the detailed stabilization mechanism of protofibrillar TDP-43282-360 oligomers by ATP, and may provide new avenues for the development of drug design against ALS.
Collapse
Affiliation(s)
- Zhengdong Xu
- Department of Physical Education, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Jiaxing Tang
- College of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Yehong Gong
- General Education Center, Westlake University, 600 Dunyu Road, Hangzhou 310030, People's Republic of China
| | - Jianxin Zhang
- Department of Physical Education, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, People's Republic of China
| | - Yu Zou
- Department Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310007, People's Republic of China
| |
Collapse
|
13
|
Driver MD, Postema J, Onck PR. The Effect of Dipeptide Repeat Proteins on FUS/TDP43-RNA Condensation in C9orf72 ALS/FTD. J Phys Chem B 2024; 128:9405-9417. [PMID: 39311028 PMCID: PMC11457143 DOI: 10.1021/acs.jpcb.4c04663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Condensation of RNA binding proteins (RBPs) with RNA is essential for cellular function. The most common familial cause of the diseases ALS and FTD is C9orf72 repeat expansion disorders that produce dipeptide repeat proteins (DPRs). We explore the hypothesis that DPRs disrupt the native condensation behavior of RBPs and RNA through molecular interactions resulting in toxicity. FUS and TDP43 are two RBPs known to be affected in ALS/FTD. We use our previously developed 1-bead-per-amino acid and a newly developed 3-bead-per-nucleotide molecular dynamics model to explore ternary phase diagrams of FUS/TDP43-RNA-DPR systems. We show that the most toxic arginine containing DPRs (R-DPRs) can disrupt the RBP condensates through cation-π interactions and can strongly sequester RNA through electrostatic interactions. The native droplet morphologies are already modified at small additions of R-DPRs leading to non-native FUS/TDP43-encapsulated condensates with a marbled RNA/DPR core.
Collapse
Affiliation(s)
- Mark D. Driver
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| | - Jasper Postema
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| | - Patrick R. Onck
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| |
Collapse
|
14
|
Song J. Molecular Mechanisms of Phase Separation and Amyloidosis of ALS/FTD-linked FUS and TDP-43. Aging Dis 2024; 15:2084-2112. [PMID: 38029395 PMCID: PMC11346406 DOI: 10.14336/ad.2023.1118] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023] Open
Abstract
FUS and TDP-43, two RNA-binding proteins from the heterogeneous nuclear ribonucleoprotein family, have gained significant attention in the field of neurodegenerative diseases due to their association with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). They possess folded domains for binding ATP and various nucleic acids including DNA and RNA, as well as substantial intrinsically disordered regions (IDRs) including prion-like domains (PLDs) and RG-/RGG-rich regions. They play vital roles in various cellular processes, including transcription, splicing, microRNA maturation, RNA stability and transport and DNA repair. In particular, they are key components for forming ribonucleoprotein granules and stress granules (SGs) through homotypic or heterotypic liquid-liquid phase separation (LLPS). Strikingly, liquid-like droplets formed by FUS and TDP-43 may undergo aging to transform into less dynamic assemblies such as hydrogels, inclusions, and amyloid fibrils, which are the pathological hallmarks of ALS and FTD. This review aims to synthesize and consolidate the biophysical knowledge of the sequences, structures, stability, dynamics, and inter-domain interactions of FUS and TDP-43 domains, so as to shed light on the molecular mechanisms underlying their liquid-liquid phase separation (LLPS) and amyloidosis. The review further delves into the mechanisms through which ALS-causing mutants of the well-folded hPFN1 disrupt the dynamics of LLPS of FUS prion-like domain, providing key insights into a potential mechanism for misfolding/aggregation-prone proteins to cause neurodegenerative diseases and aging by gain of functions. With better understanding of different biophysical aspects of FUS and TDP-43, the ultimate goal is to develop drugs targeting LLPS and amyloidosis, which could mediate protein homeostasis within cells and lead to new treatments for currently intractable diseases, particularly neurodegenerative diseases such as ALS, FTD and aging. However, the study of membrane-less organelles and condensates is still in its infancy and therefore the review also highlights key questions that require future investigation.
Collapse
|
15
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Hu G, Song H, Chen X, Li J. Wet Conformation of Prion-Like Domain and Intimate Correlation of Hydration and Conformational Fluctuations. J Phys Chem Lett 2024; 15:8315-8325. [PMID: 39109535 DOI: 10.1021/acs.jpclett.4c01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Proteins with prion-like domains (PLDs) are involved in neurodegeneration-associated aggregation and are prevalent in liquid-like membrane-less organelles. These PLDs contain amyloidogenic stretches but can maintain dynamic disordered conformations, even in the condensed phase. However, the molecular mechanism underlying such intricate conformational properties of PLDs remains elusive. Here we employed molecular dynamics simulations to investigate the conformational properties of a prototypical PLD system (i.e., FUS PLD). According to our simulation results, PLD adopts a wet collapsed conformation, wherein most residues maintain sufficient hydration with the abundance of internal water. These internal water molecules can rapidly exchange between the protein interior and the bulk, enabling intensive coupling of the entire protein with its hydration environment. The dynamic exchange of water molecules is intimately correlated to the overall conformational fluctuations of PLD. Furthermore, the abundance of dynamic internal water suppresses the formation of aggregation-prone ordered structures. These results collectively elucidate the crucial role of internal water in sustaining the dynamic disordered conformation of the PLD and inhibiting its aggregation propensity.
Collapse
Affiliation(s)
- Guorong Hu
- School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Haoyu Song
- School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jingyuan Li
- School of Physics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
18
|
Paoletti F. ATP binding to Nerve Growth Factor (NGF) and pro-Nerve Growth Factor (proNGF): an endogenous molecular switch modulating neurotrophins activity. Biochem Soc Trans 2024; 52:1293-1304. [PMID: 38716884 DOI: 10.1042/bst20231089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.
Collapse
Affiliation(s)
- Francesca Paoletti
- Institute of Crystallography - C.N.R. - Trieste Outstation, Area Science Park - Basovizza, S.S.14 - Km. 163.5, I-34149 Trieste, Italy
| |
Collapse
|
19
|
Kamps J, Bader V, Winklhofer KF, Tatzelt J. Liquid-liquid phase separation of the prion protein is regulated by the octarepeat domain independently of histidines and copper. J Biol Chem 2024; 300:107310. [PMID: 38657863 PMCID: PMC11126799 DOI: 10.1016/j.jbc.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of the mammalian prion protein is mainly driven by its intrinsically disordered N-terminal domain (N-PrP). However, the specific intermolecular interactions that promote LLPS remain largely unknown. Here, we used extensive mutagenesis and comparative analyses of evolutionarily distant PrP species to gain insight into the relationship between protein sequence and phase behavior. LLPS of mouse PrP is dependent on two polybasic motifs in N-PrP that are conserved in all tetrapods. A unique feature of mammalian N-PrP is the octarepeat domain with four histidines that mediate binding to copper ions. We now show that the octarepeat is critical for promoting LLPS and preventing the formation of PrP aggregates. Amphibian N-PrP, which contains the polybasic motifs but lacks a repeat domain and histidines, does not undergo LLPS and forms nondynamic protein assemblies indicative of aggregates. Insertion of the mouse octarepeat domain restored LLPS of amphibian N-PrP, supporting its essential role in regulating the phase transition of PrP. This activity of the octarepeat domain was neither dependent on the four highly conserved histidines nor on copper binding. Instead, the regularly spaced tryptophan residues were critical for regulating LLPS, presumably via cation-π interactions with the polybasic motifs. Our study reveals a novel role for the tryptophan residues in the octarepeat in controlling phase transition of PrP and indicates that the ability of mammalian PrP to undergo LLPS has evolved with the octarepeat in the intrinsically disordered domain but independently of the histidines.
Collapse
Affiliation(s)
- Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany
| | - Verian Bader
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Cluster of Excellence RESOLV, Bochum, Germany; Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany.
| |
Collapse
|
20
|
Song J. Adenosine Triphosphate: The Primordial Molecule That Controls Protein Homeostasis and Shapes the Genome-Proteome Interface. Biomolecules 2024; 14:500. [PMID: 38672516 PMCID: PMC11048592 DOI: 10.3390/biom14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
21
|
Do TM, Horinek D, Matubayasi N. How ATP suppresses the fibrillation of amyloid peptides: analysis of the free-energy contributions. Phys Chem Chem Phys 2024; 26:11880-11892. [PMID: 38568008 DOI: 10.1039/d4cp00179f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Recent experiments have revealed that adenosine triphosphate (ATP) suppresses the fibrillation of amyloid peptides - a process closely linked to neurodegenerative diseases such as Alzheimer's and Parkinson's. Apart from the adsorption of ATP onto amyloid peptides, the molecular understanding is still limited, leaving the underlying mechanism for the fibrillation suppression by ATP largely unclear, especially in regards to the molecular energetics. Here we provide an explanation at the molecular scale by quantifying the free energies using all-atom molecular dynamics simulations. We found that the changes of the free energies due to the addition of ATP lead to a significant equilibrium shift towards monomeric peptides in agreement with experiments. Despite ATP being a highly charged species, the decomposition of the free energies reveals that the van der Waals interactions with the peptide are decisive in determining the relative stabilization of the monomeric state. While the phosphate moiety exhibits strong electrostatic interactions, the compensation by the water solvent results in a minor, overall Coulomb contribution. Our quantitative analysis of the free energies identifies which intermolecular interactions are responsible for the suppression of the amyloid fibril formation by ATP and offers a promising method to analyze the roles of similarly complex cosolvents in aggregation processes.
Collapse
Affiliation(s)
- Tuan Minh Do
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| | - Dominik Horinek
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| |
Collapse
|
22
|
Ren X, Cui Z, Zhang Q, Su Z, Xu W, Wu J, Jiang H. JunB condensation attenuates vascular endothelial damage under hyperglycemic condition. J Mol Cell Biol 2024; 15:mjad072. [PMID: 38140943 PMCID: PMC11080659 DOI: 10.1093/jmcb/mjad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Endothelial damage is the initial and crucial factor in the occurrence and development of vascular complications in diabetic patients, contributing to morbidity and mortality. Although hyperglycemia has been identified as a damaging effector, the detailed mechanisms remain elusive. In this study, identified by ATAC-seq and RNA-seq, JunB reverses the inhibition of proliferation and the promotion of apoptosis in human umbilical vein endothelial cells treated with high glucose, mainly through the cell cycle and p53 signaling pathways. Furthermore, JunB undergoes phase separation in the nucleus and in vitro, mediated by its intrinsic disordered region and DNA-binding domain. Nuclear localization and condensation behaviors are required for JunB-mediated proliferation and apoptosis. Thus, our study uncovers the roles of JunB and its coacervation in repairing vascular endothelial damage caused by high glucose, elucidating the involvement of phase separation in diabetes and diabetic endothelial dysfunction.
Collapse
Affiliation(s)
- Xuxia Ren
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zexu Cui
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Xu
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhui Wu
- Center of Geriatrics and Gerontology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Esteban-Hofer L, Emmanouilidis L, Yulikov M, Allain FHT, Jeschke G. Ensemble structure of the N-terminal domain (1-267) of FUS in a biomolecular condensate. Biophys J 2024; 123:538-554. [PMID: 38279531 PMCID: PMC10938082 DOI: 10.1016/j.bpj.2024.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
Solutions of some proteins phase separate into a condensed state of high protein concentration and a dispersed state of low concentration. Such behavior is observed in living cells for a number of RNA-binding proteins that feature intrinsically disordered domains. It is relevant for cell function via the formation of membraneless organelles and transcriptional condensates. On a basic level, the process can be studied in vitro on protein domains that are necessary and sufficient for liquid-liquid phase separation (LLPS). We have performed distance distribution measurements by electron paramagnetic resonance for 13 sections in an N-terminal domain (NTD) construct of the protein fused in sarcoma (FUS), consisting of the QGSY-rich domain and the RGG1 domain, in the denatured, dispersed, and condensed state. Using 10 distance distribution restraints for ensemble modeling and three such restraints for model validation, we have found that FUS NTD behaves as a random-coil polymer under good-solvent conditions in both the dispersed and condensed state. Conformation distribution in the biomolecular condensate is virtually indistinguishable from the one in an unrestrained ensemble, with the latter one being based on only residue-specific Ramachandran angle distributions. Over its whole length, FUS NTD is slightly more compact in the condensed than in the dispersed state, which is in line with the theory for random coils in good solvent proposed by de Gennes, Daoud, and Jannink. The estimated concentration in the condensate exceeds the overlap concentration resulting from this theory. The QGSY-rich domain is slightly more extended, slightly more hydrated, and has slightly higher propensity for LLPS than the RGG1 domain. Our results support previous suggestions that LLPS of FUS is driven by multiple transient nonspecific hydrogen bonding and π-sp2 interactions.
Collapse
Affiliation(s)
- Laura Esteban-Hofer
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | | | - Maxim Yulikov
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | | | - Gunnar Jeschke
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland.
| |
Collapse
|
24
|
Kota D, Prasad R, Zhou HX. Adenosine Triphosphate Mediates Phase Separation of Disordered Basic Proteins by Bridging Intermolecular Interaction Networks. J Am Chem Soc 2024; 146:1326-1336. [PMID: 38174879 PMCID: PMC10843746 DOI: 10.1021/jacs.3c09134] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Adenosine triphosphate (ATP) is an abundant molecule with crucial cellular roles as the energy currency and a building block of nucleic acids and for protein phosphorylation. Here we show that ATP mediates the phase separation of basic intrinsically disordered proteins (bIDPs). In the resulting condensates, ATP is highly concentrated (apparent partition coefficients up to 7700) and serves as bridges between bIDP chains. These liquid-like droplets have some of the lowest interfacial tension (∼25 pN/μm) but high zero-shear viscosities (1-15 Pa s) due to the bridged protein networks, and yet their fusion has some of the highest speeds (∼1 μm/ms). The rapid fusion manifests extreme shear thinning, where the apparent viscosity is lower than zero-shear viscosity by over 100-fold, made possible by fast reformation of the ATP bridges. At still higher concentrations, ATP does not dissolve bIDP droplets but results in aggregates and fibrils.
Collapse
Affiliation(s)
- Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago IL 60607, USA
| |
Collapse
|
25
|
Balasubramanian S, Maharana S, Srivastava A. "Boundary residues" between the folded RNA recognition motif and disordered RGG domains are critical for FUS-RNA binding. J Biol Chem 2023; 299:105392. [PMID: 37890778 PMCID: PMC10687056 DOI: 10.1016/j.jbc.2023.105392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Fused in sarcoma (FUS) is an abundant RNA-binding protein, which drives phase separation of cellular condensates and plays multiple roles in RNA regulation. The RNA-binding ability of FUS protein is crucial to its cellular function. Here, our molecular simulation study on the FUS-RNA complex provides atomic resolution insights into the observations from biochemical studies and also illuminates our understanding of molecular driving forces that mediate the structure, stability, and interaction of the RNA recognition motif (RRM) and RGG domains of FUS with a stem-loop junction RNA. We observe clear cooperativity and division of labor among the ordered (RRM) and disordered domains (RGG1 and RGG2) of FUS that leads to an organized and tighter RNA binding. Irrespective of the length of RGG2, the RGG2-RNA interaction is confined to the stem-loop junction and the proximal stem regions. On the other hand, the RGG1 interactions are primarily with the longer RNA stem. We find that the C terminus of RRM, which make up the "boundary residues" that connect the folded RRM with the long disordered RGG2 stretch of the protein, plays a critical role in FUS-RNA binding. Our study provides high-resolution molecular insights into the FUS-RNA interactions and forms the basis for understanding the molecular origins of full-length FUS interaction with RNA.
Collapse
Affiliation(s)
| | - Shovamayee Maharana
- Department of Molecular and Cell Biology, Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bangalore, Karnataka, India.
| |
Collapse
|
26
|
Mouton SN, Boersma AJ, Veenhoff LM. A physicochemical perspective on cellular ageing. Trends Biochem Sci 2023; 48:949-962. [PMID: 37716870 DOI: 10.1016/j.tibs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.
Collapse
Affiliation(s)
- Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
27
|
Hautke A, Ebbinghaus S. The emerging role of ATP as a cosolute for biomolecular processes. Biol Chem 2023; 404:897-908. [PMID: 37656203 DOI: 10.1515/hsz-2023-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
ATP is an important small molecule that appears at outstandingly high concentration within the cellular medium. Apart from its use as a source of energy and a metabolite, there is increasing evidence for important functions as a cosolute for biomolecular processes. Owned to its solubilizing kosmotropic triphosphate and hydrophobic adenine moieties, ATP is a versatile cosolute that can interact with biomolecules in various ways. We here use three models to categorize these interactions and apply them to review recent studies. We focus on the impact of ATP on biomolecular solubility, folding stability and phase transitions. This leads us to possible implications and therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander Hautke
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
- Lehrstuhl für Biophysikalische Chemie and Research Center Chemical Sciences and Sustainability, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Simon Ebbinghaus
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
- Lehrstuhl für Biophysikalische Chemie and Research Center Chemical Sciences and Sustainability, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
28
|
Kang J, Lim L, Song J. ATP induces folding of ALS-causing C71G-hPFN1 and nascent hSOD1. Commun Chem 2023; 6:186. [PMID: 37670116 PMCID: PMC10480188 DOI: 10.1038/s42004-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
ALS-causing C71G-hPFN1 coexists in both folded and unfolded states, while nascent hSOD1 is unfolded. So far, the mechanisms underlying their ALS-triggering potential remain enigmatic. Here we show by NMR that ATP completely converts C71G-hPFN1 into the folded state at a 1:2 ratio, while inducing nascent hSOD1 into two co-existing states at a 1:8 ratio. Surprisingly, the inducing capacity of ATP comes from its triphosphate, but free triphosphate triggers aggregation. The inducing capacity ranks as: ATP = ATPP = PPP > ADP = AMP-PNP = AMP-PCP = PP, while AMP, adenosine, P, and NaCl show no conversion. Mechanistically, ATP and triphosphate appear to enhance the intrinsic folding capacity encoded in the sequences, as unveiled by comparing conformations and dynamics of ATP- and Zn2+-induced hSOD1 folded states. Our study provides a mechanism for the finding that some single-cell organisms employ polyphosphates as primordial chaperones, and sheds light on the enigma of age-related onset of familial ALS and risk increase of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore.
| |
Collapse
|
29
|
Kota D, Prasad R, Zhou HX. ATP Mediates Phase Separation of Disordered Basic Proteins by Bridging Intermolecular Interaction Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554035. [PMID: 37645809 PMCID: PMC10462115 DOI: 10.1101/2023.08.20.554035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ATP is an abundant molecule with crucial cellular roles as the energy currency and a building block of nucleic acids and for protein phosphorylation. Here we show that ATP mediates the phase separation of basic intrinsically disordered proteins (bIDPs). In the resulting condensates, ATP is highly concentrated (apparent partition coefficients at 200-5000) and serves as bridges between bIDP chains. These liquid-like droplets have some of the lowest interfacial tension (~25 pN/μm) but high zero-shear viscosities (1-15 Pa s) due to the bridged protein networks, and yet their fusion has some of the highest speeds (~1 μm/ms). The rapid fusion manifests extreme shear thinning, where the apparent viscosity is lower than zero-shear viscosity by over 100-fold, made possible by fast reformation of the ATP bridges. At still higher concentrations, ATP does not dissolve bIDP droplets but results in aggregates and fibrils.
Collapse
Affiliation(s)
- Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago IL 60607, USA
| |
Collapse
|
30
|
Mori T, Yoshida N. Tuning the ATP-ATP and ATP-disordered protein interactions in high ATP concentration by altering water models. J Chem Phys 2023; 159:035102. [PMID: 37458354 DOI: 10.1063/5.0158046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
The adenosine triphosphate (ATP)-protein interactions have been of great interest since the recent experimental finding of ATP's role as a hydrotrope. The interaction between ATP and disordered proteins is fundamental to the dissolution of protein aggregates and the regulation of liquid-liquid phase separation by ATP. Molecular dynamics simulation is a powerful tool for analyzing these interactions in molecular detail but often suffers from inaccuracies in describing disordered proteins and ATPs in high concentrations. Recently, several water models have been proposed to improve the description of the protein-disordered states, yet how these models work with ATP has not been explored. To this end, here, we study how water models affect ATP and alter the ATP-ATP and ATP-protein interactions for the intrinsically disordered protein, α-Synuclein. Three water models, TIP4P-D, OPC, and TIP3P, are compared, while the protein force field is fixed to ff99SBildn. The results show that ATP over-aggregates into a single cluster in TIP3P water, but monomers and smaller clusters are found in TIP4P-D and OPC waters. ATP-protein interaction is also over-stabilized in TIP3P, whereas repeated binding/unbinding of ATP to α-Synuclein is observed in OPC and TIP4P-D waters, which is in line with the recent nuclear magnetic resonance experiment. The adenine ring-mediated interaction is found to play a major role in ATP-ATP and ATP-protein contacts. Interestingly, changing Mg2+ into Na+ strengthened the electrostatic interaction and promoted ATP oligomerization and ATP-α-Synuclein binding. Overall, this study shows that changing the water model can be an effective approach to improve the properties of ATP in high concentration.
Collapse
Affiliation(s)
- Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Norio Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
31
|
Li S, Wang Y, Lai L. Small molecules in regulating protein phase separation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1075-1083. [PMID: 37294104 PMCID: PMC10415206 DOI: 10.3724/abbs.2023106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/15/2023] [Indexed: 06/10/2023] Open
Abstract
Biomolecular condensates formed by phase separation are involved in many cellular processes. Dysfunctional or abnormal condensates are closely associated with neurodegenerative diseases, cancer and other diseases. Small molecules can effectively regulate protein phase separation by modulating the formation, dissociation, size and material properties of condensates. Discovery of small molecules to regulate protein phase separation provides chemical probes for deciphering the underlying mechanism and potential novel treatments for condensate-related diseases. Here we review the advances of small molecule regulation of phase separation. The discovery, chemical structures of recently found small molecule phase separation regulators and how they modulate biological condensates are summarized and discussed. Possible strategies to accelerate the discovery of more liquid-liquid phase separation (LLPS)-regulating small molecules are proposed.
Collapse
Affiliation(s)
- Siyang Li
- Center for Quantitative BiologyAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Yanyan Wang
- BNLMSPeking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Luhua Lai
- Center for Quantitative BiologyAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
- BNLMSPeking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
32
|
Zhang X, Li H, Ma Y, Zhong D, Hou S. Study liquid-liquid phase separation with optical microscopy: A methodology review. APL Bioeng 2023; 7:021502. [PMID: 37180732 PMCID: PMC10171890 DOI: 10.1063/5.0137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Intracellular liquid-liquid phase separation (LLPS) is a critical process involving the dynamic association of biomolecules and the formation of non-membrane compartments, playing a vital role in regulating biomolecular interactions and organelle functions. A comprehensive understanding of cellular LLPS mechanisms at the molecular level is crucial, as many diseases are linked to LLPS, and insights gained can inform drug/gene delivery processes and aid in the diagnosis and treatment of associated diseases. Over the past few decades, numerous techniques have been employed to investigate the LLPS process. In this review, we concentrate on optical imaging methods applied to LLPS studies. We begin by introducing LLPS and its molecular mechanism, followed by a review of the optical imaging methods and fluorescent probes employed in LLPS research. Furthermore, we discuss potential future imaging tools applicable to the LLPS studies. This review aims to provide a reference for selecting appropriate optical imaging methods for LLPS investigations.
Collapse
Affiliation(s)
| | | | - Yue Ma
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | | | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
33
|
Kang J, Lim L, Song J. ALS-causing hPFN1 mutants differentially disrupt LLPS of FUS prion-like domain. Biochem Biophys Res Commun 2023; 664:35-42. [PMID: 37130459 DOI: 10.1016/j.bbrc.2023.04.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/04/2023]
Abstract
hPFN1 mutations including C71G cause ALS by gain of toxicity but the mechanism still remains unknown. Stress granules (SGs) are formed by phase separation of the prion-like domain (PLD) of RNA-binding proteins including FUS, whose inclusion was also associated with ALS. C71G-hPFN1 triggers seed-dependent co-aggregation with FUS/TDP-43 to manifest the prion-like propagandation but its biophysical basis remains unexplored. Here by DIC imaging we first showed that three hPFN1 mutants have differential capacity in disrupting the dynamics of liquid droplets formed by phase separation of FUS prion-like domain (PLD). C71G-hPFN1 co-exists with the folded and unfolded states, thus allowing to simultaneously characterize conformations, hydrodynamics and dynamics of the interactions of both states with the phase separated FUS PLD by NMR. The results reveal that the folded state is not significantly affected while by contrast, the unfolded state has extensive interactions with FUS PLD. As a consequence, the dynamics of FUS liquid droplets become significantly reduced. Such interactions might act to recruit C71G-hPFN1 into the droplets, thus leading to the increase of the local concentrations and subsequent co-aggregation of C71G-hPFN1 with FUS. Our study sheds the first light on the biophysical basis by which hPFN1 mutants gain toxicity to cause ALS. As other aggregation-prone proteins have no fundamental difference from hPFN1 mutants, aggregation-prone proteins might share a common capacity in disrupting phase separation responsible for organizing various membrane-less organelles. As such, the mechanism for C71G-hPFN1 might also be utilized by other aggregation-prone proteins for gain of toxicity to trigger diseases and aging.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.
| |
Collapse
|
34
|
Choi HJ, Lee JY, Kim K. Glutathionylation on RNA-binding proteins: a regulator of liquid‒liquid phase separation in the pathogenesis of amyotrophic lateral sclerosis. Exp Mol Med 2023; 55:735-744. [PMID: 37009800 PMCID: PMC10167235 DOI: 10.1038/s12276-023-00978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 04/04/2023] Open
Abstract
RNA-binding proteins (RBPs) containing low-sequence complexity domains mediate the formation of cellular condensates and membrane-less organelles with biological functions via liquid‒liquid phase separation (LLPS). However, the abnormal phase transition of these proteins induces the formation of insoluble aggregates. Aggregates are pathological hallmarks of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). The molecular mechanisms underlying aggregate formation by ALS-associated RPBs remain largely unknown. This review highlights emerging studies on various posttranslational modifications (PTMs) related to protein aggregation. We begin with the introduction of several ALS-associated RBPs that form aggregates induced by phase separation. In addition, we highlight our recent discovery of a new PTM involved in the phase transition during the pathogenesis of fused-in-sarcoma (FUS)-associated ALS. We suggest a molecular mechanism through which LLPS mediates glutathionylation in FUS-linked ALS. This review aims to provide a detailed overview of the key molecular mechanisms of LLPS-mediated aggregate formation by PTMs, which will help further the understanding of the pathogenesis and development of ALS therapeutics.
Collapse
Affiliation(s)
- Hyun-Jun Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Sciences, Soonchunhyang University, Cheonan, 31151, Korea
| | - Ji Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Korea
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea.
| |
Collapse
|
35
|
Dang M, Li T, Song J. ATP and nucleic acids competitively modulate LLPS of the SARS-CoV2 nucleocapsid protein. Commun Biol 2023; 6:80. [PMID: 36681763 PMCID: PMC9862227 DOI: 10.1038/s42003-023-04480-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
SARS-CoV-2 nucleocapsid (N) protein with very low mutation rates is the only structural protein which not only functions to package viral genomic RNA, but also manipulates host-cell machineries, thus representing a key target for drug development. Recent discovery of its liquid-liquid phase separation (LLPS) opens up a new direction for developing anti-SARS-CoV-2 strategies/drugs. However, so far the high-resolution mechanism of its LLPS still remains unknown. Here by DIC and NMR characterization, we have demonstrated: 1) nucleic acids modulate LLPS by dynamic and multivalent interactions over both folded NTD/CTD and Arg/Lys residues within IDRs; 2) ATP with concentrations > mM in all living cells but absent in viruses not only binds NTD/CTD, but also Arg residues within IDRs with a Kd of 2.8 mM; and 3) ATP dissolves nucleic-acid-induced LLPS by competitively displacing nucleic acid from binding the protein. Our study deciphers that the essential binding of N protein with nucleic acid and its LLPS are targetable by small molecules including ATP, which is emerging as a cellular factor controlling the host-SARS-CoV-2 interaction. Fundamentally, our results imply that the mechanisms of LLPS of IDR-containing proteins mediated by ATP and nucleic acids appear to be highly conserved from human to virus.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - Tongyang Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore.
| |
Collapse
|
36
|
Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 2023; 20:6. [PMID: 36627683 PMCID: PMC9831023 DOI: 10.1186/s12985-023-01968-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to take a heavy toll on personal health, healthcare systems, and economies around the globe. Scientists are expending tremendous effort to develop diagnostic technologies for detecting positive infections within the shortest possible time, and vaccines and drugs specifically for the prevention and treatment of COVID-19 disease. At the same time, emerging novel variants have raised serious concerns about vaccine efficacy. The SARS-CoV-2 nucleocapsid (N) protein plays an important role in the coronavirus life cycle, and participates in various vital activities after virus invasion. It has attracted a large amount of attention for vaccine and drug development. Here, we summarize the latest research of the N protein, including its role in the SARS-CoV-2 life cycle, structure and function, and post-translational modifications in addition to its involvement in liquid-liquid phase separation (LLPS) and use as a basis for the development of vaccines and diagnostic techniques.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Ying Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
37
|
Zalar M, Bye J, Curtis R. Nonspecific Binding of Adenosine Tripolyphosphate and Tripolyphosphate Modulates the Phase Behavior of Lysozyme. J Am Chem Soc 2023; 145:929-943. [PMID: 36608272 PMCID: PMC9853864 DOI: 10.1021/jacs.2c09615] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adenosine tripolyphosphate (ATP) is a small polyvalent anion that has recently been shown to interact with proteins and have a major impact on assembly processes involved in biomolecular condensate formation and protein aggregation. However, the nature of non-specific protein-ATP interactions and their effects on protein solubility are largely unknown. Here, the binding of ATP to the globular model protein is characterized in detail using X-ray crystallography and nuclear magnetic resonance (NMR). Using NMR, we identified six ATP binding sites on the lysozyme surface, with one known high-affinity nucleic acid binding site and five non-specific previously unknown sites with millimolar affinities that also bind tripolyphosphate (TPP). ATP binding occurs primarily through the polyphosphate moiety, which was confirmed by the X-ray structure of the lysozyme-ATP complex. Importantly, ATP binds preferentially to arginine over lysine in non-specific binding sites. ATP and TPP have similar effects on solution-phase protein-protein interactions. At low salt concentrations, ion binding to lysozyme causes precipitation, while at higher salt concentrations, redissolution occurs. The addition of an equimolar concentration of magnesium to ATP does not alter ATP binding affinities but prevents lysozyme precipitation. These findings have important implications for both protein crystallization and cell biology. Crystallization occurs readily in ATP solutions outside the well-established crystallization window. In the context of cell biology, the findings suggest that ATP binds non-specifically to folded proteins in physiological conditions. Based on the nature of the binding sites identified by NMR, we propose several mechanisms for how ATP binding can prevent the aggregation of natively folded proteins.
Collapse
|
38
|
Félix SS, Laurents DV, Oroz J, Cabrita EJ. Fused in sarcoma undergoes cold denaturation: Implications for phase separation. Protein Sci 2023; 32:e4521. [PMID: 36453011 PMCID: PMC9793971 DOI: 10.1002/pro.4521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
The mediation of liquid-liquid phase separation (LLPS) for fused in sarcoma (FUS) protein is generally attributed to the low-complexity, disordered domains and is enhanced at low temperature. The role of FUS folded domains on the LLPS process remains relatively unknown since most studies are mainly based on fragmented FUS domains. Here, we investigate the effect of metabolites on full-length (FL) FUS LLPS using turbidity assays and differential interference contrast (DIC) microscopy, and explore the behavior of the folded domains by nuclear magnetic resonance (NMR) spectroscopy. FL FUS LLPS is maximal at low concentrations of glucose and glutamate, moderate concentrations of NaCl, Zn2+ , and Ca2+ and at the isoelectric pH. The FUS RNA recognition motif (RRM) and zinc-finger (ZnF) domains are found to undergo cold denaturation above 0°C at a temperature that is determined by the conformational stability of the ZnF domain. Cold unfolding exposes buried nonpolar residues that can participate in LLPS-promoting hydrophobic interactions. Therefore, these findings constitute the first evidence that FUS globular domains may have an active role in LLPS under cold stress conditions and in the assembly of stress granules, providing further insight into the environmental regulation of LLPS.
Collapse
Affiliation(s)
- Sara S. Félix
- UCIBIO, Department of ChemistryNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal,Instituto de Química Física Rocasolano (IQFR), CSICMadridSpain
| | | | - Javier Oroz
- Instituto de Química Física Rocasolano (IQFR), CSICMadridSpain
| | - Eurico J. Cabrita
- UCIBIO, Department of ChemistryNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal
| |
Collapse
|
39
|
Erkamp NA, Qi R, Welsh TJ, Knowles TPJ. Microfluidics for multiscale studies of biomolecular condensates. LAB ON A CHIP 2022; 23:9-24. [PMID: 36269080 PMCID: PMC9764808 DOI: 10.1039/d2lc00622g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/04/2022] [Indexed: 05/12/2023]
Abstract
Membraneless organelles formed through condensation of biomolecules in living cells have become the focus of sustained efforts to elucidate their mechanisms of formation and function. These condensates perform a range of vital functions in cells and are closely connected to key processes in functional and aberrant biology. Since these systems occupy a size scale intermediate between single proteins and conventional protein complexes on the one hand, and cellular length scales on the other hand, they have proved challenging to probe using conventional approaches from either protein science or cell biology. Additionally, condensate can form, solidify and perform functions on various time-scales. From a physical point of view, biomolecular condensates are colloidal soft matter systems, and microfluidic approaches, which originated in soft condensed matter research, have successfully been used to study biomolecular condensates. This review explores how microfluidics have aided condensate research into the thermodynamics, kinetics and other properties of condensates, by offering high-throughput and novel experimental setups.
Collapse
Affiliation(s)
- Nadia A Erkamp
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Runzhang Qi
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE, UK
| |
Collapse
|
40
|
Arg/Lys-containing IDRs are cryptic binding domains for ATP and nucleic acids that interplay to modulate LLPS. Commun Biol 2022; 5:1315. [PMID: 36450893 PMCID: PMC9712531 DOI: 10.1038/s42003-022-04293-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Most membrane-less organelles (MLOs) formed by LLPS contain both nucleic acids and IDR-rich proteins. Currently while IDRs are well-recognized to drive LLPS, nucleic acids are thought to exert non-specific electrostatic/salt effects. TDP-43 functions by binding RNA/ssDNA and its LLPS was characterized without nucleic acids to be driven mainly by PLD-oligomerization, which may further transit into aggregation characteristic of various neurodegenerative diseases. Here by NMR, we discovered unexpectedly for TDP-43 PLD: 1) ssDNAs drive and then dissolve LLPS by multivalently and specifically binding Arg/Lys. 2) LLPS is driven by nucleic-acid-binding coupled with PLD-oligomerization. 3) ATP and nucleic acids universally interplay in modulating LLPS by competing for binding Arg/Lys. However, the unique hydrophobic region within PLD renders LLPS to exaggerate into aggregation. The study not only unveils the first residue-resolution mechanism of the nucleic-acid-driven LLPS of TDP-43 PLD, but also decodes a general principle that not just TDP-43 PLD, all Arg/Lys-containing IDRs are cryptic nucleic-acid-binding domains that may phase separate upon binding nucleic acids. Strikingly, ATP shares a common mechanism with nucleic acids in binding IDRs, thus emerging as a universal mediator for interactions between IDRs and nucleic acids, which may underlie previously-unrecognized roles of ATP at mM in physiology and pathology.
Collapse
|
41
|
Ji Y, Li F, Qiao Y. Modulating liquid-liquid phase separation of FUS: mechanisms and strategies. J Mater Chem B 2022; 10:8616-8628. [PMID: 36268634 DOI: 10.1039/d2tb01688e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules inspires the construction of protocells and drives the formation of cellular membraneless organelles. The resulting biomolecular condensates featuring dynamic assembly, disassembly, and phase transition play significant roles in a series of biological processes, including RNA metabolism, DNA damage response, signal transduction and neurodegenerative disease. Intensive investigations have been conducted for understanding and manipulating intracellular phase-separated disease-related proteins (e.g., FUS, tau and TDP-43). Herein, we review current studies on the regulation strategies of intracellular LLPS focusing on FUS, which are categorized into physical stimuli, biochemical modulators, and protein structural modifications, with summarized molecular mechanisms. This review is expected to provide a sketch of the modulation of FUS LLPS with its pros and cons, and an outlook for the potential clinical treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Ren CL, Shan Y, Zhang P, Ding HM, Ma YQ. Uncovering the molecular mechanism for dual effect of ATP on phase separation in FUS solution. SCIENCE ADVANCES 2022; 8:eabo7885. [PMID: 36103543 PMCID: PMC9473584 DOI: 10.1126/sciadv.abo7885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 06/04/2023]
Abstract
Recent studies reported that adenosine triphosphate (ATP) could inhibit and enhance the phase separation in prion-like proteins. The molecular mechanism underlying such a puzzling phenomenon remains elusive. Here, taking the fused in sarcoma (FUS) solution as an example, we comprehensively reveal the underlying mechanism by which ATP regulates phase separation by combining the semiempirical quantum mechanical method, mean-field theory, and molecular simulation. At the microscopic level, ATP acts as a bivalent or trivalent binder; at the macroscopic level, the reentrant phase separation occurs in dilute FUS solutions, resulting from the ATP concentration-dependent binding ability under different conditions. The ATP concentration for dissolving the protein condensates is about 10 mM, agreeing with experimental results. Furthermore, from a dynamic point of view, the effect of ATP on phase separation is also nonmonotonic. This work provides a clear physical description of the microscopic interaction and macroscopic phase diagram of the ATP-modulated phase separation.
Collapse
Affiliation(s)
- Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yue Shan
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
43
|
Matsuo T, Peters J. Sub-Nanosecond Dynamics of Pathologically Relevant Bio-Macromolecules Observed by Incoherent Neutron Scattering. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081259. [PMID: 36013438 PMCID: PMC9410404 DOI: 10.3390/life12081259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023]
Abstract
Incoherent neutron scattering (iNS) is one of the most powerful techniques to study the dynamical behavior of bio-macromolecules such as proteins and lipid molecules or whole cells. This technique has widely been used to elucidate the fundamental aspects of molecular motions that manifest in the bio-macromolecules in relation to their intrinsic molecular properties and biological functions. Furthermore, in the last decade, iNS studies focusing on a possible relationship between molecular dynamics and biological malfunctions, i.e., human diseases and disorders, have gained importance. In this review, we summarize recent iNS studies on pathologically relevant proteins and lipids and discuss how the findings are of importance to elucidate the molecular mechanisms of human diseases and disorders that each study targets. Since some diseases such as amyloidosis have become more relevant in the aging society, research in this field will continue to develop further and be more important in the current increasing trend for longevity worldwide.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai 319-1106, Ibaraki, Japan
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Correspondence: (T.M.); (J.P.)
| | - Judith Peters
- Dept. of Physics, Univ. Grenoble Alpes, CNRS, LiPhy, 38000 Grenoble, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, CEDEX 9, 38042 Grenoble, France
- Institut Universitaire de France, 75231 Paris, France
- Correspondence: (T.M.); (J.P.)
| |
Collapse
|
44
|
Hu G, Ou X, Li J. Mechanistic Insight on General Protein-Binding Ability of ATP and the Impacts of Arginine Residues. J Phys Chem B 2022; 126:4647-4658. [PMID: 35713479 DOI: 10.1021/acs.jpcb.2c01478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent experiments suggested that adenosine triphosphate (ATP) can regulate liquid-liquid phase separation (LLPS) of various proteins and inhibit protein aggregations at its physiological concentration, which is highly correlated with the nonspecific interactions of ATP to a wide variety of proteins. However, the mechanism underlying the general binding capability of ATP largely remains unclear. In this work, we used molecular dynamics simulation to study the binding of ATPs to three proteins with distinct net charges: TDP-43 NTD (-7 e), TAF15-RRM (0 e), HWEL (+8 e). Negatively charged ATP exhibits a strong trend to accumulate around all of these proteins. While only a fraction of the accumulated ATPs directly binds to the limited regions of the protein surface, additional ATPs indirectly bind to proteins by aggregating into ATP clusters. Hence, the proportion of the directly bound ATPs in the clusters as well as their binding regions can be adjusted in response to different proteins, which makes ATP well adapted to a variety of proteins. Moreover, our results suggest that ATP tightly binds to Arg with high affinity, and Arg dominates the direct binding of ATP. Meanwhile, Arg also affects the self-association of accumulated ATPs. The size of the ATP cluster is effectively regulated by the distribution of Arg. Considering the ubiquity of Arg in proteins, our findings are helpful to understand the general binding capability of ATP.
Collapse
Affiliation(s)
- Guorong Hu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Xinwen Ou
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| |
Collapse
|
45
|
Ranganathan S, Shakhnovich E. The physics of liquid-to-solid transitions in multi-domain protein condensates. Biophys J 2022; 121:2751-2766. [PMID: 35702028 DOI: 10.1016/j.bpj.2022.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
Many RNA-binding proteins (RBPs) that assemble into membraneless organelles have a common architecture including disordered prion-like domain (PLD) and folded RNA-binding domain (RBD). An enrichment of PLD within the condensed phase gives rise to formation, on longer time scales, of amyloid-like fibrils (aging). In this study, we employ coarse-grained Langevin dynamics simulations to explore the physical basis for the structural diversity in condensed phases of multi-domain RBPs. We discovered a highly cooperative first-order transition between disordered structures and an ordered phase whereby chains of PLD organize in fibrils with high nematic orientational order. An interplay between homodomain (PLD-PLD) and heterodomain (PLD-RBD) interactions results in variety of structures with distinct spatial architectures. Interestingly, the different structural phases also exhibit vastly different intracluster dynamics of proteins, with diffusion coefficients 5 times (disordered structures) to 50 times (ordered structures) lower than that of the dilute phase. Cooperativity of this liquid-solid transition makes fibril formation highly malleable to mutations or post-translational modifications. Our results provide a mechanistic understanding of how multi-domain RBPs could form assemblies with distinct structural and material properties.
Collapse
Affiliation(s)
- Srivastav Ranganathan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
46
|
Dang M, Song J. A review of the effects of ATP and hydroxychloroquine on the phase separation of the SARS-CoV-2 nucleocapsid protein. Biophys Rev 2022; 14:709-715. [PMID: 35756710 PMCID: PMC9214679 DOI: 10.1007/s12551-022-00957-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is the coronavirus causing the ongoing pandemic with > 460 millions of infections and > 6 millions of deaths. SARS-CoV-2 nucleocapsid (N) is the only structural protein which plays essential roles in almost all key steps of the viral life cycle with its diverse functions depending on liquid-liquid phase separation (LLPS) driven by interacting with various nucleic acids. The 419-residue N protein is highly conserved in all variants including delta and omicron, and composed of both folded N-/C-terminal domains (NTD/CTD) as well as three long intrinsically disordered regions (IDRs). Recent results have suggested that its CTD and IDRs are also cryptic nucleic acid-binding domains. In this context, any small molecules capable of interfering in its interaction with nucleic acids are anticipated to modulate its LLPS and associated functions. Indeed, ATP, the energy currency existing at very high concentrations (2-12 mM) in all living cells but absent in viruses, modulates LLPS of N protein, and consequently appears to be evolutionarily hijacked by SARS-CoV-2 to promote its life cycle. Hydroxychloroquine (HCQ) has been also shown to specifically bind NTD and CTD to inhibit their interactions with nucleic acids, as well as to disrupt LLPS. Particularly, the unique structure of the HCQ-CTD complex offers a promising strategy for further design of anti-SARS-CoV-2 drugs with better affinity and specificity. The finding may indicate that LLPS is indeed druggable by small molecules, thus opening up a promising direction for drug discovery/design by targeting LLPS in general.
Collapse
Affiliation(s)
- Mei Dang
- Department of Biological Sciences, Faculty of Science, National University of Singapore; 10 Kent Ridge Crescent, Singapore, 119260 Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore; 10 Kent Ridge Crescent, Singapore, 119260 Singapore
| |
Collapse
|
47
|
Krause LJ, Herrera MG, Winklhofer KF. The Role of Ubiquitin in Regulating Stress Granule Dynamics. Front Physiol 2022; 13:910759. [PMID: 35694405 PMCID: PMC9174786 DOI: 10.3389/fphys.2022.910759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are dynamic, reversible biomolecular condensates, which assemble in the cytoplasm of eukaryotic cells under various stress conditions. Formation of SGs typically occurs upon stress-induced translational arrest and polysome disassembly. The increase in cytoplasmic mRNAs triggers the formation of a protein-RNA network that undergoes liquid-liquid phase separation when a critical interaction threshold has been reached. This adaptive stress response allows a transient shutdown of several cellular processes until the stress is removed. During the recovery from stress, SGs disassemble to re-establish cellular activities. Persistent stress and disease-related mutations in SG components favor the formation of aberrant SGs that are impaired in disassembly and prone to aggregation. Recently, posttranslational modifications of SG components have been identified as major regulators of SG dynamics. Here, we summarize new insights into the role of ubiquitination in affecting SG dynamics and clearance and discuss implications for neurodegenerative diseases linked to aberrant SG formation.
Collapse
Affiliation(s)
- Laura J. Krause
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| | - Maria G. Herrera
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- RESOLV Cluster of Excellence, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
48
|
Basu S, Rajendra KC, Alagar S, Bahadur RP. Impaired nuclear transport induced by juvenile ALS causing P525L mutation in NLS domain of FUS: A molecular mechanistic study. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140766. [PMID: 35134572 DOI: 10.1016/j.bbapap.2022.140766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD) are progressive neurological disorders affecting motor neurons. Cellular aggregates of fused in sarcoma (FUS) protein are found in cytoplasm of ALS and FTLD patients. Nuclear localisation signal (NLS) domain of FUS binds to Karyopherin β2 (Kapβ2), which drives nuclear transport of FUS from cytoplasm. Several pathogenic mutations are reported in FUS NLS, which are associated with its impaired nuclear transport and cytoplasmic mis-localisation. P525L mutation in NLS is most commonly found in cases of juvenile ALS (jALS), which affects individuals below 25 years of age. jALS progresses aggressively causing death within a year of its onset. This study elucidates the molecular mechanism behind jALS-causing P525L mutation hindering nuclear transport of FUS. We perform multiple molecular dynamics simulations in aqueous and hydrophobic solvent to understand the effect of the mutation at molecular level. Dynamics of Kapβ2-FUS complex is better captured in hydrophobic solvent compared to aqueous solvent. P525 and Y526 (PY-motif) of NLS exhibit fine-tuned stereochemical arrangement, which is essential for optimum Kapβ2 binding. P525L causes loss of several native contacts at interface leading to weaker binding, which promotes self-aggregation of FUS in cytoplasm. Native complex samples closed conformation, while mutant complex exhibits open conformation exposing hydrophilic residues of Kapβ2 to hydrophobic solvent. Mutant complex also fails to exhibit spring-like motion essential for its transport through nuclear pore complex. This study provides a mechanistic insight of binding affinity between NLS and Kapβ2 that inhibits self-aggregation of FUS preventing the disease condition.
Collapse
Affiliation(s)
- Sushmita Basu
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - K C Rajendra
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suresh Alagar
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
49
|
Welsh TJ, Krainer G, Espinosa JR, Joseph JA, Sridhar A, Jahnel M, Arter WE, Saar KL, Alberti S, Collepardo-Guevara R, Knowles TPJ. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. NANO LETTERS 2022; 22:612-621. [PMID: 35001622 DOI: 10.1021/acs.nanolett.1c03138] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Liquid-liquid phase separation underlies the formation of biological condensates. Physically, such systems are microemulsions that in general have a propensity to fuse and coalesce; however, many condensates persist as independent droplets in the test tube and inside cells. This stability is crucial for their function, but the physicochemical mechanisms that control the emulsion stability of condensates remain poorly understood. Here, by combining single-condensate zeta potential measurements, optical microscopy, tweezer experiments, and multiscale molecular modeling, we investigate how the nanoscale forces that sustain condensates impact their stability against fusion. By comparing peptide-RNA (PR25:PolyU) and proteinaceous (FUS) condensates, we show that a higher condensate surface charge correlates with a lower fusion propensity. Moreover, measurements of single condensate zeta potentials reveal that such systems can constitute classically stable emulsions. Taken together, these results highlight the role of passive stabilization mechanisms in protecting biomolecular condensates against coalescence.
Collapse
Affiliation(s)
- Timothy J Welsh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Georg Krainer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jorge R Espinosa
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Jerelle A Joseph
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Akshay Sridhar
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
- Cluster of Excellence "Physics of Life", TU Dresden, Dresden 01307, Germany
| | - William E Arter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Kadi L Saar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, U.K
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
50
|
Lee J, An S, Lee SJ, Kang JS. Protein Arginine Methyltransferases in Neuromuscular Function and Diseases. Cells 2022; 11:364. [PMID: 35159176 PMCID: PMC8834056 DOI: 10.3390/cells11030364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular diseases (NMDs) are characterized by progressive loss of muscle mass and strength that leads to impaired body movement. It not only severely diminishes the quality of life of the patients, but also subjects them to increased risk of secondary medical conditions such as fall-induced injuries and various chronic diseases. However, no effective treatment is currently available to prevent or reverse the disease progression. Protein arginine methyltransferases (PRMTs) are emerging as a potential therapeutic target for diverse diseases, such as cancer and cardiovascular diseases. Their expression levels are altered in the patients and molecular mechanisms underlying the association between PRMTs and the diseases are being investigated. PRMTs have been shown to regulate development, homeostasis, and regeneration of both muscle and neurons, and their association to NMDs are emerging as well. Through inhibition of PRMT activities, a few studies have reported suppression of cytotoxic phenotypes observed in NMDs. Here, we review our current understanding of PRMTs' involvement in the pathophysiology of NMDs and potential therapeutic strategies targeting PRMTs to address the unmet medical need.
Collapse
Affiliation(s)
- Jinwoo Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Subin An
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang-Jin Lee
- Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea;
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
- Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|