1
|
Nahrung HF, Liebhold AM, Brockerhoff EG, Rassati D. Forest Insect Biosecurity: Processes, Patterns, Predictions, Pitfalls. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:211-229. [PMID: 36198403 DOI: 10.1146/annurev-ento-120220-010854] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The economic and environmental threats posed by non-native forest insects are ever increasing with the continuing globalization of trade and travel; thus, the need for mitigation through effective biosecurity is greater than ever. However, despite decades of research and implementation of preborder, border, and postborder preventative measures, insect invasions continue to occur, with no evidence of saturation, and are even predicted to accelerate. In this article, we review biosecurity measures used to mitigate the arrival, establishment, spread, and impacts of non-native forest insects and possible impediments to the successful implementation of these measures. Biosecurity successes are likely under-recognized because they are difficult to detect and quantify, whereas failures are more evident in the continued establishment of additional non-native species. There are limitations in existing biosecurity systems at global and country scales (for example, inspecting all imports is impossible, no phytosanitary measures are perfect, knownunknowns cannot be regulated against, and noncompliance is an ongoing problem). Biosecurity should be a shared responsibility across countries, governments, stakeholders, and individuals.
Collapse
Affiliation(s)
- Helen F Nahrung
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia;
| | - Andrew M Liebhold
- US Forest Service Northern Research Station, Morgantown, West Virginia, USA;
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Eckehard G Brockerhoff
- Forest Health and Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland;
| | - Davide Rassati
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Italy;
| |
Collapse
|
5
|
Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P, Jeschke JM, Kühn I, Liebhold AM, Mandrak NE, Meyerson LA, Pauchard A, Pergl J, Roy HE, Seebens H, van Kleunen M, Vilà M, Wingfield MJ, Richardson DM. Scientists' warning on invasive alien species. Biol Rev Camb Philos Soc 2020; 95:1511-1534. [PMID: 32588508 PMCID: PMC7687187 DOI: 10.1111/brv.12627] [Citation(s) in RCA: 573] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species – the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods – are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long‐term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long‐term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions.
Collapse
Affiliation(s)
- Petr Pyšek
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-252 43, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-128 44, Czech Republic.,Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Philip E Hulme
- Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand
| | - Dan Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, U.S.A
| | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Tim M Blackburn
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Centre for Biodiversity and Environment Research, Department of Genetics, Evolution, and Environment, University College London, London, WC1E 6BT, U.K.,Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, U.K
| | - James T Carlton
- Maritime Studies Program, Williams College - Mystic Seaport, 75 Greenmanville, Mystic, CT, 06355, U.S.A
| | - Wayne Dawson
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, U.K
| | - Franz Essl
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Division of Conservation Biology, Vegetation and Landscape Ecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Llewellyn C Foxcroft
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,Conservation Services, South African National Parks, Private Bag X402, Skukuza, 1350, South Africa
| | - Piero Genovesi
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa.,ISPRA, Institute for Environmental Protection and Research and Chair IUCN SSC Invasive Species Specialist Group, Rome, Italy
| | - Jonathan M Jeschke
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany.,Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Ingolf Kühn
- Department Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, Halle, 06120, Germany.,Geobotany & Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle, 06108, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Andrew M Liebhold
- US Forest Service Northern Research Station, 180 Canfield St., Morgantown, West Virginia, U.S.A.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, CZ-165 00, Czech Republic
| | - Nicholas E Mandrak
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Laura A Meyerson
- Department of Natural Resources Science, The University of Rhode Island, Kingston, Rhode Island, 02881, U.S.A
| | - Aníbal Pauchard
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile.,Institute of Ecology and Biodiversity, Santiago, Chile
| | - Jan Pergl
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-252 43, Czech Republic
| | - Helen E Roy
- U.K. Centre for Ecology & Hydrology, Wallingford, OX10 8BB, U.K
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Montserrat Vilà
- Estación Biológica de Doñana (EBD-CSIC), Avd. Américo Vespucio 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - David M Richardson
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|