1
|
Sloan DC, Liao Y, Ray F, Muntean BS. The G protein modifier KCTD5 tunes the decoding of neuromodulatory signals necessary for motor function in striatal neurons. PLoS Biol 2025; 23:e3003117. [PMID: 40233107 PMCID: PMC12021292 DOI: 10.1371/journal.pbio.3003117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 04/24/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
G proteins (Gα and Gβγ subtypes) drive adenylyl cyclase type 5 (AC5) synthesis of cAMP in striatal neurons, which is essential for motor coordination. KCTD5 directly interacts with Gβγ to delimit signaling events, yet downstream impact of KCTD5 in striatal circuits is not known. Here, generation of a conditional Kctd5 knockout mouse identified that loss of striatal KCTD5 leads to a dystonic phenotype, coordination deficits, and skewed transitions between behavioral syllables. 2-photon imaging of a cAMP biosensor revealed electrically evoked dopaminergic responses were significantly augmented in the absence of KCTD5 in striatal circuits. cAMP sensitization was rescued in situ by expression of a Gβγ-scavenging nanobody and motor deficits were partially rescued in vivo by pharmacological antagonism of the indirect striatal cAMP pathway. Therefore, KCTD5 acts as a brake on cAMP signaling in striatal neurons important for tuning dopaminergic signaling and motor coordination.
Collapse
Affiliation(s)
- Douglas C. Sloan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Yini Liao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Forest Ray
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Brian S. Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
2
|
Fan S, Qi Y, Zhang F, Shi Y, Ma K, Pan Q, Jiang A, He L, Zhang J, Ma T, Zhou L. Dissecting the neuronal mechanisms of pinoresinol against methamphetamine addiction based on network and experimental pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156322. [PMID: 39700637 DOI: 10.1016/j.phymed.2024.156322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/09/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Addiction is a chronic brain disease in which the underlying neuronal mechanism is characterized by drug-seeking and use. Flos Daturae (FD) and its components are used to treat addiction. However, the effective ingredients of FD that are linked to the neuronal mechanisms of seeking behavior remain unclear. OBJECTIVE We aimed to explore the effect and mechanism of the monomer ingredients of FD on methamphetamine (METH) addiction. METHODS The main chemical constituents and potential targets of FD were screened using LC-MS/MS and bioinformatics method. Molecular docking was used to screen the component of FD associated with the neuronal subtype mechanism. The effectiveness of the targets in related pathways was verified by behavioral experiment, immunofluorescence and Western blot. Electrophysiology was used to identify the functions of the ingredients of FD in D1-tdTomato and D2-eGFP transgenic mice. RESULTS There were 125 targets of 25 active components in FD, which included dopamine 1 receptor (D1R)/dopamine 2 receptor (D2R)/cAMP signaling pathway. Furthermore, we identified that pinoresinol (PINL) is a major component of FD targeting this signaling pathway. Moreover, PINL attenuated METH-induced seeking behavior and decreased expression of c-Fos in striatal D1R neurons, but not D2R neurons. Accordingly, PINL functionally reduced the over-excitation of D1R, but not D2R neurons. Finally, we clarified that D1R/PKA pathway is a critical factor mediating the effects of PINL on METH-induced seeking behavior. CONCLUSION We revealed that PINL specifically targeted D1R/PKA signaling in D1R neurons and decreased METH-induced seeking behavior, providing a new strategy to treat addictive diseases.
Collapse
Affiliation(s)
- Shuyuan Fan
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yize Qi
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Fukang Zhang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yatong Shi
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Kunfang Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Qihang Pan
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Ai Jiang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Luanyue He
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Junlong Zhang
- Department of Anesthesiology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu 222023, PR China
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, PR China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, PR China.
| | - Li Zhou
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, PR China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
3
|
Liao Y, Muntean BS. KCTD1 regulation of Adenylyl cyclase type 5 adjusts striatal cAMP signaling. Proc Natl Acad Sci U S A 2024; 121:e2406686121. [PMID: 39413138 PMCID: PMC11513970 DOI: 10.1073/pnas.2406686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Dopamine transfers information to striatal neurons, and disrupted neurotransmission leads to motor deficits observed in movement disorders. Striatal dopamine converges downstream to Adenylyl Cyclase Type 5 (AC5)-mediated synthesis of cAMP, indicating the essential role of signal transduction in motor physiology. However, the relationship between dopamine decoding and AC5 regulation is unknown. Here, we utilized an unbiased global protein stability screen to identify Potassium Channel Tetramerization Domain 1 (KCTD1) as a key regulator of AC5 level that is mechanistically tied to N-linked glycosylation. We then implemented a CRISPR/SaCas9 approach to eliminate KCTD1 in striatal neurons expressing a Förster resonance energy transfer (FRET)-based cAMP biosensor. 2-photon imaging of striatal neurons in intact circuits uncovered that dopaminergic signaling was substantially compromised in the absence of KCTD1. Finally, knockdown of KCTD1 in genetically defined dorsal striatal neurons significantly altered motor behavior in mice. These results reveal that KCTD1 acts as an essential modifier of dopaminergic signaling by stabilizing striatal AC5.
Collapse
Affiliation(s)
- Yini Liao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA30912
| | - Brian S. Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA30912
| |
Collapse
|
4
|
Swier VJ, White KA, Negrão de Assis PL, Johnson TB, Leppert HG, Rechtzigel MJ, Meyerholz DK, Dodd RD, Quelle DE, Khanna R, Rogers CS, Weimer JM. NF1 +/ex42del miniswine model the cellular disruptions and behavioral presentations of NF1-associated cognitive and motor impairment. Clin Transl Sci 2024; 17:e13858. [PMID: 38932491 PMCID: PMC11208292 DOI: 10.1111/cts.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cognitive or motor impairment is common among individuals with neurofibromatosis type 1 (NF1), an autosomal dominant tumor-predisposition disorder. As many as 70% of children with NF1 report difficulties with spatial/working memory, attention, executive function, and fine motor movements. In contrast to the utilization of various Nf1 mouse models, here we employ an NF1+/ex42del miniswine model to evaluate the mechanisms and characteristics of these presentations, taking advantage of a large animal species more like human anatomy and physiology. The prefrontal lobe, anterior cingulate, and hippocampus from NF1+/ex42del and wild-type miniswine were examined longitudinally, revealing abnormalities in mature oligodendrocytes and astrocytes, and microglial activation over time. Imbalances in GABA: Glutamate ratios and GAD67 expression were observed in the hippocampus and motor cortex, supporting the role of disruption in inhibitory neurotransmission in NF1 cognitive impairment and motor dysfunction. Moreover, NF1+/ex42del miniswine demonstrated slower and shorter steps, indicative of a balance-preserving response commonly observed in NF1 patients, and progressive memory and learning impairments. Collectively, our findings affirm the effectiveness of NF1+/ex42del miniswine as a valuable resource for assessing cognitive and motor impairments associated with NF1, investigating the involvement of specific neural circuits and glia in these processes, and evaluating potential therapeutic interventions.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | - Katherine A. White
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | | | - Tyler B. Johnson
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | - Hannah G. Leppert
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | | | | | - Rebecca D. Dodd
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterUniversity of IowaIowa CityIowaUSA
| | - Dawn E. Quelle
- Department of Neuroscience and PharmacologyUniversity of IowaIowa CityIowaUSA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | | | - Jill M. Weimer
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
- Department of PediatricsUniversity of South DakotaSioux FallsSouth DakotaUSA
| |
Collapse
|
5
|
Zhang Y, Gao J, Li N, Xu P, Qu S, Cheng J, Wang M, Li X, Song Y, Xiao F, Yang X, Liu J, Hong H, Mu R, Li X, Wang Y, Xu H, Xie Y, Gao T, Wang G, Aa J. Targeting cAMP in D1-MSNs in the nucleus accumbens, a new rapid antidepressant strategy. Acta Pharm Sin B 2024; 14:667-681. [PMID: 38322327 PMCID: PMC10840425 DOI: 10.1016/j.apsb.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 11/14/2023] [Indexed: 02/08/2024] Open
Abstract
Studies have suggested that the nucleus accumbens (NAc) is implicated in the pathophysiology of major depression; however, the regulatory strategy that targets the NAc to achieve an exclusive and outstanding anti-depression benefit has not been elucidated. Here, we identified a specific reduction of cyclic adenosine monophosphate (cAMP) in the subset of dopamine D1 receptor medium spiny neurons (D1-MSNs) in the NAc that promoted stress susceptibility, while the stimulation of cAMP production in NAc D1-MSNs efficiently rescued depression-like behaviors. Ketamine treatment enhanced cAMP both in D1-MSNs and dopamine D2 receptor medium spiny neurons (D2-MSNs) of depressed mice, however, the rapid antidepressant effect of ketamine solely depended on elevating cAMP in NAc D1-MSNs. We discovered that a higher dose of crocin markedly increased cAMP in the NAc and consistently relieved depression 24 h after oral administration, but not a lower dose. The fast onset property of crocin was verified through multicenter studies. Moreover, crocin specifically targeted at D1-MSN cAMP signaling in the NAc to relieve depression and had no effect on D2-MSN. These findings characterize a new strategy to achieve an exclusive and outstanding anti-depression benefit by elevating cAMP in D1-MSNs in the NAc, and provide a potential rapid antidepressant drug candidate, crocin.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Jingwen Gao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Na Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Xu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China
| | - Shimeng Qu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Jinqian Cheng
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Mingrui Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xueru Li
- School of Foreign Languages, China Pharmaceutical University, Nanjing 211198, China
| | - Yaheng Song
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Xiao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyu Yang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jihong Liu
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Ronghao Mu
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Youmei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China
| | - Hui Xu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Xie
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Tianming Gao
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Research Unit of PK–PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Widjaja JH, Sloan DC, Hauger JA, Muntean BS. Customizable Open-Source Rotating Rod (Rotarod) Enables Robust Low-Cost Assessment of Motor Performance in Mice. eNeuro 2023; 10:ENEURO.0123-23.2023. [PMID: 37673671 PMCID: PMC10484359 DOI: 10.1523/eneuro.0123-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 09/08/2023] Open
Abstract
Reliable measurements of motor learning and coordination in mice are fundamental aspects of neuroscience research. Despite the advent of deep-learning approaches for motor assessment, performance testing on a rotating rod (rotarod) has remained a staple in the neuroscientist's toolbox. Surprisingly, commercially available rotarod instruments offer limited experimental flexibility at a relatively high cost. In order to address these concerns, we engineered a highly-customizable, low-budget rotarod device with increased functionality. Here, we present a detailed guide to assemble this rotarod using simple materials. Our apparatus incorporates a variation of interchangeable rod sizes and designs which provides for adjustable testing sensitivity. Moreover, our rotarod is driven by open-source software enabling bespoke acceleration ramps and sequences. Finally, we report the strengths and weaknesses of each rod design following multiday testing on cohorts of C57BL/6 mice. We expect explorations in deviant rod types to provide a foundation for the development of increasingly sensitive models for motor performance testing along with low-budget alternatives for the research community.
Collapse
Affiliation(s)
- Josephine H Widjaja
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Douglas C Sloan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Joseph A Hauger
- Department of Chemistry and Physics, College of Science and Mathematics, Augusta University, Augusta, GA 30912
| | - Brian S Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| |
Collapse
|
7
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
8
|
Guo L, Sun Y, Liu S. Adaptive behaviors of Drosophila larvae on slippery surfaces. J Biol Phys 2023; 49:121-132. [PMID: 36790728 PMCID: PMC9958210 DOI: 10.1007/s10867-023-09626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Friction is ubiquitous but an essential force for insects during locomotion. Insects use dedicated bio-mechanical systems such as adhesive pads to modulate the intensity of friction, providing a stable grip with touching substrates for locomotion. However, how to uncover behavioral adaptation and regulatory neural circuits of friction modification is still largely understood. In this study, we devised a novel behavior paradigm to investigate adaptive behavioral alternation of Drosophila larvae under low-friction surfaces. We found a tail looseness phenotype similar to slipping behavior in humans, as a primary indicator to assess the degree of slipping. We found a gradual reduction on slipping level in wild-type larvae after successive larval crawling, coupled with incremental tail contraction, displacement, and speed acceleration. Meanwhile, we also found a strong correlation between tail looseness index and length of contraction, suggesting that lengthening tail contraction may contribute to enlarging the contact area with the tube. Moreover, we found a delayed adaptation in rut mutant larvae, inferring that neural plasticity may participate in slipping adaptation. In conclusion, our paradigm can be easily and reliably replicated, providing a feasible pathway to uncover the behavioral principle and neural mechanism of acclimation of Drosophila larvae to low-friction conditions.
Collapse
Affiliation(s)
- Li Guo
- Zhejiang Lab, Nanhu Headquarters, Kechuang Avenue, Zhongtai Sub-District, Yuhang District, Hangzhou City, Zhejiang Province, 311121, People's Republic of China.
| | - Yixuan Sun
- Zhejiang Lab, Nanhu Headquarters, Kechuang Avenue, Zhongtai Sub-District, Yuhang District, Hangzhou City, Zhejiang Province, 311121, People's Republic of China
| | - Sijian Liu
- Zhejiang Lab, Nanhu Headquarters, Kechuang Avenue, Zhongtai Sub-District, Yuhang District, Hangzhou City, Zhejiang Province, 311121, People's Republic of China
| |
Collapse
|
9
|
Miller AH, Halloran MC. Mechanistic insights from animal models of neurofibromatosis type 1 cognitive impairment. Dis Model Mech 2022; 15:276464. [PMID: 36037004 PMCID: PMC9459395 DOI: 10.1242/dmm.049422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal-dominant neurogenetic disorder caused by mutations in the gene neurofibromin 1 (NF1). NF1 predisposes individuals to a variety of symptoms, including peripheral nerve tumors, brain tumors and cognitive dysfunction. Cognitive deficits can negatively impact patient quality of life, especially the social and academic development of children. The neurofibromin protein influences neural circuits via diverse cellular signaling pathways, including through RAS, cAMP and dopamine signaling. Although animal models have been useful in identifying cellular and molecular mechanisms that regulate NF1-dependent behaviors, translating these discoveries into effective treatments has proven difficult. Clinical trials measuring cognitive outcomes in patients with NF1 have mainly targeted RAS signaling but, unfortunately, resulted in limited success. In this Review, we provide an overview of the structure and function of neurofibromin, and evaluate several cellular and molecular mechanisms underlying neurofibromin-dependent cognitive function, which have recently been delineated in animal models. A better understanding of neurofibromin roles in the development and function of the nervous system will be crucial for identifying new therapeutic targets for the various cognitive domains affected by NF1. Summary: Neurofibromin influences neural circuits through RAS, cAMP and dopamine signaling. Exploring the mechanisms underlying neurofibromin-dependent behaviors in animal models might enable future treatment of the various cognitive deficits that are associated with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Andrew H Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
10
|
The role of orphan receptor GPR139 in neuropsychiatric behavior. Neuropsychopharmacology 2022; 47:902-913. [PMID: 33479510 PMCID: PMC8882194 DOI: 10.1038/s41386-021-00962-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Orphan G protein Coupled Receptors (GPCRs) present attractive targets both for understanding neuropsychiatric diseases and for development of novel therapeutics. GPR139 is an orphan GPCR expressed in select brain circuits involved in controlling movement, motivation and reward. It has been linked to the opioid and dopamine neuromodulatory systems; however, its role in animal behavior and neuropsychiatric processes is poorly understood. Here we present a comprehensive behavioral characterization of a mouse model with a GPR139 null mutation. We show that loss of GPR139 in mice results in delayed onset hyperactivity and prominent neuropsychiatric manifestations including elevated stereotypy, increased anxiety-related traits, delayed acquisition of operant responsiveness, disruption of cued fear conditioning and social interaction deficits. Furthermore, mice lacking GPR139 exhibited complete loss of pre-pulse inhibition and developed spontaneous 'hallucinogenic' head-twitches, altogether suggesting schizophrenia-like symptomatology. Remarkably, a number of these behavioral deficits could be rescued by the administration of μ-opioid and D2 dopamine receptor (D2R) antagonists: naltrexone and haloperidol, respectively, suggesting that loss of neuropsychiatric manifestations in mice lacking GPR139 are driven by opioidergic and dopaminergic hyper-functionality. The inhibitory influence of GPR139 on D2R signaling was confirmed in cell-based functional assays. These observations define the role of GPR139 in controlling behavior and implicate in vivo actions of this receptor in the neuropsychiatric process with schizophrenia-like pathology.
Collapse
|
11
|
Houpt AC, Schwartz SE, Coover RA. Assessing Psychiatric Comorbidity and Pharmacologic Treatment Patterns Among Patients With Neurofibromatosis Type 1. Cureus 2021; 13:e20244. [PMID: 35004058 PMCID: PMC8735883 DOI: 10.7759/cureus.20244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Background and objective Neurofibromatosis 1 (NF1) is a genetic disorder that is accompanied by psychiatric comorbidities such as depression, anxiety, and attention-deficit hyperactivity disorder (ADHD) in more than half of the patients. However, there are limited data describing optimal treatment strategies for these conditions. This study aimed to address that gap in understanding and explore the neurobiological basis of psychiatric comorbidities in NF1. Materials and methods A retrospective cohort study was conducted among NF1 patients with a comorbid diagnosis of depression, anxiety, and/or ADHD. These disease states were chosen based on their relatively high reported prevalence in NF1 and shared pathophysiological mechanisms via monoaminergic dysfunction. Information regarding demographics, psychotherapeutic medication use, and clinical outcomes was gathered from electronic medical records. Relationships between patient- and medication-related factors and outcome measures were assessed using statistical analysis. Results The study population (n = 82) consisted of NF1 patients with a comorbid diagnosis of depression (76.8%), anxiety (53.7%), and/or ADHD (23.2%). The use of second-generation antipsychotic agent augmentation therapy or hydroxyzine monotherapy was associated with significantly more behavioral health (BH)-related emergency department (ED) visits, admissions, and inpatient days in the study population. Conversely, the use of bupropion augmentation therapy, buspirone augmentation therapy, and stimulants was associated with improved clinical outcomes, though these results were not statistically significant. Conclusions Based on our findings in this real-world study setting, patients with NF1 and psychiatric comorbidities appear to experience significant benefits from medications that enhance dopaminergic neurotransmission (e.g., bupropion, stimulants) when compared to drugs that oppose it (e.g., second-generation antipsychotics).
Collapse
|
12
|
Loganathan K. Value-based cognition and drug dependency. Addict Behav 2021; 123:107070. [PMID: 34359016 DOI: 10.1016/j.addbeh.2021.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/03/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Value-based decision-making is thought to play an important role in drug dependency. Achieving elevated levels of euphoria or ameliorating dysphoria/pain may motivate goal-directed drug consumption in both drug-naïve and long-time users. In other words, drugs become viewed as the preferred means of attaining a desired internal state. The bias towards choosing drugs may affect one's cognition. Observed biases in learning, attention and memory systems within the brain gradually focus one's cognitive functions towards drugs and related cues to the exclusion of other stimuli. In this narrative review, the effects of drug use on learning, attention and memory are discussed with a particular focus on changes across brain-wide functional networks and the subsequent impact on behaviour. These cognitive changes are then incorporated into the cycle of addiction, an established model outlining the transition from casual drug use to chronic dependency. If drug use results in the elevated salience of drugs and their cues, the studies highlighted in this review strongly suggest that this salience biases cognitive systems towards the motivated pursuit of addictive drugs. This bias is observed throughout the cycle of addiction, possibly contributing to the persistent hold that addictive drugs have over the dependent. Taken together, the excessive valuation of drugs as the preferred means of achieving a desired internal state affects more than just decision-making, but also learning, attentional and mnemonic systems. This eventually narrows the focus of one's thoughts towards the pursuit and consumption of addictive drugs.
Collapse
|
13
|
Kenborg L, Andersen EW, Duun-Henriksen AK, Jepsen JRM, Doser K, Dalton SO, Bidstrup PE, Krøyer A, Frederiksen LE, Johansen C, Østergaard JR, Hove H, Sørensen SA, Riccardi VM, Mulvihill JJ, Winther JF. Psychiatric disorders in individuals with neurofibromatosis 1 in Denmark: A nationwide register-based cohort study. Am J Med Genet A 2021; 185:3706-3716. [PMID: 34327813 DOI: 10.1002/ajmg.a.62436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022]
Abstract
The aim of this study was to assess the risks of psychiatric disorders in a large cohort of 905 individuals with NF1 and 7614 population comparisons matched on sex and year of birth. The cohort was linked to the Danish Psychiatric Central Research Register to ascertain information on hospital contacts for psychiatric disorders based on the International Classification of Diseases version 8 and 10. The hazard ratio (HR) for a first psychiatric hospital contact was higher in girls (4.19, 95% confidence interval [CI] 1.81-9.69) and boys with NF1 (5.02, 95% CI 3.27-7.69) <7 years of age than in the population comparisons. Both sexes had increased HRs for developmental disorders, including attention deficit/hyperactivity disorders, autism spectrum disorders, and intellectual disabilities in childhood. Females with NF1 had also increased HRs for unipolar depression, other emotional and behavioral disorders, and severe stress reaction and adjustment disorders in early adulthood. The HRs for psychoses, schizophrenia, bipolar disorders, and substance abuse were similar in individuals with NF1 and the population comparisons. Finally, the cumulative incidence of a first hospital contact due to any psychiatric disorder by age 30 years was 35% (95% CI 29-41) in females and 28% (95% CI 19-37) in males with NF1. Thus, screening for psychiatric disorders may be important for early diagnosis and facilitation of appropriate and effective treatment in individuals with NF1.
Collapse
Affiliation(s)
- Line Kenborg
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elisabeth W Andersen
- Statistics and Data Analysis, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Jens R M Jepsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Service Capital Region, University of Copenhagen, Copenhagen, Denmark.,Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, University of Copenhagen, Copenhagen, Denmark
| | - Karoline Doser
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Susanne O Dalton
- Survivorship and Inequality in Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Naestved, Denmark
| | - Pernille E Bidstrup
- Psychological Aspects of Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anja Krøyer
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Line E Frederiksen
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Christoffer Johansen
- Psychological Aspects of Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - John R Østergaard
- Department of Pediatrics, Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne Hove
- Department of Pediatrics, Centre for Rare Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,The RareDis Database, Section of Rare Diseases, Department of Clinical Genetics and Pediatrics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sven Asger Sørensen
- Department of Neurogenetics, Institute of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - John J Mulvihill
- Department of Pediatrics, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Jeanette F Winther
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University and University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Loganathan K, Ho ETW. Value, drug addiction and the brain. Addict Behav 2021; 116:106816. [PMID: 33453587 DOI: 10.1016/j.addbeh.2021.106816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/17/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
Abstract
Over the years, various models have been proposed to explain the psychology and biology of drug addiction, built primarily around the habit and compulsion models. Recent research indicates drug addiction may be goal-directed, motivated by excessive valuation of drugs. Drug consumption may initially occur for the sake of pleasure but may transition to a means of escaping withdrawal, stress and negative emotions. In this hypothetical paper, we propose a value-based neurobiological model for drug addiction. We posit that during dependency, the value-based decision-making system in the brain is not inactive but has instead prioritized drugs as the reward of choice. In support of this model, we consider the role of valuation in choice, its influence on pleasure and punishment, and how valuation is contrasted in impulsive and compulsive behaviours. We then discuss the neurobiology of value, beginning with the dopaminergic system and its relationship with incentive salience before moving to brain-wide networks involved in valuation, control and prospection. These value-based neurobiological components are then integrated into the cycle of addiction as we consider the development of drug dependency from a valuation perspective. We conclude with a discussion of cognitive interventions utilizing value-based decision-making, highlighting not just advances in recalibrating the valuation system to focus on non-drug rewards, but also areas for improvement in refining this approach.
Collapse
Affiliation(s)
- Kavinash Loganathan
- Centre for Intelligent Signal & Imaging, Universiti Teknologi PETRONAS, Perak, Malaysia.
| | - Eric Tatt Wei Ho
- Centre for Intelligent Signal & Imaging, Universiti Teknologi PETRONAS, Perak, Malaysia; Dept of Electrical & Electronics Engineering, Universiti Teknologi PETRONAS, Perak, Malaysia
| |
Collapse
|
15
|
Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin Structure, Functions and Regulation. Cells 2020; 9:cells9112365. [PMID: 33121128 PMCID: PMC7692384 DOI: 10.3390/cells9112365] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.
Collapse
|
16
|
King LB, Boto T, Botero V, Aviles AM, Jomsky BM, Joseph C, Walker JA, Tomchik SM. Developmental loss of neurofibromin across distributed neuronal circuits drives excessive grooming in Drosophila. PLoS Genet 2020; 16:e1008920. [PMID: 32697780 PMCID: PMC7398555 DOI: 10.1371/journal.pgen.1008920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/03/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Neurofibromatosis type 1 is a monogenetic disorder that predisposes individuals to tumor formation and cognitive and behavioral symptoms. The neuronal circuitry and developmental events underlying these neurological symptoms are unknown. To better understand how mutations of the underlying gene (NF1) drive behavioral alterations, we have examined grooming in the Drosophila neurofibromatosis 1 model. Mutations of the fly NF1 ortholog drive excessive grooming, and increased grooming was observed in adults when Nf1 was knocked down during development. Furthermore, intact Nf1 Ras GAP-related domain signaling was required to maintain normal grooming. The requirement for Nf1 was distributed across neuronal circuits, which were additive when targeted in parallel, rather than mapping to discrete microcircuits. Overall, these data suggest that broadly-distributed alterations in neuronal function during development, requiring intact Ras signaling, drive key Nf1-mediated behavioral alterations. Thus, global developmental alterations in brain circuits/systems function may contribute to behavioral phenotypes in neurofibromatosis type 1.
Collapse
Affiliation(s)
- Lanikea B. King
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Tamara Boto
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Ari M. Aviles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Breanna M. Jomsky
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Chevara Joseph
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Seth M. Tomchik
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| |
Collapse
|
17
|
Luo X, Zhou Y, Zhang B, Zhang Y, Wang X, Feng T, Li Z, Cui K, Wang Z, Luo C, Li H, Deng Y, Lu F, Han J, Miao Y, Mao H, Yi X, Ai C, Wu S, Li A, Wu Z, Zhuo Z, Da Giang D, Mitra B, Vahidi MF, Mansoor S, Al-Bayatti SA, Sari EM, Gorkhali NA, Prastowo S, Shafique L, Ye G, Qian Q, Chen B, Shi D, Ruan J, Liu Q. Understanding divergent domestication traits from the whole-genome sequencing of swamp- and river-buffalo populations. Natl Sci Rev 2020; 7:686-701. [PMID: 34692087 PMCID: PMC8289072 DOI: 10.1093/nsr/nwaa024] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/27/2019] [Accepted: 02/12/2020] [Indexed: 01/01/2023] Open
Abstract
Abstract
Domesticated buffaloes have been integral to rice-paddy agro-ecosystems for millennia, yet relatively little is known about the buffalo genomics. Here, we sequenced and assembled reference genomes for both swamp and river buffaloes and we re-sequenced 230 individuals (132 swamp buffaloes and 98 river buffaloes) sampled from across Asia and Europe. Beyond the many actionable insights that our study revealed about the domestication, basic physiology and breeding of buffalo, we made the striking discovery that the divergent domestication traits between swamp and river buffaloes can be explained with recent selections of genes on social behavior, digestion metabolism, strengths and milk production.
Collapse
Affiliation(s)
- Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yu Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Bing Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100083, China
| | - Xiaobo Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Chan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- International Livestock Research Institute, Nairobi 00100, Kenya
| | - Yongwang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Huaming Mao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyan Yi
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Cheng Ai
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shigang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Alun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhichao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zijun Zhuo
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Do Da Giang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Bacgiang Agriculture and Forestry University, Bacgiang 230000, Vietnam
| | - Bikash Mitra
- Cellular Immunology Lab, Department of Zoology, University of North Bengal, Siligun 734013, India
| | - Mohammad Farhad Vahidi
- Animal Biotechnology Department, Agricultural Biotechnology Research Institute of Iran-North Region, Agricultural Research, Education and Extension Organization, Rasht 999067, Iran
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad 999010, Pakistan
| | - Sahar Ahmed Al-Bayatti
- Animal Genetic Sources Department, Directorate of Animal Resources, Ministry of Agriculture, Baghdad 19207, Iraq
| | - Eka Meutia Sari
- Department of Animal Science, Faculty of Agriculture, Syiah Kuala University, Darussalam-Banda Aceh 23111, Indonesia
| | - Neena Amatya Gorkhali
- Animal Breeding Division, National Animal Science Research Institute, Nepal Agriculture Research Council, Khumaltar 999098, Nepal
| | - Sigit Prastowo
- Animal Science Department Universitas Sebelas Maret, Surakarta 999006, Indonesia
| | - Laiba Shafique
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Guoyou Ye
- International Rice Research Institute, Manila 999005, Philippines
| | - Qian Qian
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Jue Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| |
Collapse
|