1
|
Andrews SS, Brent R. Individual yeast cells signal at different levels but each with good precision. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241025. [PMID: 40309186 PMCID: PMC12040454 DOI: 10.1098/rsos.241025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/02/2024] [Accepted: 02/05/2025] [Indexed: 05/02/2025]
Abstract
Different isogenic cells exhibit different responses to the same extracellular signals. Several authors assumed that this variation arose from stochastic signalling noise with the implication that single eukaryotic cells could not detect their surroundings accurately, but work by us and others has shown that the variation is dominated instead by persistent cell-to-cell differences. Here, we analysed previously published data to quantify the sources of variation in pheromone-induced gene expression in Saccharomyces cerevisiae. We found that 91% of response variation was due to stable cell-to-cell differences, 8% from experimental measurement error, and 1% from signalling noise and expression noise. Low noise enabled precise signalling; individual cells could transmit over 3 bits of information through the pheromone response system and so respond differently to eight different pheromone concentrations. Additionally, if individual cells could reference their responses against constitutively expressed proteins, then cells could determine absolute pheromone concentrations with 2 bits of accuracy. These results help explain how individual yeast cells can accurately sense and respond to different extracellular pheromone concentrations.
Collapse
Affiliation(s)
- Steven S. Andrews
- Bioengineering, University of Washington, Seattle, WA, USA
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Roger Brent
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
2
|
Andrews SS, Wiley HS, Sauro HM. Design patterns of biological cells. Bioessays 2024; 46:e2300188. [PMID: 38247191 PMCID: PMC10922931 DOI: 10.1002/bies.202300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Design patterns are generalized solutions to frequently recurring problems. They were initially developed by architects and computer scientists to create a higher level of abstraction for their designs. Here, we extend these concepts to cell biology to lend a new perspective on the evolved designs of cells' underlying reaction networks. We present a catalog of 21 design patterns divided into three categories: creational patterns describe processes that build the cell, structural patterns describe the layouts of reaction networks, and behavioral patterns describe reaction network function. Applying this pattern language to the E. coli central metabolic reaction network, the yeast pheromone response signaling network, and other examples lends new insights into these systems.
Collapse
Affiliation(s)
- Steven S. Andrews
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Herbert M. Sauro
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Guan K, Curtis ER, Lew DJ, Elston TC. Particle-based simulations reveal two positive feedback loops allow relocation and stabilization of the polarity site during yeast mating. PLoS Comput Biol 2023; 19:e1011523. [PMID: 37782676 PMCID: PMC10569529 DOI: 10.1371/journal.pcbi.1011523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/12/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023] Open
Abstract
Many cells adjust the direction of polarized growth or migration in response to external directional cues. The yeast Saccharomyces cerevisiae orient their cell fronts (also called polarity sites) up pheromone gradients in the course of mating. However, the initial polarity site is often not oriented towards the eventual mating partner, and cells relocate the polarity site in an indecisive manner before developing a stable orientation. During this reorientation phase, the polarity site displays erratic assembly-disassembly behavior and moves around the cell cortex. The mechanisms underlying this dynamic behavior remain poorly understood. Particle-based simulations of the core polarity circuit revealed that molecular-level fluctuations are unlikely to overcome the strong positive feedback required for polarization and generate relocating polarity sites. Surprisingly, inclusion of a second pathway that promotes polarity site orientation generated relocating polarity sites with properties similar to those observed experimentally. This pathway forms a second positive feedback loop involving the recruitment of receptors to the cell membrane and couples polarity establishment to gradient sensing. This second positive feedback loop also allows cells to stabilize their polarity site once the site is aligned with the pheromone gradient.
Collapse
Affiliation(s)
- Kaiyun Guan
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Erin R. Curtis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Daniel J. Lew
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Timothy C. Elston
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
4
|
Bernoff AJ, Jilkine A, Navarro Hernández A, Lindsay AE. Single-cell directional sensing from just a few receptor binding events. Biophys J 2023; 122:3108-3116. [PMID: 37355773 PMCID: PMC10432224 DOI: 10.1016/j.bpj.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Identifying the directionality of signaling sources from noisy input to membrane receptors is an essential task performed by many cell types. A variety of models have been proposed to explain directional sensing in cells. However, many of these require significant computational and memory capacities for the cell. We propose and analyze a simple mechanism in which a cell adopts the direction associated with the first few membrane binding events. This model yields an accurate angular estimate to the source long before steady state is reached in biologically relevant scenarios. Our proposed mechanism allows for reliable estimates of the directionality of external signals using temporal information and assumes minimal computational capacities of the cell.
Collapse
Affiliation(s)
- Andrew J Bernoff
- Department of Mathematics, Harvey Mudd College, Claremont, California
| | - Alexandra Jilkine
- Department of Applied & Computational Mathematics & Statistics, University of Notre Dame, South Bend, Indiana
| | - Adrián Navarro Hernández
- Department of Applied & Computational Mathematics & Statistics, University of Notre Dame, South Bend, Indiana
| | - Alan E Lindsay
- Department of Applied & Computational Mathematics & Statistics, University of Notre Dame, South Bend, Indiana.
| |
Collapse
|
5
|
Lindsay AE, Bernoff AJ, Navarro Hernández A. Short-time diffusive fluxes over membrane receptors yields the direction of a signalling source. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221619. [PMID: 37122946 PMCID: PMC10130716 DOI: 10.1098/rsos.221619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
An essential ability of many cell types is to detect stimuli in the form of shallow chemical gradients. Such cues may indicate the direction that new growth should occur, or the location of a mate. Amplification of these faint signals is due to intra-cellular mechanisms, while the cue itself is generated by the noisy arrival of signalling molecules to surface bound membrane receptors. We employ a new hybrid numerical-asymptotic technique coupling matched asymptotic analysis and numerical inverse Laplace transform to rapidly and accurately solve the parabolic exterior problem describing the dynamic diffusive fluxes to receptors. We observe that equilibration occurs on long timescales, potentially limiting the usefulness of steady-state quantities for localization at practical biological timescales. We demonstrate that directional information is encoded primarily in early arrivals to the receptors, while equilibrium quantities inform on source distance. We develop a new homogenization result showing that complex receptor configurations can be replaced by a uniform effective condition. In the extreme scenario where the cell adopts the angular direction of the first impact, we show this estimate to be surprisingly accurate.
Collapse
Affiliation(s)
- Alan E. Lindsay
- Department of Applied and Computational Math and Statistics, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Andrew J. Bernoff
- Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, USA
| | - Adrián Navarro Hernández
- Department of Applied and Computational Math and Statistics, University of Notre Dame, Notre Dame, IN 46617, USA
| |
Collapse
|
6
|
A focus on yeast mating: From pheromone signaling to cell-cell fusion. Semin Cell Dev Biol 2023; 133:83-95. [PMID: 35148940 DOI: 10.1016/j.semcdb.2022.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Cells live in a chemical environment and are able to orient towards chemical cues. Unicellular haploid fungal cells communicate by secreting pheromones to reproduce sexually. In the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, pheromonal communication activates similar pathways composed of cognate G-protein-coupled receptors and downstream small GTPase Cdc42 and MAP kinase cascades. Local pheromone release and sensing, at a mobile surface polarity patch, underlie spatial gradient interpretation to form pairs between two cells of distinct mating types. Concentration of secretion at the point of cell-cell contact then leads to local cell wall digestion for cell fusion, forming a diploid zygote that prevents further fusion attempts. A number of asymmetries between mating types may promote efficiency of the system. In this review, we present our current knowledge of pheromone signaling in the two model yeasts, with an emphasis on how cells decode the pheromone signal spatially and ultimately fuse together. Though overall pathway architectures are similar in the two species, their large evolutionary distance allows to explore how conceptually similar solutions to a general biological problem can arise from divergent molecular components.
Collapse
|
7
|
Jacobs KC, Gorman O, Lew DJ. Mechanism of commitment to a mating partner in Saccharomyces cerevisiae. Mol Biol Cell 2022; 33:ar112. [PMID: 35947501 DOI: 10.1091/mbc.e22-02-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many cells detect and follow gradients of chemical signals to perform their functions. Yeast cells use gradients of extracellular pheromones to locate mating partners, providing a tractable model to understand how cells decode the spatial information in gradients. To mate, yeast cells must orient polarity toward the mating partner. Polarity sites are mobile, exploring the cell cortex until they reach the proper position, where they stop moving and "commit" to the partner. A simple model to explain commitment posits that a high concentration of pheromone is only detected upon alignment of partner cells' polarity sites, and causes polarity site movement to stop. Here we explore how yeast cells respond to partners that make different amounts of pheromone. Commitment was surprisingly robust to varying pheromone levels, ruling out the simple model. We also tested whether adaptive pathways were responsible for the robustness of commitment, but our results show that cells lacking those pathways were still able to accommodate changes in pheromone. To explain this robustness, we suggest that the steep pheromone gradients near each mating partner's polarity site trap the polarity site in place.
Collapse
Affiliation(s)
- Katherine C Jacobs
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| | - Olivia Gorman
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| |
Collapse
|
8
|
Dumont ME, Konopka JB. Comparison of Experimental Approaches Used to Determine the Structure and Function of the Class D G Protein-Coupled Yeast α-Factor Receptor. Biomolecules 2022; 12:biom12060761. [PMID: 35740886 PMCID: PMC9220813 DOI: 10.3390/biom12060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
The Saccharomyces cerevisiae α-factor mating pheromone receptor (Ste2p) has been studied as a model for the large medically important family of G protein-coupled receptors. Diverse yeast genetic screens and high-throughput mutagenesis of STE2 identified a large number of loss-of-function, constitutively-active, dominant-negative, and intragenic second-site suppressor mutants as well as mutations that specifically affect pheromone binding. Facile genetic manipulation of Ste2p also aided in targeted biochemical approaches, such as probing the aqueous accessibility of substituted cysteine residues in order to identify the boundaries of the seven transmembrane segments, and the use of cysteine disulfide crosslinking to identify sites of intramolecular contacts in the transmembrane helix bundle of Ste2p and sites of contacts between the monomers in a Ste2p dimer. Recent publication of a series of high-resolution cryo-EM structures of Ste2p in ligand-free, agonist-bound and antagonist-bound states now makes it possible to evaluate the results of these genetic and biochemical strategies, in comparison to three-dimensional structures showing activation-related conformational changes. The results indicate that the genetic and biochemical strategies were generally effective, and provide guidance as to how best to apply these experimental strategies to other proteins. These strategies continue to be useful in defining mechanisms of signal transduction in the context of the available structures and suggest aspects of receptor function beyond what can be discerned from the available structures.
Collapse
Affiliation(s)
- Mark E. Dumont
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence: ; Tel.: +1-585-275-2466
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA;
| |
Collapse
|
9
|
Jacobs KC, Lew DJ. Pheromone Guidance of Polarity Site Movement in Yeast. Biomolecules 2022; 12:502. [PMID: 35454091 PMCID: PMC9027094 DOI: 10.3390/biom12040502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/11/2023] Open
Abstract
Cells' ability to track chemical gradients is integral to many biological phenomena, including fertilization, development, accessing nutrients, and combating infection. Mating of the yeast Saccharomyces cerevisiae provides a tractable model to understand how cells interpret the spatial information in chemical gradients. Mating yeast of the two different mating types secrete distinct peptide pheromones, called a-factor and α-factor, to communicate with potential partners. Spatial gradients of pheromones are decoded to guide mobile polarity sites so that polarity sites in mating partners align towards each other, as a prerequisite for cell-cell fusion and zygote formation. In ascomycetes including S. cerevisiae, one pheromone is prenylated (a-factor) while the other is not (α-factor). The difference in physical properties between the pheromones, combined with associated differences in mechanisms of secretion and extracellular pheromone metabolism, suggested that the pheromones might differ in the spatial information that they convey to potential mating partners. However, as mating appears to be isogamous in this species, it is not clear why any such signaling difference would be advantageous. Here we report assays that directly track movement of the polarity site in each partner as a way to understand the spatial information conveyed by each pheromone. Our findings suggest that both pheromones convey very similar information. We speculate that the different pheromones were advantageous in ancestral species with asymmetric mating systems and may represent an evolutionary vestige in yeasts that mate isogamously.
Collapse
Affiliation(s)
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA;
| |
Collapse
|
10
|
Abstract
Fungi exhibit an enormous variety of morphologies, including yeast colonies, hyphal mycelia, and elaborate fruiting bodies. This diversity arises through a combination of polar growth, cell division, and cell fusion. Because fungal cells are nonmotile and surrounded by a protective cell wall that is essential for cell integrity, potential fusion partners must grow toward each other until they touch and then degrade the intervening cell walls without impacting cell integrity. Here, we review recent progress on understanding how fungi overcome these challenges. Extracellular chemoattractants, including small peptide pheromones, mediate communication between potential fusion partners, promoting the local activation of core cell polarity regulators to orient polar growth and cell wall degradation. However, in crowded environments, pheromone gradients can be complex and potentially confusing, raising the question of how cells can effectively find their partners. Recent findings suggest that the cell polarity circuit exhibits searching behavior that can respond to pheromone cues through a remarkably flexible and effective strategy called exploratory polarization.
Collapse
|
11
|
Abstract
Accurate decoding of spatial chemical landscapes is critical for many cell functions. Eukaryotic cells decode local chemical gradients to orient growth or movement in productive directions. Recent work on yeast model systems, whose gradient sensing pathways display much less complexity than those in animal cells, has suggested new paradigms for how these very small cells successfully exploit information in noisy and dynamic pheromone gradients to identify their mates. Pheromone receptors regulate a polarity circuit centered on the conserved Rho-family GTPase, Cdc42. The polarity circuit contains both positive and negative feedback pathways, allowing spontaneous symmetry breaking and also polarity site disassembly and relocation. Cdc42 orients the actin cytoskeleton, leading to focused vesicle traffic that promotes movement of the polarity site and also reshapes the cortical distribution of receptors at the cell surface. In this article, we review the advances from work on yeasts and compare them with the excitable signaling pathways that have been revealed in chemotactic animal cells. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Debraj Ghose
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA;
| | - Timothy Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Daniel Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA;
| |
Collapse
|
12
|
Liu Y, Huang Y, Lu R, Xin F, Liu G. Synthetic biology applications of the yeast mating signal pathway. Trends Biotechnol 2021; 40:620-631. [PMID: 34666896 DOI: 10.1016/j.tibtech.2021.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
Cell fusion is a fundamental biological process that is involved in the development of most eukaryotic organisms. During the fusion process in Saccharomyces cerevisiae, cells respond to pheromones to trigger the MAPK (mitogen-activated protein kinase) cascade to initiate mating, followed by polarization, cell-wall remodeling, membrane fusion, and karyogamy. We highlight the applications of the yeast mating signal pathway in promoter engineering for tuning the expression of output genes, as well as in metabolic engineering for decoupling growth and metabolism, biosensors for sensitive detection and signal amplification, genetic circuits for programmable biological functionalities, and artificial consortia for cell-cell communication. Strategies such as exploiting rational engineering of modular circuits and optimizing the reproductive pathway to precisely maneuver physiological events have implications for scientific research and industrial development.
Collapse
Affiliation(s)
- Ying Liu
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, China
| | - Yuxin Huang
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, China
| | - Ran Lu
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, China
| | - Fengxue Xin
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, China
| | - Guannan Liu
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Jiangsu Province, China.
| |
Collapse
|
13
|
Ramirez SA, Pablo M, Burk S, Lew DJ, Elston TC. A novel stochastic simulation approach enables exploration of mechanisms for regulating polarity site movement. PLoS Comput Biol 2021; 17:e1008525. [PMID: 34264926 PMCID: PMC8315557 DOI: 10.1371/journal.pcbi.1008525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/27/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022] Open
Abstract
Cells polarize their movement or growth toward external directional cues in many different contexts. For example, budding yeast cells grow toward potential mating partners in response to pheromone gradients. Directed growth is controlled by polarity factors that assemble into clusters at the cell membrane. The clusters assemble, disassemble, and move between different regions of the membrane before eventually forming a stable polarity site directed toward the pheromone source. Pathways that regulate clustering have been identified but the molecular mechanisms that regulate cluster mobility are not well understood. To gain insight into the contribution of chemical noise to cluster behavior we simulated clustering using the reaction-diffusion master equation (RDME) framework to account for molecular-level fluctuations. RDME simulations are a computationally efficient approximation, but their results can diverge from the underlying microscopic dynamics. We implemented novel concentration-dependent rate constants that improved the accuracy of RDME-based simulations, allowing us to efficiently investigate how cluster dynamics might be regulated. Molecular noise was effective in relocating clusters when the clusters contained low numbers of limiting polarity factors, and when Cdc42, the central polarity regulator, exhibited short dwell times at the polarity site. Cluster stabilization occurred when abundances or binding rates were altered to either lengthen dwell times or increase the number of polarity molecules in the cluster. We validated key results using full 3D particle-based simulations. Understanding the mechanisms cells use to regulate the dynamics of polarity clusters should provide insights into how cells dynamically track external directional cues. Cells localize polarity molecules in a small region of the plasma membrane forming a polarity cluster that directs functions such as migration, reproduction, and growth. Guided by external signals, these clusters move across the membrane allowing cells to reorient growth or motion. The polarity molecules continuously and randomly shuttle between the cluster and the cell cytosol and, as a result, the number and distribution of molecules at the cluster constantly changes. Here we present an improved stochastic simulation algorithm to investigate how such molecular-scale fluctuations induce cluster movement across the cell membrane. Unexpectedly, cluster mobility does not correlate with variations in total molecule abundance within the cluster, but rather with changes in the spatial distribution of molecules that form the cluster. Cluster motion is faster when polarity molecules are scarce and when they shuttle rapidly between the cluster and the cytosol. Our results suggest that cells control cluster mobility by regulating the abundance of polarity molecules and biochemical reactions that affect the time molecules spend at the cluster. We provide insights into how cells harness random molecular behavior to perform functions important for survival, such as detecting the direction of external signals.
Collapse
Affiliation(s)
- Samuel A. Ramirez
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (SAR); (TCE)
| | - Michael Pablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sean Burk
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Timothy C. Elston
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (SAR); (TCE)
| |
Collapse
|
14
|
Ghose D, Jacobs K, Ramirez S, Elston T, Lew D. Chemotactic movement of a polarity site enables yeast cells to find their mates. Proc Natl Acad Sci U S A 2021; 118:e2025445118. [PMID: 34050026 PMCID: PMC8179161 DOI: 10.1073/pnas.2025445118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
How small eukaryotic cells can interpret dynamic, noisy, and spatially complex chemical gradients to orient growth or movement is poorly understood. We address this question using Saccharomyces cerevisiae, where cells orient polarity up pheromone gradients during mating. Initial orientation is often incorrect, but polarity sites then move around the cortex in a search for partners. We find that this movement is biased by local pheromone gradients across the polarity site: that is, movement of the polarity site is chemotactic. A bottom-up computational model recapitulates this biased movement. The model reveals how even though pheromone-bound receptors do not mimic the shape of external pheromone gradients, nonlinear and stochastic effects combine to generate effective gradient tracking. This mechanism for gradient tracking may be applicable to any cell that searches for a target in a complex chemical landscape.
Collapse
Affiliation(s)
- Debraj Ghose
- Computational Biology and Bioinformatics, Duke University, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Katherine Jacobs
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Samuel Ramirez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Timothy Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Daniel Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
15
|
Molecular switch architecture determines response properties of signaling pathways. Proc Natl Acad Sci U S A 2021; 118:2013401118. [PMID: 33688042 DOI: 10.1073/pnas.2013401118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many intracellular signaling pathways are composed of molecular switches, proteins that transition between two states-on and off Typically, signaling is initiated when an external stimulus activates its cognate receptor that, in turn, causes downstream switches to transition from off to on using one of the following mechanisms: activation, in which the transition rate from the off state to the on state increases; derepression, in which the transition rate from the on state to the off state decreases; and concerted, in which activation and derepression operate simultaneously. We use mathematical modeling to compare these signaling mechanisms in terms of their dose-response curves, response times, and abilities to process upstream fluctuations. Our analysis elucidates several operating principles for molecular switches. First, activation increases the sensitivity of the pathway, whereas derepression decreases sensitivity. Second, activation generates response times that decrease with signal strength, whereas derepression causes response times to increase with signal strength. These opposing features allow the concerted mechanism to not only show dose-response alignment, but also to decouple the response time from stimulus strength. However, these potentially beneficial properties come at the expense of increased susceptibility to upstream fluctuations. We demonstrate that these operating principles also hold when the models are extended to include additional features, such as receptor removal, kinetic proofreading, and cascades of switches. In total, we show how the architecture of molecular switches govern their response properties. We also discuss the biological implications of our findings.
Collapse
|
16
|
Clark-Cotton MR, Henderson NT, Pablo M, Ghose D, Elston TC, Lew DJ. Exploratory polarization facilitates mating partner selection in Saccharomyces cerevisiae. Mol Biol Cell 2021; 32:1048-1063. [PMID: 33689470 PMCID: PMC8101489 DOI: 10.1091/mbc.e21-02-0068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Yeast decode pheromone gradients to locate mating partners, providing a model for chemotropism. How yeast polarize toward a single partner in crowded environments is unclear. Initially, cells often polarize in unproductive directions, but then they relocate the polarity site until two partners’ polarity sites align, whereupon the cells “commit” to each other by stabilizing polarity to promote fusion. Here we address the role of the early mobile polarity sites. We found that commitment by either partner failed if just one partner was defective in generating, orienting, or stabilizing its mobile polarity sites. Mobile polarity sites were enriched for pheromone receptors and G proteins, and we suggest that such sites engage in an exploratory search of the local pheromone landscape, stabilizing only when they detect elevated pheromone levels. Mobile polarity sites were also enriched for pheromone secretion factors, and simulations suggest that only focal secretion at polarity sites would produce high pheromone concentrations at the partner’s polarity site, triggering commitment.
Collapse
Affiliation(s)
| | - Nicholas T Henderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| | - Michael Pablo
- Department of Chemistry, Chapel Hill, NC 27599.,Program in Molecular and Cellular Biophysics, Chapel Hill, NC 27599
| | - Debraj Ghose
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| | - Timothy C Elston
- Department of Pharmacology and Computational Medicine Program, UNC Chapel Hill, Chapel Hill, NC 27599
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708
| |
Collapse
|
17
|
Robertson CG, Clark-Cotton MR, Lew DJ. Mechanisms that ensure monogamous mating in Saccharomyces cerevisiae. Mol Biol Cell 2021; 32:638-644. [PMID: 33596113 PMCID: PMC8108519 DOI: 10.1091/mbc.e20-12-0757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Haploid cells of the budding yeast Saccharomyces cerevisiae communicate using secreted pheromones and mate to form diploid zygotes. Mating is monogamous, resulting in the fusion of precisely one cell of each mating type. Monogamous mating in crowded conditions, where cells have access to more than one potential partner, raises the question of how multiple-mating outcomes are prevented. Here we identify mutants capable of mating with multiple partners, revealing the mechanisms that ensure monogamous mating. Before fusion, cells develop polarity foci oriented toward potential partners. Competition between these polarity foci within each cell leads to disassembly of all but one focus, thus favoring a single fusion event. Fusion promotes the formation of heterodimeric complexes between subunits that are uniquely expressed in each mating type. One complex shuts off haploid-specific gene expression, and the other shuts off the ability to respond to pheromone. Zygotes able to form either complex remain monogamous, but zygotes lacking both can re-mate.
Collapse
Affiliation(s)
- Corrina G Robertson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Manuella R Clark-Cotton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
18
|
Ghose D, Lew D. Mechanistic insights into actin-driven polarity site movement in yeast. Mol Biol Cell 2020; 31:1085-1102. [PMID: 32186970 PMCID: PMC7346724 DOI: 10.1091/mbc.e20-01-0040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 11/11/2022] Open
Abstract
Directed cell growth or migration are critical for the development and function of many eukaryotic cells. These cells develop a dynamic "front" (also called "polarity site") that can change direction. Polarity establishment involves autocatalytic accumulation of polarity regulators, including the conserved Rho-family GTPase Cdc42, but the mechanisms underlying polarity reorientation remain poorly understood. The tractable model yeast, Saccharomyces cerevisiae, relocates its polarity site when searching for mating partners. Relocation requires polymerized actin, and is thought to involve actin-mediated vesicle traffic to the polarity site. In this study, we provide a quantitative characterization of spontaneous polarity site movement as a search process and use a mechanistic computational model that combines polarity protein biochemical interactions with vesicle trafficking to probe how various processes might affect polarity site movement. Our findings identify two previously documented features of yeast vesicle traffic as being particularly relevant to such movement: tight spatial focusing of exocytosis enhances the directional persistence of movement, and association of Cdc42-directed GTPase-Activating Proteins with secretory vesicles increases the distance moved. Furthermore, we suggest that variation in the rate of exocytosis beyond simple Poisson dynamics may be needed to fully account for the characteristics of polarity site movement in vivo.
Collapse
Affiliation(s)
- Debraj Ghose
- Computational Biology and Bioinformatics, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Daniel Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
19
|
Moran KD, Lew DJ. How Diffusion Impacts Cortical Protein Distribution in Yeasts. Cells 2020; 9:cells9051113. [PMID: 32365827 PMCID: PMC7291136 DOI: 10.3390/cells9051113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Proteins associated with the yeast plasma membrane often accumulate asymmetrically within the plane of the membrane. Asymmetric accumulation is thought to underlie diverse processes, including polarized growth, stress sensing, and aging. Here, we review our evolving understanding of how cells achieve asymmetric distributions of membrane proteins despite the anticipated dissipative effects of diffusion, and highlight recent findings suggesting that differential diffusion is exploited to create, rather than dissipate, asymmetry. We also highlight open questions about diffusion in yeast plasma membranes that remain unsolved.
Collapse
|
20
|
Mitotic and pheromone-specific intrinsic polarization cues interfere with gradient sensing in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2020; 117:6580-6589. [PMID: 32152126 DOI: 10.1073/pnas.1912505117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polarity decisions are central to many processes, including mitosis and chemotropism. In Saccharomyces cerevisiae, budding and mating projection (MP) formation use an overlapping system of cortical landmarks that converges on the small G protein Cdc42. However, pheromone-gradient sensing must override the Rsr1-dependent internal polarity cues used for budding. Using this model system, we asked what happens when intrinsic and extrinsic spatial cues are not aligned. Is there competition, or collaboration? By live-cell microscopy and microfluidics techniques, we uncovered three previously overlooked features of this signaling system. First, the cytokinesis-associated polarization patch serves as a polarity landmark independently of all known cues. Second, the Rax1-Rax2 complex functions as a pheromone-promoted polarity cue in the distal pole of the cells. Third, internal cues remain active during pheromone-gradient tracking and can interfere with this process, biasing the location of MPs. Yeast defective in internal-cue utilization align significantly better than wild type with artificially generated pheromone gradients.
Collapse
|