1
|
Manus MB, Sardaro MLS, Dada O, Davis MI, Romoff MR, Torello SG, Ubadigbo E, Wu RC, Miller ES, Amato KR. Interactions with alloparents are associated with the diversity of infant skin and fecal bacterial communities in Chicago, United States. Am J Hum Biol 2025; 37:e23972. [PMID: 37632331 PMCID: PMC11667966 DOI: 10.1002/ajhb.23972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/28/2023] Open
Abstract
INTRODUCTION Social interactions shape the infant microbiome by providing opportunities for caregivers to spread bacteria through physical contact. With most research focused on the impact of maternal-infant contact on the infant gut microbiome, it is unclear how alloparents (i.e., caregivers other than the parents) influence the bacterial communities of infant body sites that are frequently contacted during bouts of caregiving, including the skin. METHODS To begin to understand how allocare may influence the diversity of the infant microbiome, detailed questionnaire data on infant-alloparent relationships and specific allocare behaviors were coupled with skin and fecal microbiome samples (four body sites) from 48 infants living in Chicago, United States. RESULTS Data from 16S rRNA gene amplicon sequencing indicated that infant skin and fecal bacterial diversity showed strong associations (positive and negative) to having female adult alloparents. Alloparental feeding and co-sleeping displayed stronger associations to infant bacterial diversity compared to playing or holding. The associations with allocare behaviors differed in magnitude and direction across infant body sites. Bacterial relative abundances varied by infant-alloparent relationship and breastfeeding status. CONCLUSION This study provides some of the first evidence of an association between allocare and infant skin and fecal bacterial diversity. The results suggest that infants' exposure to bacteria from the social environment may vary based on infant-alloparent relationships and allocare behaviors. Since the microbiome influences immune system development, variation in allocare that impacts the diversity of infant bacterial communities may be an underexplored dimension of the social determinants of health in early life.
Collapse
Affiliation(s)
- Melissa B. Manus
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Maria Luisa Savo Sardaro
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
- Department of Human Science and Promotion of the Quality of LifeUniversity of San RaffaeleRomeItaly
| | - Omolola Dada
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Maya I. Davis
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Melissa R. Romoff
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | | | - Esther Ubadigbo
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Rebecca C. Wu
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Emily S. Miller
- Department of Obstetrics and Gynecology, Division of Maternal Fetal MedicineFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | | |
Collapse
|
2
|
Dai DLY, Petersen C, Turvey SE. Reduce, reinforce, and replenish: safeguarding the early-life microbiota to reduce intergenerational health disparities. Front Public Health 2024; 12:1455503. [PMID: 39507672 PMCID: PMC11537995 DOI: 10.3389/fpubh.2024.1455503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Socioeconomic (SE) disparity and health inequity are closely intertwined and associated with cross-generational increases in the rates of multiple chronic non-communicable diseases (NCDs) in North America and beyond. Coinciding with this social trend is an observed loss of biodiversity within the community of colonizing microbes that live in and on our bodies. Researchers have rightfully pointed to the microbiota as a key modifiable factor with the potential to ease existing health inequities. Although a number of studies have connected the adult microbiome to socioeconomic determinants and health outcomes, few studies have investigated the role of the infant microbiome in perpetuating these outcomes across generations. It is an essential and important question as the infant microbiota is highly sensitive to external forces, and observed shifts during this critical window often portend long-term outcomes of health and disease. While this is often studied in the context of direct modulators, such as delivery mode, family size, antibiotic exposure, and breastfeeding, many of these factors are tied to underlying socioeconomic and/or cross-generational factors. Exploring cross-generational socioeconomic and health inequities through the lens of the infant microbiome may provide valuable avenues to break these intergenerational cycles. In this review, we will focus on the impact of social inequality in infant microbiome development and discuss the benefits of prioritizing and restoring early-life microbiota maturation for reducing intergenerational health disparities.
Collapse
Affiliation(s)
| | | | - Stuart E. Turvey
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Manus MB, Savo Sardaro ML, Dada O, Davis M, Romoff MR, Torello SG, Ubadigbo E, Wu RC, Dominguez-Bello MG, Melby MK, Miller ES, Amato KR. Birth and household exposures are associated with changes to skin bacterial communities during infancy. Evol Med Public Health 2024; 13:49-76. [PMID: 40182701 PMCID: PMC11966193 DOI: 10.1093/emph/eoae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Indexed: 04/05/2025] Open
Abstract
Background and objectives Microbial exposures during infancy shape the development of the microbiome, the collection of microbes living in and on the body, which in turn directs immune system training. Newborns acquire a substantial quantity of microbes during birth and throughout infancy via exposure to microbes in the physical and social environment. Alterations to early life microbial environments may give rise to mismatches, where environmental, cultural and behavioral changes that outpace the body's adaptive responses can lead to adverse health outcomes, particularly those related to microbiome development and immune system regulation. Methods This study explored the development of the skin microbiome among infants born in Chicago, USA. We collected skin swab microbiome samples from 22 mother-infant dyads during the first 48 h of life and again at 6 weeks postpartum. Mothers provided information about social environments and hygiene behaviors that may impact infants' microbial exposures. Results Analysis of amplicon bacterial gene sequencing data revealed correlations between infant skin bacterial abundances shortly after birth and factors such as antibiotic exposure and receiving a bath in the hospital. The composition of the infant microbiome at 6 weeks of age was associated with interactions with caregivers and infant feeding practices. We also found shifts in maternal skin microbiomes that may reflect increased hygiene practices in the hospital. Conclusions and implications Our data suggest that factors related to the birth and household environment can impact the development of infant skin microbiomes and point to practices that may produce mismatches for the infant microbiome and immune system.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Department of Human Science and Promotion of the Quality of Life, University of San Raffaele, Rome, Italy
| | - Omolola Dada
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Maya Davis
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Melissa R Romoff
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | | | - Esther Ubadigbo
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Rebecca C Wu
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Melissa K Melby
- Department of Anthropology, University of Delaware, Newark, DE, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Emily S Miller
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Warren Alpert Medical School of Brown University, Providence, RI;USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
4
|
Rook GAW. Evolution and the critical role of the microbiota in the reduced mental and physical health associated with low socioeconomic status (SES). Neurosci Biobehav Rev 2024; 161:105653. [PMID: 38582194 DOI: 10.1016/j.neubiorev.2024.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The evolution of the gut-microbiota-brain axis in animals reveals that microbial inputs influence metabolism, the regulation of inflammation and the development of organs, including the brain. Inflammatory, neurodegenerative and psychiatric disorders are more prevalent in people of low socioeconomic status (SES). Many aspects of low SES reduce exposure to the microbial inputs on which we are in a state of evolved dependence, whereas the lifestyle of wealthy citizens maintains these exposures. This partially explains the health deficit of low SES, so focussing on our evolutionary history and on environmental and lifestyle factors that distort microbial exposures might help to mitigate that deficit. But the human microbiota is complex and we have poor understanding of its functions at the microbial and mechanistic levels, and in the brain. Perhaps its composition is more flexible than the microbiota of animals that have restricted habitats and less diverse diets? These uncertainties are discussed in relation to the encouraging but frustrating results of attempts to treat psychiatric disorders by modulating the microbiota.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, Department of infection, UCL (University College London), London, UK.
| |
Collapse
|
5
|
Alexander CC, Gaudier-Diaz MM, Kleinschmit AJ, Dihle PJ, Salger SA, Vega N, Robertson SD. A case study to engage students in the research design and ethics of high-throughput metagenomics. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0007423. [PMID: 38661414 PMCID: PMC11044643 DOI: 10.1128/jmbe.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/03/2023] [Indexed: 04/26/2024]
Abstract
Case studies present students with an opportunity to learn and apply course content through problem solving and critical thinking. Supported by the High-throughput Discovery Science & Inquiry-based Case Studies for Today's Students (HITS) Research Coordination Network, our interdisciplinary team designed, implemented, and assessed two case study modules entitled "You Are What You Eat." Collectively, the case study modules present students with an opportunity to engage in experimental research design and the ethical considerations regarding microbiome research and society. In this manuscript, we provide instructors with tools for adopting or adapting the research design and/or the ethics modules. To date, the case has been implemented using two modalities (remote and in-person) in three courses (Microbiology, Physiology, and Neuroscience), engaging over 200 undergraduate students. Our assessment data demonstrate gains in content knowledge and students' perception of learning following case study implementation. Furthermore, when reflecting on our experiences and student feedback, we identified ways in which the case study could be modified for different settings. In this way, we hope that the "You Are What You Eat" case study modules can be implemented widely by instructors to promote problem solving and critical thinking in the traditional classroom or laboratory setting when discussing next-generation sequencing and/or metagenomics research.
Collapse
Affiliation(s)
| | | | | | | | | | - Nic Vega
- Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
6
|
Kwak S, Usyk M, Beggs D, Choi H, Ahdoot D, Wu F, Maceda L, Li H, Im EO, Han HR, Lee E, Wu AH, Hayes RB, Ahn J. Sociobiome - Individual and neighborhood socioeconomic status influence the gut microbiome in a multi-ethnic population in the US. NPJ Biofilms Microbiomes 2024; 10:19. [PMID: 38467678 PMCID: PMC10928180 DOI: 10.1038/s41522-024-00491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Lower socioeconomic status (SES) is related to increased incidence and mortality due to chronic diseases in adults. Association between SES variables and gut microbiome variation has been observed in adults at the population level, suggesting that biological mechanisms may underlie the SES associations; however, there is a need for larger studies that consider individual- and neighborhood-level measures of SES in racially diverse populations. In 825 participants from a multi-ethnic cohort, we investigated how SES shapes the gut microbiome. We determined the relationship of a range of individual- and neighborhood-level SES indicators with the gut microbiome. Individual education level and occupation were self-reported by questionnaire. Geocoding was applied to link participants' addresses with neighborhood census tract socioeconomic indicators, including average income and social deprivation in the census tract. Gut microbiome was measured using 16SV4 region rRNA gene sequencing of stool samples. We compared α-diversity, β-diversity, and taxonomic and functional pathway abundance by SES. Lower SES was significantly associated with greater α-diversity and compositional differences among groups, as measured by β-diversity. Several taxa related to low SES were identified, especially an increasing abundance of Prevotella copri and Catenibacterium sp000437715, and decreasing abundance of Dysosmobacter welbionis in terms of their high log-fold change differences. In addition, nativity and race/ethnicity have emerged as ecosocial factors that also influence the gut microbiota. Together, these results showed that lower SES was strongly associated with compositional and taxonomic measures of the gut microbiome, and may contribute to shaping the gut microbiota.
Collapse
Affiliation(s)
- Soyoung Kwak
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Mykhaylo Usyk
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Dia Beggs
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Heesun Choi
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Dariush Ahdoot
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Feng Wu
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Lorraine Maceda
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Huilin Li
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Eun-Ok Im
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Hae-Ra Han
- Johns Hopkins University School of Nursing, Baltimore, MD, USA
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eunjung Lee
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Richard B Hayes
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Jiyoung Ahn
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Rook GAW. The old friends hypothesis: evolution, immunoregulation and essential microbial inputs. FRONTIERS IN ALLERGY 2023; 4:1220481. [PMID: 37772259 PMCID: PMC10524266 DOI: 10.3389/falgy.2023.1220481] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
In wealthy urbanised societies there have been striking increases in chronic inflammatory disorders such as allergies, autoimmunity and inflammatory bowel diseases. There has also been an increase in the prevalence of individuals with systemically raised levels of inflammatory biomarkers correlating with increased risk of metabolic, cardiovascular and psychiatric problems. These changing disease patterns indicate a broad failure of the mechanisms that should stop the immune system from attacking harmless allergens, components of self or gut contents, and that should terminate inappropriate inflammation. The Old Friends Hypothesis postulates that this broad failure of immunoregulation is due to inadequate exposures to the microorganisms that drive development of the immune system, and drive the expansion of components such as regulatory T cells (Treg) that mediate immunoregulatory mechanisms. An evolutionary approach helps us to identify the organisms on which we are in a state of evolved dependence for this function (Old Friends). The bottom line is that most of the organisms that drive the regulatory arm of the immune system come from our mothers and family and from the natural environment (including animals) and many of these organisms are symbiotic components of a healthy microbiota. Lifestyle changes that are interrupting our exposure to these organisms can now be identified, and many are closely associated with low socioeconomic status (SES) in wealthy countries. These insights will facilitate the development of education, diets and urban planning that can correct the immunoregulatory deficit, while simultaneously reducing other contributory factors such as epithelial damage.
Collapse
Affiliation(s)
- Graham A. W. Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, United Kingdom
| |
Collapse
|
8
|
Oliveira LMA, Kozik A, Milligan-McClellan K, Hagan AK. Editorial: Advancing social equity through microbiology. Front Cell Infect Microbiol 2023; 13:1260284. [PMID: 37600937 PMCID: PMC10434235 DOI: 10.3389/fcimb.2023.1260284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Laura M. A. Oliveira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ariangela Kozik
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | | | - Ada K. Hagan
- Alliance SciComm & Consulting, LLC, Russellville, TN, United States
| |
Collapse
|
9
|
Mallott EK, Sitarik AR, Leve LD, Cioffi C, Camargo CA, Hasegawa K, Bordenstein SR. Human microbiome variation associated with race and ethnicity emerges as early as 3 months of age. PLoS Biol 2023; 21:e3002230. [PMID: 37590208 PMCID: PMC10434942 DOI: 10.1371/journal.pbio.3002230] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/03/2023] [Indexed: 08/19/2023] Open
Abstract
Human microbiome variation is linked to the incidence, prevalence, and mortality of many diseases and associates with race and ethnicity in the United States. However, the age at which microbiome variability emerges between these groups remains a central gap in knowledge. Here, we identify that gut microbiome variation associated with race and ethnicity arises after 3 months of age and persists through childhood. One-third of the bacterial taxa that vary across caregiver-identified racial categories in children are taxa reported to also vary between adults. Machine learning modeling of childhood microbiomes from 8 cohort studies (2,756 samples from 729 children) distinguishes racial and ethnic categories with 87% accuracy. Importantly, predictive genera are also among the top 30 most important taxa when childhood microbiomes are used to predict adult self-identified race and ethnicity. Our results highlight a critical developmental window at or shortly after 3 months of age when social and environmental factors drive race and ethnicity-associated microbiome variation and may contribute to adult health and health disparities.
Collapse
Affiliation(s)
- Elizabeth K. Mallott
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Alexandra R. Sitarik
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, United States of America
| | - Leslie D. Leve
- Prevention Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Camille Cioffi
- Prevention Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seth R. Bordenstein
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, School of Medicine, Nashville, Tennessee, United States of America
- Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- The One Health Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
10
|
Ahn J, Kwak S, Usyk M, Beggs D, Choi H, Ahdoot D, Wu F, Maceda L, Li H, Im EO, Han HR, Lee E, Wu A, Hayes R. Sociobiome - Individual and neighborhood socioeconomic status influence the gut microbiome in a multi-ethnic population in the US. RESEARCH SQUARE 2023:rs.3.rs-2733916. [PMID: 37131763 PMCID: PMC10153375 DOI: 10.21203/rs.3.rs-2733916/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lower socioeconomic status (SES) is related to increased incidence and mortality due to chronic diseases in adults. Association between SES variables and gut microbiome variation has been observed in adults at the population level, suggesting that biological mechanisms may underlie the SES associations; however, there is a need for larger U.S. studies that consider individual- and neighborhood-level measures of SES in racially diverse populations. In 825 participants from a multi-ethnic cohort, we investigated how SES shapes the gut microbiome. We determined the relationship of a range of several individual- and neighborhood-level SES indicators with the gut microbiome. Individual education level and occupation were self-reported by questionnaire. Geocoding was applied to link participants' addresses with neighborhood census tract socioeconomic indicators, including average income and social deprivation in the census tract. Gut microbiome was measured using 16SV4 region rRNA gene sequencing of stool samples. We compared α-diversity, β-diversity, and taxonomic and functional pathway abundance by socioeconomic status. Lower SES was significantly associated with greater α-diversity and compositional differences among groups, as measured by β-diversity. Several taxa related to low SES were identified, especially an increasing abundance of Genus Catenibacterium and Prevotella copri. The significant association between SES and gut microbiota remained even after considering the race/ethnicity in this racially diverse cohort. Together, these results showed that lower socioeconomic status was strongly associated with compositional and taxonomic measures of the gut microbiome, suggesting that SES may shape the gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Dia Beggs
- Department of Population Health, NYU Grossman School of Medicine
| | | | | | - Feng Wu
- Perlmutter Cancer Center, NYU Langone Health
| | | | | | | | - Hae-Ra Han
- Johns Hopkins University School of Nursing
| | | | - Anna Wu
- University of Southern California
| | - Richard Hayes
- Department of Population Health, NYU Grossman School of Medicine
| |
Collapse
|
11
|
Manus MB. Ecological Processes and Human Behavior Provide a Framework for Studying the Skin Microbial Metacommunity. MICROBIAL ECOLOGY 2022; 84:689-702. [PMID: 34636925 DOI: 10.1007/s00248-021-01884-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Metacommunity theory dictates that a microbial community is supported both by local ecological processes and the dispersal of microbes between neighboring communities. Studies that apply this perspective to human-associated microbial communities are thus far limited to the gut microbiome. Yet, the skin serves as the primary barrier between the body and the external environment, suggesting frequent opportunities for microbial dispersal to the variable microbial communities that are housed across skin sites. This paper applies metacommunity theory to understand the dispersal of microbes to the skin from the physical and social environment, as well as between different skin sites on an individual's body. This includes highlighting the role of human behavior in driving microbial dispersal, as well as shaping physiological properties of skin that underscore local microbial community dynamics. By leveraging data from research on the skin microbiomes of amphibians and other animals, this paper provides recommendations for future research on the skin microbial metacommunity, including generating testable predictions about the ecological underpinnings of the skin microbiome.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
12
|
Gupta L, Hoffman KW. Exploring the intersection of the microbiome and the developing brain: Impacts on schizophrenia risk. Schizophr Res 2022; 247:92-100. [PMID: 34483026 DOI: 10.1016/j.schres.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/21/2022]
Abstract
Recent findings show that the perinatal maternal and infant microbiomes have profound potential to impact long term health outcomes. Of particular interest are the ways in which the microbiome influences the developing brain during one of its most critical windows. Schizophrenia and psychosis risk are strongly connected to disruptions in perinatal neurodevelopment. In this review we present an overview of critical aspects in development of both the microbiome and brain, discuss their overlap, and consider what role the microbiome plays in schizophrenia risk during the perinatal window. Considering this, we discuss ways in which expecting and new mothers may reduce offspring schizophrenia risk.
Collapse
Affiliation(s)
- Lipi Gupta
- The University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, United States
| | - Kevin W Hoffman
- The University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, United States.
| |
Collapse
|
13
|
Abstract
Natural and human-made disasters can cause tremendous physical damage, societal change, and suffering. In addition to their effects on people, disasters have been shown to alter the microbial population in the area affected. Alterations for microbial populations can lead to new ecological interactions, with additional potentially adverse consequences for many species, including humans. Disaster-related stressors can be powerful forces for microbial selection. Studying microbial adaptation in disaster sites can reveal new biological processes, including mechanisms by which some microbes could become pathogenic and others could become beneficial (e.g., used for bioremediation). Here we survey examples of how disasters have affected microbiology and suggest that the topic of "disaster microbiology" is itself a new field of study. Given the accelerating pace of human-caused climate change and the increasing encroachment of the natural word by human activities, it is likely that this area of research will become increasingly relevant to the broader field of microbiology. Since disaster microbiology is a broad term open to interpretation, we propose criteria for what phenomena fall under its scope. The basic premise is that there must be a disaster that causes a change in the environment, which then causes an alteration to microbes (either a physical or biological adaptation), and that this adaptation must have additional ramifications.
Collapse
|
14
|
Choudoir MJ, Eggleston EM. Reciprocal Inclusion of Microbiomes and Environmental Justice Contributes Solutions to Global Environmental Health Challenges. mSystems 2022; 7:e0146221. [PMID: 35642845 PMCID: PMC9239259 DOI: 10.1128/msystems.01462-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Generations of colonialism, industrialization, intensive agriculture, and anthropogenic climate change have radically altered global ecosystems and by extension, their environmental microbiomes. The environmental consequences of global change disproportionately burden racialized communities, those with lower socioeconomic status, and other systematically underserved populations. Environmental justice seeks to balance the relationships between environmental burden, beneficial ecosystem functions, and local communities. Given their direct links to human and ecosystem health, microbes are embedded within social and environmental justice. Considering scientific and technological advances is becoming an important step in developing actionable solutions to global equity challenges. Here we identify areas where inclusion of microbial knowledge and research can support planetary health goals. We offer guidelines for strengthening a reciprocal integration of environmental justice into environmental microbiology research. Microbes form intimate relationships with the environment and society, thus microbiologists have numerous and unique opportunities to incorporate equity into their research, teaching, and community engagement.
Collapse
Affiliation(s)
- Mallory J. Choudoir
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | |
Collapse
|
15
|
Palacios-García I, Mhuireach GA, Grasso-Cladera A, Cryan JF, Parada FJ. The 4E approach to the human microbiome: Nested interactions between the gut-brain/body system within natural and built environments. Bioessays 2022; 44:e2100249. [PMID: 35338496 DOI: 10.1002/bies.202100249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Abstract
The complexity of the human mind and its interaction with the environment is one of the main epistemological debates throughout history. Recent ideas, framed as the 4E perspective to cognition, highlight that human experience depends causally on both cerebral and extracranial processes, but also is embedded in a particular sociomaterial context and is a product of historical accumulation of trajectory changes throughout life. Accordingly, the human microbiome is one of the most intriguing actors modulating brain function and physiology. Here, we present the 4E approach to the Human Microbiome for understanding mental processes from a broader perspective, encompassing one's body physiology and environment throughout their lifespan, interconnected by microbiome community structure and dynamics. We review evidence supporting the approach theoretically and motivates the study of the global set of microbial ecosystem networks encountered by a person across their lifetime (from skin to gut to natural and built environments). We furthermore trace future empirical implementation of the approach. We finally discuss novel research opportunities and clinical interventions aimed toward developing low-cost/high-benefit integrative and personalized bio-psycho-socio-environmental treatments for mental health and including the brain-gut-microbiome axis.
Collapse
Affiliation(s)
- Ismael Palacios-García
- Centro de Estudios en Neurociencia Humana y Neuropsicología. Facultad de Psicología, Universidad Diego Portales, Santiago, Chile.,Laboratorio de Psicofisiología, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gwynne A Mhuireach
- Biology and the Built Environment Center, University of Oregon, Oregon, USA
| | - Aitana Grasso-Cladera
- Centro de Estudios en Neurociencia Humana y Neuropsicología. Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Francisco J Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología. Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
16
|
Abstract
Healthy development and function of essentially all physiological systems and organs, including the brain, require exposure to the microbiota of our mothers and of the natural environment, especially in early life. We also know that some infections, if we survive them, modulate the immune system in relevant ways. If we study the evolution of the immune and metabolic systems, we can understand how these requirements developed and the nature of the organisms that we need to encounter. We can then begin to identify the mechanisms of the beneficial effects of these exposures. Against this evolutionary background, we can analyze the ways in which the modern urban lifestyle, particularly for individuals experiencing low socioeconomic status (SES), results in deficient or distorted microbial exposures and microbiomes. Thus, an evolutionary approach facilitates the identification of practical solutions to the growing scandal of health disparities linked to inequality.
Collapse
|
17
|
Robinson JM, Redvers N, Camargo A, Bosch CA, Breed MF, Brenner LA, Carney MA, Chauhan A, Dasari M, Dietz LG, Friedman M, Grieneisen L, Hoisington AJ, Horve PF, Hunter A, Jech S, Jorgensen A, Lowry CA, Man I, Mhuireach G, Navarro-Pérez E, Ritchie EG, Stewart JD, Watkins H, Weinstein P, Ishaq SL. Twenty Important Research Questions in Microbial Exposure and Social Equity. mSystems 2022; 7:e0124021. [PMID: 35089060 PMCID: PMC8725600 DOI: 10.1128/msystems.01240-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Social and political policy, human activities, and environmental change affect the ways in which microbial communities assemble and interact with people. These factors determine how different social groups are exposed to beneficial and/or harmful microorganisms, meaning microbial exposure has an important socioecological justice context. Therefore, greater consideration of microbial exposure and social equity in research, planning, and policy is imperative. Here, we identify 20 research questions considered fundamentally important to promoting equitable exposure to beneficial microorganisms, along with safeguarding resilient societies and ecosystems. The 20 research questions we identified span seven broad themes, including the following: (i) sociocultural interactions; (ii) Indigenous community health and well-being; (iii) humans, urban ecosystems, and environmental processes; (iv) human psychology and mental health; (v) microbiomes and infectious diseases; (vi) human health and food security; and (vii) microbiome-related planning, policy, and outreach. Our goal was to summarize this growing field and to stimulate impactful research avenues while providing focus for funders and policymakers.
Collapse
Affiliation(s)
- Jake M. Robinson
- University of Sheffield, Department of Landscape Architecture, Sheffield, United Kingdom
| | - Nicole Redvers
- Department of Family & Community Medicine, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | | | - Christina A. Bosch
- Department of Literacy, Early, Bilingual and Special Education, Kremen School of Education and Human Development, California State University, Fresno, California, USA
| | - Martin F. Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Lisa A. Brenner
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Megan A. Carney
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, Florida, USA
| | - Ashvini Chauhan
- University of Arizona, School of Anthropology and Center for Regional Food Studies, Tucson, Arizona, USA
| | - Mauna Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Leslie G. Dietz
- University of Oregon, Biology and the Built Environment Center, Eugene, Oregon, USA
| | - Michael Friedman
- American International College of Arts and Sciences of Antigua, Antigua and Barbuda, West Indies
| | - Laura Grieneisen
- Department of Genetics, Cell, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Patrick F. Horve
- University of Oregon, Institute of Molecular Biology, Eugene, Oregon, USA
| | - Ally Hunter
- Department of Student Development, University of Massachusetts, Amherst, Massachusetts, USA
| | - Sierra Jech
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology, Boulder, Colorado, USA
| | - Anna Jorgensen
- Department of Landscape Architecture, University of Sheffield, Sheffield, United Kingdom
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ioana Man
- Architectural Association School of Architecture, London, United Kingdom
| | - Gwynne Mhuireach
- Department of Architecture, University of Oregon, Eugene, Oregon, USA
| | - Edauri Navarro-Pérez
- Program of Environmental Life Sciences, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Euan G. Ritchie
- School of Life and Environmental Sciences and Centre for Integrative Ecology, Deakin University, Burwood, VIC, Australia
| | - Justin D. Stewart
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harry Watkins
- St. Andrews Botanic Garden, Canongate, St. Andrews, Fife, United Kingdom
- Bio-integrated Design Lab, Bartlett School of Architecture, London, United Kingdom
| | - Philip Weinstein
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Suzanne L. Ishaq
- University of Maine, School of Food and Agriculture, Orono, Maine, USA
| |
Collapse
|
18
|
Quecke B, Graf Y, Epure AM, Santschi V, Chiolero A, Carmeli C, Cullati S. Caesarean section and obesity in young adult offspring: Update of a systematic review with meta-analysis. Obes Rev 2022; 23:e13368. [PMID: 34585502 PMCID: PMC9286585 DOI: 10.1111/obr.13368] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
As compared with vaginal delivery (VD), caesarean section (CS) birth could be associated with increased risk of obesity in young adult offspring. We aimed to evaluate this association by updating data from a systematic review with meta-analysis of observational studies. From 3774 records identified in PubMed and Embase, we retained six studies and added five studies from the last systematic review, for a total of 11 studies. Crude estimates of the association were retrieved from nine cohort studies (n = 143,869), and maximally adjusted estimates were retrieved from eight cohort studies. Young adults born by CS had higher risk of obesity (body mass index [BMI] ≥ 30 kg/m2 ) than young adults born by VD, corresponding to a crude pooled risk ratio (RR) of 1.30 [95% confidence interval (CI) 1.13 to 1.50] and a maximally adjusted pooled RR of 1.22 [95% CI 1.02 to 1.46]. In a sensitivity analysis pooling, five studies that included maternal prepregnancy BMI, a major potential confounding factor, in the set of controlled covariates, the RR was 1.08 [95% CI 0.92 to 1.27]. We concluded that the association between CS and obesity in young adulthood was mostly explained by confounding from maternal prepregnancy BMI.
Collapse
Affiliation(s)
- Berenike Quecke
- Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland
| | - Yannick Graf
- Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland
| | - Adina-Mihaela Epure
- Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland
| | - Valérie Santschi
- La Source, School of Nursing Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Lausanne, Switzerland
| | - Arnaud Chiolero
- Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland.,Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland.,School of Population and Global Health, McGill University, Montreal, Canada
| | - Cristian Carmeli
- Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland
| | - Stéphane Cullati
- Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland.,Department of Readaptation and Geriatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Kirchhelle C, Podolsky SH. An Awkward Fit: Antimicrobial Resistance and the Evolution of International Health Politics (1945-2022). THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2022; 50:40-46. [PMID: 36889354 PMCID: PMC10009373 DOI: 10.1017/jme.2022.78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Despite being acknowledged as a major global health challenge, growing levels of antimicrobial resistance (AMR) in pathogenic and commensal organisms have proven an awkward fit for international health frameworks. This article surveys the history of attempts to coordinate international responses to AMR alongside the origins and evolution of the current international health regulations (IHR). It argues that AMR, which encompasses a vast range of microbial properties and ecological reservoirs, is an awkward fit for the 'organismal' philosophies that centre on the rapid control of individual pathogens that have characterised international policy-making since the 19th century.
Collapse
|
20
|
Ishaq SL, Parada FJ, Wolf PG, Bonilla CY, Carney MA, Benezra A, Wissel E, Friedman M, DeAngelis KM, Robinson JM, Fahimipour AK, Manus MB, Grieneisen L, Dietz LG, Pathak A, Chauhan A, Kuthyar S, Stewart JD, Dasari MR, Nonnamaker E, Choudoir M, Horve PF, Zimmerman NB, Kozik AJ, Darling KW, Romero-Olivares AL, Hariharan J, Farmer N, Maki KA, Collier JL, O’Doherty KC, Letourneau J, Kline J, Moses PL, Morar N. Introducing the Microbes and Social Equity Working Group: Considering the Microbial Components of Social, Environmental, and Health Justice. mSystems 2021; 6:e0047121. [PMID: 34313460 PMCID: PMC8407420 DOI: 10.1128/msystems.00471-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Humans are inextricably linked to each other and our natural world, and microorganisms lie at the nexus of those interactions. Microorganisms form genetically flexible, taxonomically diverse, and biochemically rich communities, i.e., microbiomes that are integral to the health and development of macroorganisms, societies, and ecosystems. Yet engagement with beneficial microbiomes is dictated by access to public resources, such as nutritious food, clean water and air, safe shelter, social interactions, and effective medicine. In this way, microbiomes have sociopolitical contexts that must be considered. The Microbes and Social Equity (MSE) Working Group connects microbiology with social equity research, education, policy, and practice to understand the interplay of microorganisms, individuals, societies, and ecosystems. Here, we outline opportunities for integrating microbiology and social equity work through broadening education and training; diversifying research topics, methods, and perspectives; and advocating for evidence-based public policy that supports sustainable, equitable, and microbial wealth for all.
Collapse
Affiliation(s)
- Suzanne L. Ishaq
- University of Maine, School of Food and Agriculture, Orono, Maine, USA
| | - Francisco J. Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Patricia G. Wolf
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Carla Y. Bonilla
- Gonzaga University, Department of Biology, Spokane, Washington, USA
| | - Megan A. Carney
- University of Arizona, School of Anthropology, Tucson, Arizona, USA
| | - Amber Benezra
- Stevens Institute of Technology, Science and Technology Studies, Hoboken, New Jersey, USA
| | | | - Michael Friedman
- American International College of Arts and Sciences of Antigua, Antigua, Antigua and Barbuda, West Indies
| | - Kristen M. DeAngelis
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jake M. Robinson
- University of Sheffield, Department of Landscape Architecture, Sheffield, United Kingdom
| | - Ashkaan K. Fahimipour
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, California, USA
- National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, Santa Cruz, California, USA
| | - Melissa B. Manus
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Laura Grieneisen
- Department of Genetics, Cell, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Leslie G. Dietz
- University of Oregon, Biology and the Built Environment Center, Eugene, Oregon, USA
| | - Ashish Pathak
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, Florida, USA
| | - Ashvini Chauhan
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, Florida, USA
| | - Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Justin D. Stewart
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mauna R. Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Emily Nonnamaker
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Mallory Choudoir
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Patrick F. Horve
- University of Oregon, Biology and the Built Environment Center, Eugene, Oregon, USA
| | - Naupaka B. Zimmerman
- University of San Francisco, Department of Biology, San Francisco, California, USA
| | - Ariangela J. Kozik
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Weatherford Darling
- Social Science Program, University of Maine at Augusta, Augusta, Maine, USA
- University of Maine, Graduate School of Biomedical Science & Engineering, Bangor, Maine, USA
| | | | - Janani Hariharan
- Field of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
| | - Nicole Farmer
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Katherine A. Maki
- National Institutes of Health, Clinical Center, Bethesda, Maryland, USA
| | - Jackie L. Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | | | - Jeffrey Letourneau
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | | | - Peter L. Moses
- Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Finch Therapeutics, Somerville, Massachusetts, USA
| | - Nicolae Morar
- Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
- Department of Philosophy, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
21
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic introduced unique challenges to teaching at the university level, while also heightening awareness of existing social and health disparities as these shaped interactions and influenced learning outcomes in class settings. Based on ethnographic and autoethnographic data, this article reflects on teaching about human-microbial relations in the context of the course "Anthropology of Food" and specifically at the start of the pandemic. Data demonstrate how students shifted from demystifying microbes to distrusting microbes to reacquainting with microbes through a hands-on experiment with fermentation. The article introduces a microbiopolitical perspective in interpreting students' learning trajectories and ultimate course outcomes. IMPORTANCE As evidenced by classroom experiences in the midst of the COVID-19 pandemic, microbes are "good to teach with" not only within microbiology and related fields but across a variety of academic disciplines. Thinking with microbes is not a neutral process but one shaped by social, political, and economic processes. Imploring students to contemplate how power dynamics and patterns of inequality are detectable at the microbial level may offer a unique opportunity for transforming one's view of the world and our relatedness with both humans and nonhumans.
Collapse
|
22
|
Schelkle B, Galland Q. Microbiome Research: Open Communication Today, Microbiome Applications in the Future. Microorganisms 2020; 8:E1960. [PMID: 33322055 PMCID: PMC7763060 DOI: 10.3390/microorganisms8121960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Microbiome research has recently gained centre-stage in both basic science and translational applications, yet researchers often feel that public communication about its potential overpromises. This manuscript aims to share a perspective on how scientists can engage in more open, ethical and transparent communication using an ongoing research project on food systems microbiomes as a case study. Concrete examples of strategically planned communication efforts are outlined, which aim to inspire and empower other researchers. Finally, we conclude with a discussion on the benefits of open and transparent communication from early-on in innovation pathways, mainly increasing trust in scientific processes and thus paving the way to achieving societal milestones such as the UN Sustainable Development Goals and the EU Green Deal.
Collapse
Affiliation(s)
- Bettina Schelkle
- European Food Information Council, Rue des Deux Eglises 14, 1000 Brussels, Belgium
| | - Quentin Galland
- Hague Corporate Affairs, Rue Belliard 40, 1040 Brussels, Belgium;
| |
Collapse
|
23
|
Lajaunie C, Morand S. Nagoya Protocol and Infectious Diseases: Hindrance or Opportunity? Front Public Health 2020; 8:238. [PMID: 32612970 PMCID: PMC7308583 DOI: 10.3389/fpubh.2020.00238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/18/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Claire Lajaunie
- Inserm, LPED (Laboratoire Population Environnement Developpement), Marseille, France.,Strathclyde Centre for Environmental Law and Governance (SCELG), Law School, Strathclyde University, Glasgow, United Kingdom
| | - Serge Morand
- Centre National de la Recherche Scientifique (CNRS)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier Université, Montpellier, France.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Robinson JM, Breed MF. The Lovebug Effect: Is the human biophilic drive influenced by interactions between the host, the environment, and the microbiome? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137626. [PMID: 32146404 DOI: 10.1016/j.scitotenv.2020.137626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Psychological frameworks are often used to investigate the mechanisms involved with our affinity towards, and connection with nature--such as the Biophilia Hypothesis and Nature Connectedness. Recent revelations from microbiome science suggest that animal behaviour can be strongly influenced by the host's microbiome--for example, via the bidirectional communication properties of the gut-brain axis. Here, we build on this theory to hypothesise that a microbially-influenced mechanism could also contribute to the human biophilic drive - the tendency for humans to affiliate and connect with nature. Humans may be at an evolutionary advantage through health-regulating exchange of environmental microbiota, which in turn could influence our nature affinity. We present a conceptual model for microbially-influenced nature affinity, calling it the Lovebug Effect. We present an overview of the potential mechanistic pathways involved in the Lovebug Effect, and consider its dependence on the hologenome concept of evolution, direct behavioural manipulation, and host-microbiota associated phenotypes independent of these concepts. We also discuss its implications for human health and ecological resilience. Finally, we highlight several possible approaches to scrutinise the hypothesis. The Lovebug Effect could have important implications for our understanding of exposure to natural environments for health and wellbeing, and could contribute to an ecologically resilient future.
Collapse
Affiliation(s)
- Jake M Robinson
- Department of Landscape, The University of Sheffield, S10 2TN, UK; inVIVO Planetary Health, of the Worldwide Universities Network (WUN), NJ 10704, USA; The Healthy Urban Microbiome Initiative (HUMI), Australia.
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia; The Healthy Urban Microbiome Initiative (HUMI), Australia
| |
Collapse
|
25
|
Sariola S, Gilbert SF. Toward a Symbiotic Perspective on Public Health: Recognizing the Ambivalence of Microbes in the Anthropocene. Microorganisms 2020; 8:E746. [PMID: 32429344 PMCID: PMC7285259 DOI: 10.3390/microorganisms8050746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Microbes evolve in complex environments that are often fashioned, in part, by human desires. In a global perspective, public health has played major roles in structuring how microbes are perceived, cultivated, and destroyed. The germ theory of disease cast microbes as enemies of the body and the body politic. Antibiotics have altered microbial development by providing stringent natural selection on bacterial species, and this has led to the formation of antibiotic-resistant bacterial strains. Public health perspectives such as "Precision Public Health" and "One Health" have recently been proposed to further manage microbial populations. However, neither of these take into account the symbiotic relationships that exist between bacterial species and between bacteria, viruses, and their eukaryotic hosts. We propose a perspective on public health that recognizes microbial evolution through symbiotic associations (the hologenome theory) and through lateral gene transfer. This perspective has the advantage of including both the pathogenic and beneficial interactions of humans with bacteria, as well as combining the outlook of the "One Health" model with the genomic methodologies utilized in the "Precision Public Health" model. In the Anthropocene, the conditions for microbial evolution have been altered by human interventions, and public health initiatives must recognize both the beneficial (indeed, necessary) interactions of microbes with their hosts as well as their pathogenic interactions.
Collapse
Affiliation(s)
- Salla Sariola
- Faculty of Social Sciences, Sociology, University of Helsinki, 00014 Helsinki, Finland;
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|