1
|
Novoa A, Jarić I, Pipek P, Pyšek P. Culturomics and iEcology provide novel opportunities to study human and social dimensions of alien species introductions. Trends Ecol Evol 2025; 40:18-26. [PMID: 39358047 DOI: 10.1016/j.tree.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
Invasive alien species negatively impact ecosystems, biodiversity, human societies, and economies. To prevent future invasions, it is crucial to understand both the ecological and the human and social factors determining whether a species is picked up, transported, and introduced beyond their native range. However, we often have little or no information on key human and social factors. Here, we explore how alien species introductions are shaped by a combination of ecological and human and social factors and highlight the potential of the emerging fields of conservation culturomics and iEcology for disentangling their relative importance. We argue that quantifying and assessing the relative importance of the human and social dimensions of alien species introductions can substantially improve our understanding of the invasion process.
Collapse
Affiliation(s)
- Ana Novoa
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic; Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas (EEZA-CSIC), Almería, Spain.
| | - Ivan Jarić
- CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France; Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Pavel Pipek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic; Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic; Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| |
Collapse
|
2
|
Cuthbert RN, Dalu T, Callaghan A, Dolan EJ, Johnston B. Dyeing waters: Does indiscriminate dye use threaten aquatic ecosystems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176107. [PMID: 39255935 DOI: 10.1016/j.scitotenv.2024.176107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Aquatic ecosystem conservation is imperative to reaching global biodiversity and sustainability targets. However, the ecological status of waters has been continuously eroded through mismanagement in the face of existing and emerging anthropogenic stressors, such as pollutants. There has been an emerging trend towards the use of dyes to manage algae and plants as well as to alter aesthetics within various aquatic environments. This artificial colouring has potential ecological implications through reductions in light levels and disruptions to thermoclines (i.e., temperature regime changes with depth). Abiotic regime shifts could in turn drive ecological cascades by depowering primary production, hampering top-down trophic interactions, and affecting evolved animal behaviours. Despite commercial dyes being marketed as acutely non-toxic, very little is known about the chronic effects of these dyes across ecological scales and contexts. We thus call for greater research efforts to understand the ecological consequences of dye usage in aquatic environments, as well as the socio-cultural drivers for its application. This emerging research area could harness approaches such as biological assays, community module experiments, remote sensing, culturomics, and social surveys to elucidate dye effects, trends, and perspectives under a pollution framework. A greater understanding of the potential effects of dye in aquatic ecosystems under relevant contexts would help to inform management decisions and regulation options, while helping to mediate ecocentric and anthropocentric perspectives.
Collapse
Affiliation(s)
- Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
| | - Amanda Callaghan
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6EX, United Kingdom
| | - Ellen J Dolan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Barry Johnston
- School of Engineering, Wrexham University, Mold Road, Plas Coch, Wrexham LL11 2AW, Wales, United Kingdom
| |
Collapse
|
3
|
Mouquet N, Langlois J, Casajus N, Auber A, Flandrin U, Guilhaumon F, Loiseau N, McLean M, Receveur A, Stuart Smith RD, Mouillot D. Low human interest for the most at-risk reef fishes worldwide. SCIENCE ADVANCES 2024; 10:eadj9510. [PMID: 39018399 PMCID: PMC466977 DOI: 10.1126/sciadv.adj9510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/18/2024] [Indexed: 07/19/2024]
Abstract
Human interest in biodiversity is essential for effective conservation action but remains poorly quantified at large scales. Here, we investigated human interest for 2408 marine reef fishes using data obtained from online public databases and social media, summarized in two synthetic dimensions, research effort and public attention. Both dimensions are mainly related to geographic range size. Research effort is also linked to fishery importance, while public attention is more related to fish aesthetic value and aquarium trade importance. We also found a strong phylogenetic bias, with certain fish families receiving disproportional research effort and public attention. Most concerningly, species at the highest risk of extinction and those most vulnerable to future climate change tend to receive less research effort and public attention. Our results provide a lens through which examining the societal attention that species garner, with the ultimate goals to improve conservation strategies, research programs, and communication plans.
Collapse
Affiliation(s)
- Nicolas Mouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- FRB-CESAB, 34000 Montpellier, France
| | | | | | - Arnaud Auber
- IFREMER, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, Boulogne-sur-Mer, France
| | - Ulysse Flandrin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Matthew McLean
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC 28403. USA
| | | | - Rick D. Stuart Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, Paris, France
| |
Collapse
|
4
|
Firth J, Torous J, López-Gil JF, Linardon J, Milton A, Lambert J, Smith L, Jarić I, Fabian H, Vancampfort D, Onyeaka H, Schuch FB, Firth JA. From "online brains" to "online lives": understanding the individualized impacts of Internet use across psychological, cognitive and social dimensions. World Psychiatry 2024; 23:176-190. [PMID: 38727074 PMCID: PMC11083903 DOI: 10.1002/wps.21188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
In response to the mass adoption and extensive usage of Internet-enabled devices across the world, a major review published in this journal in 2019 examined the impact of Internet on human cognition, discussing the concepts and ideas behind the "online brain". Since then, the online world has become further entwined with the fabric of society, and the extent to which we use such technologies has continued to grow. Furthermore, the research evidence on the ways in which Internet usage affects the human mind has advanced considerably. In this paper, we sought to draw upon the latest data from large-scale epidemiological studies and systematic reviews, along with randomized controlled trials and qualitative research recently emerging on this topic, in order to now provide a multi-dimensional overview of the impacts of Internet usage across psychological, cognitive and societal outcomes. Within this, we detail the empirical evidence on how effects differ according to various factors such as age, gender, and usage types. We also draw from new research examining more experiential aspects of individuals' online lives, to understand how the specifics of their interactions with the Internet, and the impact on their lifestyle, determine the benefits or drawbacks of online time. Additionally, we explore how the nascent but intriguing areas of culturomics, artificial intelligence, virtual reality, and augmented reality are changing our understanding of how the Internet can interact with brain and behavior. Overall, the importance of taking an individualized and multi-dimensional approach to how the Internet affects mental health, cognition and social functioning is clear. Furthermore, we emphasize the need for guidelines, policies and initiatives around Internet usage to make full use of the evidence available from neuroscientific, behavioral and societal levels of research presented herein.
Collapse
Affiliation(s)
- Joseph Firth
- Division of Psychology and Mental Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - John Torous
- Division of Digital Psychiatry, Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - José Francisco López-Gil
- One Health Research Group, Universidad de las Americas, Quito, Ecuador
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jake Linardon
- School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Alyssa Milton
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Australian Research Council, Centre of Excellence for Children and Families over the Life Course, Sydney, NSW, Australia
| | | | - Lee Smith
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Ivan Jarić
- Laboratoire Ecologie, Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Hannah Fabian
- Division of Psychology and Mental Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Davy Vancampfort
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- University Psychiatric Center, KU Leuven, Leuven, Belgium
| | - Henry Onyeaka
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Felipe B Schuch
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Health Sciences, Universidad Autônoma de Chile, Providência, Chile
| | - Josh A Firth
- Department of Biology, University of Oxford, Oxford, UK
- School of Biology, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Levy T, Ghermandi A, Lehahn Y, Edelist D, Angel DL. Monitoring jellyfish outbreaks along Israel's Mediterranean coast using digital footprints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171275. [PMID: 38428599 DOI: 10.1016/j.scitotenv.2024.171275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
With mounting global concerns about jellyfish outbreaks, monitoring their occurrence remains challenging. Tapping into the wealth of digital data that internet users share online, which includes reports of jellyfish sightings, may provide an alternative or complement to more conventional expert-based or citizen science monitoring. Here, we explore digital footprints as a data source to monitor jellyfish outbreaks along the Israeli Mediterranean coast. We compiled jellyfish sighting data for the period 2011-2022 from multiple platforms, including leading social media platforms, searches in the Google search engine, and Wikipedia page views. Employing time series analysis, cross-correlation, and various evaluation metrics for presence/absence data, we compared weekly data from three sources: digital footprints, citizen science, and traditional expert-based field monitoring. Consistent seasonal patterns emerge across datasets, with notable correlations, particularly in jellyfish abundance. The cross-correlation between digital footprint and citizen science data exceeds >0.7, with Twitter and Instagram showing the highest correlation. Citizen science data often precedes digital footprints by up to one week. Correlation with traditional, expert-based field monitoring is limited as a result of limited data availability. Digital footprints demonstrate substantial agreement with the other data sources regarding jellyfish presence/absence and major outbreaks, especially for data from Wikipedia, Twitter, and Instagram. Overall, we highlight digital footprint data as a reliable, cost-effective tool for passive monitoring of jellyfish outbreaks, which can aid characterization in data-scarce coastal regions, including retrospective assessment. Transferring and scaling up the proposed approach should consider data accessibility as well as platform relative popularity and usage in the regions under investigation.
Collapse
Affiliation(s)
- Tal Levy
- School of Environmental Sciences, University of Haifa, Haifa, Israel.
| | - Andrea Ghermandi
- School of Environmental Sciences, University of Haifa, Haifa, Israel
| | - Yoav Lehahn
- Department of Maritime Geosciences, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dor Edelist
- Applied Marine Biology and Ecology Research (AMBER) Lab, Recanati Institute for Maritime Studies, Department of Maritime Civilizations, University of Haifa, Haifa, Israel; Ruppin Academic Center, Michmoret, Israel
| | - Dror L Angel
- Applied Marine Biology and Ecology Research (AMBER) Lab, Recanati Institute for Maritime Studies, Department of Maritime Civilizations, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Pocock MJ, Adriaens T, Bertolino S, Eschen R, Essl F, Hulme PE, Jeschke JM, Roy HE, Teixeira H, de Groot M. Citizen science is a vital partnership for invasive alien species management and research. iScience 2024; 27:108623. [PMID: 38205243 PMCID: PMC10776933 DOI: 10.1016/j.isci.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Invasive alien species (IAS) adversely impact biodiversity, ecosystem functions, and socio-economics. Citizen science can be an effective tool for IAS surveillance, management, and research, providing large datasets over wide spatial extents and long time periods, with public participants generating knowledge that supports action. We demonstrate how citizen science has contributed knowledge across the biological invasion process, especially for early detection and distribution mapping. However, we recommend that citizen science could be used more for assessing impacts and evaluating the success of IAS management. Citizen science does have limitations, and we explore solutions to two key challenges: ensuring data accuracy and dealing with uneven spatial coverage of potential recorders (which limits the dataset's "fit for purpose"). Greater co-development of citizen science with public stakeholders will help us better realize its potential across the biological invasion process and across ecosystems globally while meeting the needs of participants, local communities, scientists, and decision-makers.
Collapse
Affiliation(s)
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Philip E. Hulme
- Bioprotection Aotearoa, Department of Pest Management and Conservation, Lincoln University, PO Box 84850, Christchurch, Lincoln 7648, New Zealand
| | - Jonathan M. Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Helen E. Roy
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, United Kingdom
| | - Heliana Teixeira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Maarten de Groot
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Abstract
Biodiversity is being lost at an unprecedented rate on Earth. As a first step to more effectively combat this process we need efficient methods to monitor biodiversity changes. Recent technological advance can provide powerful tools (e.g. camera traps, digital acoustic recorders, satellite imagery, social media records) that can speed up the collection of biological data. Nevertheless, the processing steps of the raw data served by these tools are still painstakingly slow. A new computer technology, deep learning based artificial intelligence, might, however, help. In this short and subjective review I oversee recent technological advances used in conservation biology, highlight problems of processing their data, shortly describe deep learning technology and show case studies of its use in conservation biology. Some of the limitations of the technology are also highlighted.
Collapse
Affiliation(s)
- Zoltán Barta
- HUN-REN-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Humanbiology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
8
|
Britton JR, Pinder AC, Alós J, Arlinghaus R, Danylchuk AJ, Edwards W, Freire KMF, Gundelund C, Hyder K, Jarić I, Lennox R, Lewin WC, Lynch AJ, Midway SR, Potts WM, Ryan KL, Skov C, Strehlow HV, Tracey SR, Tsuboi JI, Venturelli PA, Weir JL, Weltersbach MS, Cooke SJ. Global responses to the COVID-19 pandemic by recreational anglers: considerations for developing more resilient and sustainable fisheries. REVIEWS IN FISH BIOLOGY AND FISHERIES 2023:1-17. [PMID: 37360579 PMCID: PMC10227408 DOI: 10.1007/s11160-023-09784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 05/01/2023] [Indexed: 06/28/2023]
Abstract
The global COVID-19 pandemic resulted in many jurisdictions implementing orders restricting the movements of people to inhibit virus transmission, with recreational angling often either not permitted or access to fisheries and/or related infrastructure being prevented. Following the lifting of restrictions, initial angler surveys and licence sales suggested increased participation and effort, and altered angler demographics, but with evidence remaining limited. Here, we overcome this evidence gap by identifying temporal changes in angling interest, licence sales, and angling effort in world regions by comparing data in the 'pre-pandemic' (up to and including 2019); 'acute pandemic' (2020) and 'COVID-acclimated' (2021) periods. We then identified how changes can inform the development of more resilient and sustainable recreational fisheries. Interest in angling (measured here as angling-related internet search term volumes) increased substantially in all regions during 2020. Patterns in licence sales revealed marked increases in some countries during 2020 but not in others. Where licence sales increased, this was rarely sustained in 2021; where there were declines, these related to fewer tourist anglers due to movement restrictions. Data from most countries indicated a younger demographic of people who participated in angling in 2020, including in urban areas, but this was not sustained in 2021. These short-lived changes in recreational angling indicate efforts to retain younger anglers could increase overall participation levels, where efforts can target education in appropriate angling practices and create more urban angling opportunities. These efforts would then provide recreational fisheries with greater resilience to cope with future global crises, including facilitating the ability of people to access angling opportunities during periods of high societal stress. Supplementary Information The online version contains supplementary material available at 10.1007/s11160-023-09784-5.
Collapse
Affiliation(s)
- J. Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB UK
| | - Adrian C. Pinder
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, BH12 5BB UK
| | - Josep Alós
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC–UIB), Esporles, Spain
| | - Robert Arlinghaus
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Univesität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Andy J. Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003 USA
| | - Wendy Edwards
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT Suffolk UK
| | - Kátia M. F. Freire
- Department of Fisheries Engineering and Aquaculture, Universidade Federal de Sergipe, Cidade Universitária Prof. José Aloísio de Campos, Rua Mal. Rondon S/N, Jardim Rosa Elze São Cristóvão, Sergipe CEP 49100-000 Brazil
| | - Casper Gundelund
- Section of Freshwater Fisheries and Ecology, Technical University of Denmark, DTU Aqua, 8600 Silkeborg, Denmark
| | - Kieran Hyder
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT Suffolk UK
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ Norfolk UK
| | - Ivan Jarić
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 12 Rue 128, 91190 Gif-Sur-Yvette, France
| | - Robert Lennox
- Norwegian Institute for Nature Research and at the Laboratory for Freshwater Ecology, Oslo, Norway
| | - Wolf-Christian Lewin
- Thünen Institute of Baltic Sea Fisheries, Alter Hafen Süd 2, 18069 Rostock, Germany
| | - Abigail J. Lynch
- U.S. Geological Survey, National Climate Adaptation Science Center, 12201 Sunrise Valley Drive MS 516, Reston, VA 20192 USA
| | - Stephen R. Midway
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Warren M. Potts
- Department of Ichthyology and Fisheries Science, Rhodes University, P.O. Box 94, Makhanda, 6140 South Africa
| | - Karina L. Ryan
- Department of Primary Industries and Regional Development, Western Australian Fisheries and Marine Research Laboratories, 39 Northside Drive, Hillarys, WA 6025 Australia
| | - Christian Skov
- Section of Freshwater Fisheries and Ecology, Technical University of Denmark, DTU Aqua, 8600 Silkeborg, Denmark
| | - Harry V. Strehlow
- Thünen Institute of Baltic Sea Fisheries, Alter Hafen Süd 2, 18069 Rostock, Germany
| | - Sean R. Tracey
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart7001, TAS Australia
- Centre For Marine Socioecology, University of Tasmania, Private Bag 49, Hobart7001, TAS Australia
| | - Jun-ichi Tsuboi
- Research Center for Freshwater Fisheries, Japan Fish Res and Education Agency, Nikko, 321-1661 Japan
| | | | - Jessica L. Weir
- Department of Biology, Ball State University, Muncie, IN 47304 USA
| | | | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
9
|
Albuquerque UP, Cantalice AS, Oliveira ES, de Moura JMB, dos Santos RKS, da Silva RH, Brito-Júnior VM, Ferreira-Júnior WS. Exploring Large Digital Bodies for the Study of Human Behavior. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2023; 9:1-10. [PMID: 37362224 PMCID: PMC10203656 DOI: 10.1007/s40806-023-00363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/28/2023]
Abstract
Internet access has become a fundamental component of contemporary society, with major impacts in many areas that offer opportunities for new research insights. The search and deposition of information in digital media form large sets of data known as digital corpora, which can be used to generate structured data, representing repositories of knowledge and evidence of human culture. This information offers opportunities for scientific investigations that contribute to the understanding of human behavior on a large scale, reaching human populations/individuals that would normally be difficult to access. These tools can help access social and cultural varieties worldwide. In this article, we briefly review the potential of these corpora in the study of human behavior. Therefore, we propose Culturomics of Human Behavior as an approach to understand, explain, and predict human behavior using digital corpora.
Collapse
Affiliation(s)
- Ulysses Paulino Albuquerque
- Laboratório de Ecologia e Evolução de Sistemas Socioecológicos (LEA), Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, Cidade Universitária, 123550670-901 Recife, Pernambuco, Brazil
| | - Anibal Silva Cantalice
- Laboratório de Ecologia e Evolução de Sistemas Socioecológicos (LEA), Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, Cidade Universitária, 123550670-901 Recife, Pernambuco, Brazil
| | - Edwine Soares Oliveira
- Laboratório de Ecologia e Evolução de Sistemas Socioecológicos (LEA), Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, Cidade Universitária, 123550670-901 Recife, Pernambuco, Brazil
| | - Joelson Moreno Brito de Moura
- Instituto de Estudos do Xingu (IEX), Av. Norte Sul, Universidade Federal do Sul E Sudeste do Pará, Loteamento Cidade Nova, Lote N. 1, Qd 15, Setor 15, São Félix Do Xingu, Brazil
| | - Rayane Karoline Silva dos Santos
- Laboratório de Ecologia e Evolução de Sistemas Socioecológicos (LEA), Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, Cidade Universitária, 123550670-901 Recife, Pernambuco, Brazil
| | - Risoneide Henriques da Silva
- Laboratório de Ecologia e Evolução de Sistemas Socioecológicos (LEA), Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, Cidade Universitária, 123550670-901 Recife, Pernambuco, Brazil
| | - Valdir Moura Brito-Júnior
- Laboratório de Ecologia e Evolução de Sistemas Socioecológicos (LEA), Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, Cidade Universitária, 123550670-901 Recife, Pernambuco, Brazil
| | - Washington Soares Ferreira-Júnior
- Laboratório de Investigações Bioculturais no Semiárido, Universidade de Pernambuco, Campus Petrolina, BR203, Km 2, S/N, 56328-903 Petrolina, Pernambuco, Brazil
| |
Collapse
|
10
|
Aldridge DC, Ollard IS, Bespalaya YV, Bolotov IN, Douda K, Geist J, Haag WR, Klunzinger MW, Lopes‐Lima M, Mlambo MC, Riccardi N, Sousa R, Strayer DL, Torres SH, Vaughn CC, Zając T, Zieritz A. Freshwater mussel conservation: A global horizon scan of emerging threats and opportunities. GLOBAL CHANGE BIOLOGY 2023; 29:575-589. [PMID: 36444494 PMCID: PMC10100069 DOI: 10.1111/gcb.16510] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
We identified 14 emerging and poorly understood threats and opportunities for addressing the global conservation of freshwater mussels over the next decade. A panel of 17 researchers and stakeholders from six continents submitted a total of 56 topics that were ranked and prioritized using a consensus-building Delphi technique. Our 14 priority topics fell into five broad themes (autecology, population dynamics, global stressors, global diversity, and ecosystem services) and included understanding diets throughout mussel life history; identifying the drivers of population declines; defining metrics for quantifying mussel health; assessing the role of predators, parasites, and disease; informed guidance on the risks and opportunities for captive breeding and translocations; the loss of mussel-fish co-evolutionary relationships; assessing the effects of increasing surface water changes; understanding the effects of sand and aggregate mining; understanding the effects of drug pollution and other emerging contaminants such as nanomaterials; appreciating the threats and opportunities arising from river restoration; conserving understudied hotspots by building local capacity through the principles of decolonization; identifying appropriate taxonomic units for conservation; improved quantification of the ecosystem services provided by mussels; and understanding how many mussels are enough to provide these services. Solutions for addressing the topics ranged from ecological studies to technological advances and socio-political engagement. Prioritization of our topics can help to drive a proactive approach to the conservation of this declining group which provides a multitude of important ecosystem services.
Collapse
Affiliation(s)
- David C. Aldridge
- Aquatic Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Isobel S. Ollard
- Aquatic Ecology Group, Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Yulia V. Bespalaya
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of SciencesArkhangelskRussia
| | - Ivan N. Bolotov
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of SciencesArkhangelskRussia
- Northern Arctic Federal UniversityArkhangelskRussia
| | - Karel Douda
- Department of Zoology and FisheriesCzech University of Life Sciences PraguePragueCzech Republic
| | - Juergen Geist
- Aquatic Systems Biology UnitTechnical University of MunichFreisingGermany
| | - Wendell R. Haag
- Southern Research Station, Center for Bottomland Hardwoods ResearchU.S. Forest ServiceFrankfortKentuckyUSA
| | - Michael W. Klunzinger
- Australian Rivers InstituteGriffith UniversityNathanQueenslandAustralia
- Department of Aquatic ZoologyWestern Australian MuseumWelshpoolWestern AustralianAustralia
| | - Manuel Lopes‐Lima
- CIBIO/InBIO/BIOPOLIS—Research Center in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
| | - Musa C. Mlambo
- Department of Freshwater InvertebratesAlbany MuseumMakhandaSouth Africa
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
| | | | - Ronaldo Sousa
- CBMA—Centre of Molecular and Environmental Biology, Department of BiologyUniversity of MinhoBragaPortugal
| | - David L. Strayer
- Cary Institute of Ecosystem StudiesMillbrookNew YorkUSA
- Graham Sustainability InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Santiago H. Torres
- Centro de Investigaciones y Transferencia Santa Cruz (CONICET, UNPA, UTN), Unidad Académica San JuliánUniversidad Nacional de la Patagonia AustralSanta CruzArgentina
| | - Caryn C. Vaughn
- Oklahoma Biological Survey and Department of BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Tadeusz Zając
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| | | |
Collapse
|
11
|
Tongtong S, Xinhang C. Research on the impact of enterprise big data analytics capability on ambidextrous innovation capability – the mediating effect of agility. TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT 2022. [DOI: 10.1080/09537325.2022.2132140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sun Tongtong
- Beijing Inst Petrochem Technol, Sch Econ&Management, Beijing, People’s Republic of China
| | - Cheng Xinhang
- Male, graduate student at University of Jinan, Business School, Jinan, People's Republic of China
| |
Collapse
|
12
|
Urzedo D, Westerlaken M, Gabrys J. Digitalizing forest landscape restoration: a social and political analysis of emerging technological practices. ENVIRONMENTAL POLITICS 2022; 32:485-510. [PMID: 37207120 PMCID: PMC10191160 DOI: 10.1080/09644016.2022.2091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Digital technologies are increasingly influencing forest landscape restoration practices worldwide. We investigate how digital platforms specifically reconfigure restoration practices, resources, and policy across scales. By analyzing digital restoration platforms, we identify four drivers of technological developments, including: scientific expertise to optimize decisions; capacity building through digital networks; digital tree-planting markets to operate supply chains; and community participation to foster co-creation. Our analysis shows how digital developments transform restoration practices by producing techniques, remaking networks, creating markets, and reorganizing participation. These transformations often involve power imbalances regarding expertise, finance, and politics across the Global North and Global South. However, the distributed qualities of digital systems can also create alternative ways of undertaking restoration actions. We propose that digital developments for restoration should not be understood as neutral tools but rather as power-laden processes that can create, perpetuate, or counteract social and environmental inequalities.
Collapse
Affiliation(s)
- Danilo Urzedo
- Department of Sociology, University of Cambridge, UK
| | | | | |
Collapse
|
13
|
An expert-curated global database of online newspaper articles on spiders and spider bites. Sci Data 2022; 9:109. [PMID: 35347145 PMCID: PMC8960780 DOI: 10.1038/s41597-022-01197-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mass media plays an important role in the construction and circulation of risk perception associated with animals. Widely feared groups such as spiders frequently end up in the spotlight of traditional and social media. We compiled an expert-curated global database on the online newspaper coverage of human-spider encounters over the past ten years (2010–2020). This database includes information about the location of each human-spider encounter reported in the news article and a quantitative characterisation of the content—location, presence of photographs of spiders and bites, number and type of errors, consultation of experts, and a subjective assessment of sensationalism. In total, we collected 5348 unique news articles from 81 countries in 40 languages. The database refers to 211 identified and unidentified spider species and 2644 unique human-spider encounters (1121 bites and 147 as deadly bites). To facilitate data reuse, we explain the main caveats that need to be made when analysing this database and discuss research ideas and questions that can be explored with it. Measurement(s) | Newspaper articles on human-spider encounters | Technology Type(s) | Manual extraction | Sample Characteristic - Organism | Spiders (Arachnida: Araneae) | Sample Characteristic - Environment | Online | Sample Characteristic - Location | Global |
Collapse
|
14
|
Jarić I, Roll U, Bonaiuto M, Brook BW, Courchamp F, Firth JA, Gaston KJ, Heger T, Jeschke JM, Ladle RJ, Meinard Y, Roberts DL, Sherren K, Soga M, Soriano-Redondo A, Veríssimo D, Correia RA. Societal extinction of species. Trends Ecol Evol 2022; 37:411-419. [PMID: 35181167 DOI: 10.1016/j.tree.2021.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022]
Abstract
The ongoing global biodiversity crisis not only involves biological extinctions, but also the loss of experience and the gradual fading of cultural knowledge and collective memory of species. We refer to this phenomenon as 'societal extinction of species' and apply it to both extinct and extant taxa. We describe the underlying concepts as well as the mechanisms and factors that affect this process, discuss its main implications, and identify mitigation measures. Societal extinction is cognitively intractable, but it is tied to biological extinction and thus has important consequences for conservation policy and management. It affects societal perceptions of the severity of anthropogenic impacts and of true extinction rates, erodes societal support for conservation efforts, and causes the loss of cultural heritage.
Collapse
Affiliation(s)
- Ivan Jarić
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic; Department of Ecosystem Biology,(,) Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Uri Roll
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Marino Bonaiuto
- CIRPA Centro Interuniversitario di Ricerca in Psicologia Ambientale, Dipartimento di Psicologia dei Processi di Sviluppo e Socializzazione, Sapienza Università di Roma, Rome, Italy
| | - Barry W Brook
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia; ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Josh A Firth
- Department of Zoology, University of Oxford, Oxford, UK
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Tina Heger
- Technical University of Munich, Restoration Ecology, Freising, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jonathan M Jeschke
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Richard J Ladle
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Vairão, Portugal; Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Yves Meinard
- Université Paris Dauphine, PSL Research University, CNRS, Paris, France
| | - David L Roberts
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Kate Sherren
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada
| | - Masashi Soga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Andrea Soriano-Redondo
- Helsinki Lab of Interdisciplinary Conservation Science (HELICS), Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
| | | | - Ricardo A Correia
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil; Helsinki Lab of Interdisciplinary Conservation Science (HELICS), Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
15
|
Mannocci L, Villon S, Chaumont M, Guellati N, Mouquet N, Iovan C, Vigliola L, Mouillot D. Leveraging social media and deep learning to detect rare megafauna in video surveys. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13798. [PMID: 34153121 PMCID: PMC9291111 DOI: 10.1111/cobi.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 05/04/2023]
Abstract
Deep learning has become a key tool for the automated monitoring of animal populations with video surveys. However, obtaining large numbers of images to train such models is a major challenge for rare and elusive species because field video surveys provide few sightings. We designed a method that takes advantage of videos accumulated on social media for training deep-learning models to detect rare megafauna species in the field. We trained convolutional neural networks (CNNs) with social media images and tested them on images collected from field surveys. We applied our method to aerial video surveys of dugongs (Dugong dugon) in New Caledonia (southwestern Pacific). CNNs trained with 1303 social media images yielded 25% false positives and 38% false negatives when tested on independent field video surveys. Incorporating a small number of images from New Caledonia (equivalent to 12% of social media images) in the training data set resulted in a nearly 50% decrease in false negatives. Our results highlight how and the extent to which images collected on social media can offer a solid basis for training deep-learning models for rare megafauna detection and that the incorporation of a few images from the study site further boosts detection accuracy. Our method provides a new generation of deep-learning models that can be used to rapidly and accurately process field video surveys for the monitoring of rare megafauna.
Collapse
Affiliation(s)
- Laura Mannocci
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRDMontpellierFrance
- ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle Calédonie, CNRS, Ifremer), Laboratoire Excellence LABEX CorailCentre IRD NouméaNouméaNew Caledonia
- LIRMM, Univ MontpellierCNRSMontpellierFrance
| | - Sébastien Villon
- ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle Calédonie, CNRS, Ifremer), Laboratoire Excellence LABEX CorailCentre IRD NouméaNouméaNew Caledonia
| | - Marc Chaumont
- LIRMM, Univ MontpellierCNRSMontpellierFrance
- University of NîmesNîmesFrance
| | - Nacim Guellati
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRDMontpellierFrance
| | - Nicolas Mouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRDMontpellierFrance
- FRB – CESABMontpellierFrance
| | - Corina Iovan
- ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle Calédonie, CNRS, Ifremer), Laboratoire Excellence LABEX CorailCentre IRD NouméaNouméaNew Caledonia
| | - Laurent Vigliola
- ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle Calédonie, CNRS, Ifremer), Laboratoire Excellence LABEX CorailCentre IRD NouméaNouméaNew Caledonia
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRDMontpellierFrance
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
16
|
Di Minin E, Correia RA, Toivonen T. Quantitative conservation geography. Trends Ecol Evol 2021; 37:42-52. [PMID: 34526226 DOI: 10.1016/j.tree.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022]
Abstract
Ongoing biodiversity loss represents the erosion of intrinsic value of living nature, reduces the contributions nature provides to people, and undermines efforts to move towards sustainability. We propose the recognition of quantitative conservation geography as a subfield of conservation science that studies where, when, and what conservation actions could be implemented in order to mitigate threats and promote sustainable people-nature interactions. We outline relevant methods and data needed in quantitative conservation geography. We also discuss the importance of filling information gaps, for example by using emerging technologies and digital data sources, for the further advancement of this subfield. Quantitative conservation geography can help inform the implementation of national and international conservation actions and policy to help stem the global biodiversity crisis.
Collapse
Affiliation(s)
- Enrico Di Minin
- Department of Geosciences and Geography, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, FI-00014 Helsinki, Finland; School of Life Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| | - Ricardo A Correia
- Department of Geosciences and Geography, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, FI-00014 Helsinki, Finland; DBIO & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Tuuli Toivonen
- Department of Geosciences and Geography, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
17
|
Integrating Literature, Biodiversity Databases, and Citizen-Science to Reconstruct the Checklist of Chondrichthyans in Cyprus (Eastern Mediterranean Sea). FISHES 2021. [DOI: 10.3390/fishes6030024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chondrichthyans are apex predators influencing the trophic web through a top-down process thus their depletion will affect the remaining biota. Notwithstanding that, research on chondrichthyans is sparse or data-limited in several biogeographic areas worldwide, including the Levantine Sea. We revise and update the knowledge of chondrichthyans in Cyprus based on a bibliographic review that gains information retrieved from peer-reviewed and grey literature, Global Biodiversity Information Facility (135 records of at least 18 species) and the Ocean Biodiversity Information System (65 records of at least14 species), and the citizen science project Mediterranean Elasmobranchs Citizen Observations (117 records per 23 species). Our updated checklist reports 60 species that account for about 70% of the Mediterranean chondrichthyan biota. The list includes 15 more species than the previous checklist and our study reports three new species for Cyprus waters, namely the blackmouth catshark Dalatias licha, the round fantail stingray Taeniurops grabatus, and the sawback angelshark Squatina aculeata. Our research highlights the need for conservation measures and more studies regarding the highly threatened blackchin guitarfish Glaucostegus cemiculus and the devil ray Mobula mobular, and stresses the importance for training a new generation of observers to strengthen the knowledge and conservation of elasmobranchs in the region.
Collapse
|
18
|
Sousa R, Halabowski D, Labecka AM, Douda K, Aksenova O, Bespalaya Y, Bolotov I, Geist J, Jones HA, Konopleva E, Klunzinger MW, Lasso CA, Lewin I, Liu X, Lopes-Lima M, Mageroy J, Mlambo M, Nakamura K, Nakano M, Österling M, Pfeiffer J, Prié V, Paschoal LRP, Riccardi N, Santos R, Shumka S, Smith AK, Son MO, Teixeira A, Thielen F, Torres S, Varandas S, Vikhrev IV, Wu X, Zieritz A, Nogueira JG. The role of anthropogenic habitats in freshwater mussel conservation. GLOBAL CHANGE BIOLOGY 2021; 27:2298-2314. [PMID: 33739622 DOI: 10.1111/gcb.15549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic freshwater habitats may provide undervalued prospects for long-term conservation as part of species conservation planning. This fundamental, but overlooked, issue requires attention considering the pace that humans have been altering natural freshwater ecosystems and the accelerated levels of biodiversity decline in recent decades. We compiled 709 records of freshwater mussels (Bivalvia, Unionida) inhabiting a broad variety of anthropogenic habitat types (from small ponds to large reservoirs and canals) and reviewed their importance as refuges for this faunal group. Most records came from Europe and North America, with a clear dominance of canals and reservoirs. The dataset covered 228 species, including 34 threatened species on the IUCN Red List. We discuss the conservation importance and provide guidance on how these anthropogenic habitats could be managed to provide optimal conservation value to freshwater mussels. This review also shows that some of these habitats may function as ecological traps owing to conflicting management practices or because they act as a sink for some populations. Therefore, anthropogenic habitats should not be seen as a panacea to resolve conservation problems. More information is necessary to better understand the trade-offs between human use and the conservation of freshwater mussels (and other biota) within anthropogenic habitats, given the low number of quantitative studies and the strong biogeographic knowledge bias that persists.
Collapse
Affiliation(s)
- Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Dariusz Halabowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Anna M Labecka
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Karel Douda
- Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Olga Aksenova
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Yulia Bespalaya
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Ivan Bolotov
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Juergen Geist
- Aquatic Systems Biology Unit, Technical University of Munich, Freising, Germany
| | - Hugh A Jones
- Environment, Energy and Science, NSW Department of Planning, Industry and Environment, Parramatta, NSW, Australia
| | - Ekaterina Konopleva
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Michael W Klunzinger
- Australian Rivers Institute, Griffith University, Nathan, Qld, Australia
- Department of Aquatic Zoology, Western Australian Museum, Welshpool, WA, Australia
| | - Carlos A Lasso
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Programa Ciencias Biodiversidad, Línea Gestión de Recursos Hidrobiológicos, Bogotá, Colombia
| | - Iga Lewin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Xiongjun Liu
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Manuel Lopes-Lima
- CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Jon Mageroy
- Norwegian Institute of Nature Research, Oslo, Norway
| | - Musa Mlambo
- Department of Freshwater Invertebrates, Albany Museum, Makhanda (Grahamstow), South Africa
- Department of Zoology and Entomology, Rhodes University, Makhanda (Grahamstown), South Africa
| | - Keiko Nakamura
- Environmental Service Department, Sociedad Aragonesa de Gestión Agroambiental (SARGA), Zaragoza, Spain
- "Cavanilles" Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Mitsunori Nakano
- Department of Environmental Horticulture, Minami Kyushu University, Miyazaki, Japan
| | - Martin Österling
- Department of Environmental and Life Sciences - Biology, Karlstad University, Karlstad, Sweden
| | - John Pfeiffer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Vincent Prié
- Institut de Systématique, Évolution, Biodiversité ISYEB - Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | | | | | - Rogério Santos
- EcoBiv - Ecology and Conservation of Freshwater Mussel Group, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Spase Shumka
- Faculty of Biotechnology and Food, Agricultural University of Tirana, Tirana, Albania
| | - Allan K Smith
- Pacific Northwest Native Freshwater Mussel Workgroup, Hillsboro, OR, USA
| | - Mikhail O Son
- Institute of Marine Biology, National Academy of Sciences of Ukraine, Odessa, Ukraine
| | - Amílcar Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Frankie Thielen
- natur and ëmwelt/Fondation Hëllef fir d'Natur, Heinerscheid, Luxembourg
| | - Santiago Torres
- Centro de Investigaciones y Transferencia (CONICET, UNPA, UTN), Unidad Académica San Julián, Santa Cruz, Argentina
| | - Simone Varandas
- CITAB-UTAD - Centre for Research and Technology of Agro-Environment and Biological Sciences, Forestry Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ilya V Vikhrev
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of Russian Academy of Sciences, Arkhangelsk, Russian Federation
| | - Xiaoping Wu
- School of Life Sciences, Nanchang University, Nanchang, China
| | | | - Joana G Nogueira
- CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| |
Collapse
|