1
|
Julou T, Gervais T, de Groot D, van Nimwegen E. Growth rate controls the sensitivity of gene regulatory circuits. SCIENCE ADVANCES 2025; 11:eadu9279. [PMID: 40279435 PMCID: PMC12024649 DOI: 10.1126/sciadv.adu9279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/20/2025] [Indexed: 04/27/2025]
Abstract
Microbes adapt to their environments using gene regulatory switches that sense environmental signals and induce target genes in response. Mathematical modeling predicts that, because growth rate sets the intracellular dilution rate, the sensitivity of regulatory switches to chemical cues systematically decreases with growth rate. We experimentally validate that the concentration of inducer required to activate E. coli's lac operon increases quadratically with growth rate when varying nutrients but is invariant when varying growth rate through translation inhibition. We further establish that this growth-coupled sensitivity (GCS) allows bacteria to implement concentration-dependent sugar preferences, in which a new carbon source is used only if its concentration is sufficient to improve upon the current growth rate. Using microfluidics in combination with time-lapse microscopy, we validate this prediction at the single-cell level using mixtures of glucose and lactose. Overall, GCS causes cells to automatically become more sensitive to environmental signals when their growth rate decreases.
Collapse
Affiliation(s)
| | | | - Daan de Groot
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Erik van Nimwegen
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
2
|
Walker RM, Sanabria VC, Youk H. Microbial life in slow and stopped lanes. Trends Microbiol 2024; 32:650-662. [PMID: 38123400 PMCID: PMC11187706 DOI: 10.1016/j.tim.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Microbes in nature often lack nutrients and face extreme or widely fluctuating temperatures, unlike microbes in growth-optimized settings in laboratories that much of the literature examines. Slowed or suspended lives are the norm for microbes. Studying them is important for understanding the consequences of climate change and for addressing fundamental questions about life: are there limits to how slowly a cell's life can progress, and how long cells can remain viable without self-replicating? Recent studies began addressing these questions with single-cell-level measurements and mathematical models. Emerging principles that govern slowed or suspended lives of cells - including lives of dormant spores and microbes at extreme temperatures - are re-defining discrete cellular states as continuums and revealing intracellular dynamics at new timescales. Nearly inactive, lifeless-appearing microbes are transforming our understanding of life.
Collapse
Affiliation(s)
- Rachel M Walker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Valeria C Sanabria
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hyun Youk
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Micali G, Hockenberry AM, Dal Co A, Ackermann M. Minorities drive growth resumption in cross-feeding microbial communities. Proc Natl Acad Sci U S A 2023; 120:e2301398120. [PMID: 37903278 PMCID: PMC10636363 DOI: 10.1073/pnas.2301398120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Microbial communities are fundamental to life on Earth. Different strains within these communities are often connected by a highly connected metabolic network, where the growth of one strain depends on the metabolic activities of other community members. While distributed metabolic functions allow microbes to reduce costs and optimize metabolic pathways, they make them metabolically dependent. Here, we hypothesize that such dependencies can be detrimental in situations where the external conditions change rapidly, as they often do in natural environments. After a shift in external conditions, microbes need to remodel their metabolism, but they can only resume growth once partners on which they depend have also adapted to the new conditions. It is currently not well understood how microbial communities resolve this dilemma and how metabolic interactions are reestablished after an environmental shift. To address this question, we investigated the dynamical responses to environmental perturbation by microbial consortia with distributed anabolic functions. By measuring the regrowth times at the single-cell level in spatially structured communities, we found that metabolic dependencies lead to a growth delay after an environmental shift. However, a minority of cells-those in the immediate neighborhood of their metabolic partners-can regrow quickly and come to numerically dominate the community after the shift. The spatial arrangement of a microbial community is thus a key factor in determining the communities' ability to maintain metabolic interactions and growth in fluctuating conditions. Our results suggest that environmental fluctuations can limit the emergence of metabolic dependencies between microorganisms.
Collapse
Affiliation(s)
- Gabriele Micali
- Department of Environmental Systems Science, ETH Zürich, Zurich8092, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf8600, Switzerland
| | - Alyson M. Hockenberry
- Department of Environmental Systems Science, ETH Zürich, Zurich8092, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf8600, Switzerland
| | - Alma Dal Co
- Department of Environmental Systems Science, ETH Zürich, Zurich8092, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf8600, Switzerland
| | - Martin Ackermann
- Department of Environmental Systems Science, ETH Zürich, Zurich8092, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf8600, Switzerland
| |
Collapse
|
4
|
Abstract
Microbes in the wild face highly variable and unpredictable environments and are naturally selected for their average growth rate across environments. Apart from using sensory regulatory systems to adapt in a targeted manner to changing environments, microbes employ bet-hedging strategies where cells in an isogenic population switch stochastically between alternative phenotypes. Yet, bet-hedging suffers from a fundamental trade-off: Increasing the phenotype-switching rate increases the rate at which maladapted cells explore alternative phenotypes but also increases the rate at which cells switch out of a well-adapted state. Consequently, it is currently believed that bet-hedging strategies are effective only when the number of possible phenotypes is limited and when environments last for sufficiently many generations. However, recent experimental results show that gene expression noise generally decreases with growth rate, suggesting that phenotype-switching rates may systematically decrease with growth rate. Such growth rate dependent stability (GRDS) causes cells to be more explorative when maladapted and more phenotypically stable when well-adapted, and we show that GRDS can almost completely overcome the trade-off that limits bet-hedging, allowing for effective adaptation even when environments are diverse and change rapidly. We further show that even a small decrease in switching rates of faster-growing phenotypes can substantially increase long-term fitness of bet-hedging strategies. Together, our results suggest that stochastic strategies may play an even bigger role for microbial adaptation than hitherto appreciated.
Collapse
|
5
|
Alnahhas RN, Dunlop MJ. Advances in linking single-cell bacterial stress response to population-level survival. Curr Opin Biotechnol 2023; 79:102885. [PMID: 36641904 PMCID: PMC9899315 DOI: 10.1016/j.copbio.2022.102885] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 01/14/2023]
Abstract
Stress response mechanisms can allow bacteria to survive a myriad of challenges, including nutrient changes, antibiotic encounters, and antagonistic interactions with other microbes. Expression of these stress response pathways, in addition to other cell features such as growth rate and metabolic state, can be heterogeneous across cells and over time. Collectively, these single-cell-level phenotypes contribute to an overall population-level response to stress. These include diversifying actions, which can be used to enable bet-hedging, and coordinated actions, such as biofilm production, horizontal gene transfer, and cross-feeding. Here, we highlight recent results and emerging technologies focused on both single-cell and population-level responses to stressors, and we draw connections about the combined impact of these effects on survival of bacterial communities.
Collapse
Affiliation(s)
- Razan N Alnahhas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States; Biological Design Center, Boston University, Boston, MA 02215, United States
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States; Biological Design Center, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
6
|
Gesztesi J, Broddrick JT, Lannin T, Lee JA. The chemical neighborhood of cells in a diffusion-limited system. Front Microbiol 2023; 14:1155726. [PMID: 37143535 PMCID: PMC10151505 DOI: 10.3389/fmicb.2023.1155726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Microorganisms follow us everywhere, and they will be essential to sustaining long-term human space exploration through applications such as vitamin synthesis, biomining, and more. Establishing a sustainable presence in space therefore requires that we better understand how stress due to the altered physical conditions of spaceflight affects our companion organisms. In microgravity environments such as orbital space stations, microorganisms likely experience the change in gravity primarily through changes in fluid mixing processes. Without sedimentation and density-driven convection, diffusion becomes the primary process governing the movement of growth substrates and wastes for microbial cells in suspension culture. Non-motile cells might therefore develop a substrate-deficient "zone of depletion" and experience stress due to starvation and/or waste build-up. This would in turn impact the concentration-dependent uptake rate of growth substrates and could be the cause of the altered growth rates previously observed in microorganisms in spaceflight and in ground-simulated microgravity. To better understand the extent of these concentration differences and their potential influence on substrate uptake rates, we used both an analytical solution and finite difference method to visualize concentration fields around individual cells. We modeled diffusion, using Fick's Second Law, and nutrient uptake, using Michaelis-Menten kinetics, and assessed how that distribution varies in systems with multiple cells and varied geometries. We determined the radius of the zone of depletion, within which cells had reduced the substrate concentration by 10%, to be 5.04 mm for an individual Escherichia coli cell in the conditions we simulated. However, we saw a synergistic effect with multiple cells near each other: multiple cells in close proximity decreased the surrounding concentration by almost 95% from the initial substrate concentration. Our calculations provide researchers an inside look at suspension culture behavior in the diffusion-limited environment of microgravity at the scale of individual cells.
Collapse
Affiliation(s)
- Juliana Gesztesi
- NASA Ames Research Center, Universities Space Research Association, Moffett Field, CA, United States
- College of Engineering, Northeastern University, Boston, MA, United States
| | - Jared T. Broddrick
- NASA Ames Research Center, Space Biosciences Research Branch, Moffett Field, CA, United States
| | - Timothy Lannin
- College of Engineering, Northeastern University, Boston, MA, United States
| | - Jessica A. Lee
- NASA Ames Research Center, Space Biosciences Research Branch, Moffett Field, CA, United States
- *Correspondence: Jessica A. Lee,
| |
Collapse
|
7
|
Abstract
The ability of bacteria to respond to changes in their environment is critical to their survival, allowing them to withstand stress, form complex communities, and induce virulence responses during host infection. A remarkable feature of many of these bacterial responses is that they are often variable across individual cells, despite occurring in an isogenic population exposed to a homogeneous environmental change, a phenomenon known as phenotypic heterogeneity. Phenotypic heterogeneity can enable bet-hedging or division of labor strategies that allow bacteria to survive fluctuating conditions. Investigating the significance of phenotypic heterogeneity in environmental transitions requires dynamic, single-cell data. Technical advances in quantitative single-cell measurements, imaging, and microfluidics have led to a surge of publications on this topic. Here, we review recent discoveries on single-cell bacterial responses to environmental transitions of various origins and complexities, from simple diauxic shifts to community behaviors in biofilm formation to virulence regulation during infection. We describe how these studies firmly establish that this form of heterogeneity is prevalent and a conserved mechanism by which bacteria cope with fluctuating conditions. We end with an outline of current challenges and future directions for the field. While it remains challenging to predict how an individual bacterium will respond to a given environmental input, we anticipate that capturing the dynamics of the process will begin to resolve this and facilitate rational perturbation of environmental responses for therapeutic and bioengineering purposes.
Collapse
|
8
|
Ardré M, Doulcier G, Brenner N, Rainey PB. A leader cell triggers end of lag phase in populations of Pseudomonas fluorescens. MICROLIFE 2022; 3:uqac022. [PMID: 37223352 PMCID: PMC10117806 DOI: 10.1093/femsml/uqac022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 05/25/2023]
Abstract
The relationship between the number of cells colonizing a new environment and time for resumption of growth is a subject of long-standing interest. In microbiology this is known as the "inoculum effect." Its mechanistic basis is unclear with possible explanations ranging from the independent actions of individual cells, to collective actions of populations of cells. Here, we use a millifluidic droplet device in which the growth dynamics of hundreds of populations founded by controlled numbers of Pseudomonas fluorescens cells, ranging from a single cell, to one thousand cells, were followed in real time. Our data show that lag phase decreases with inoculum size. The decrease of average lag time and its variance across droplets, as well as lag time distribution shapes, follow predictions of extreme value theory, where the inoculum lag time is determined by the minimum value sampled from the single-cell distribution. Our experimental results show that exit from lag phase depends on strong interactions among cells, consistent with a "leader cell" triggering end of lag phase for the entire population.
Collapse
Affiliation(s)
- Maxime Ardré
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Guilhem Doulcier
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Naama Brenner
- Network Biology Research Laboratories, and Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Paul B Rainey
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
9
|
Allard P, Papazotos F, Potvin-Trottier L. Microfluidics for long-term single-cell time-lapse microscopy: Advances and applications. Front Bioeng Biotechnol 2022; 10:968342. [PMID: 36312536 PMCID: PMC9597311 DOI: 10.3389/fbioe.2022.968342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cells are inherently dynamic, whether they are responding to environmental conditions or simply at equilibrium, with biomolecules constantly being made and destroyed. Due to their small volumes, the chemical reactions inside cells are stochastic, such that genetically identical cells display heterogeneous behaviors and gene expression profiles. Studying these dynamic processes is challenging, but the development of microfluidic methods enabling the tracking of individual prokaryotic cells with microscopy over long time periods under controlled growth conditions has led to many discoveries. This review focuses on the recent developments of one such microfluidic device nicknamed the mother machine. We overview the original device design, experimental setup, and challenges associated with this platform. We then describe recent methods for analyzing experiments using automated image segmentation and tracking. We further discuss modifications to the experimental setup that allow for time-varying environmental control, replicating batch culture conditions, cell screening based on their dynamic behaviors, and to accommodate a variety of microbial species. Finally, this review highlights the discoveries enabled by this technology in diverse fields, such as cell-size control, genetic mutations, cellular aging, and synthetic biology.
Collapse
Affiliation(s)
- Paige Allard
- Department of Biology, Concordia University, Montréal, QC, Canada
| | - Fotini Papazotos
- Department of Biology, Concordia University, Montréal, QC, Canada
| | - Laurent Potvin-Trottier
- Department of Biology, Concordia University, Montréal, QC, Canada
- Department of Physics, Concordia University, Montréal, QC, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC, Canada
- *Correspondence: Laurent Potvin-Trottier,
| |
Collapse
|
10
|
Yamauchi S, Nozoe T, Okura R, Kussell E, Wakamoto Y. A unified framework for measuring selection on cellular lineages and traits. eLife 2022; 11:72299. [PMID: 36472074 PMCID: PMC9725751 DOI: 10.7554/elife.72299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/28/2022] [Indexed: 12/12/2022] Open
Abstract
Intracellular states probed by gene expression profiles and metabolic activities are intrinsically noisy, causing phenotypic variations among cellular lineages. Understanding the adaptive and evolutionary roles of such variations requires clarifying their linkage to population growth rates. Extending a cell lineage statistics framework, here we show that a population's growth rate can be expanded by the cumulants of a fitness landscape that characterize how fitness distributes in a population. The expansion enables quantifying the contribution of each cumulant, such as variance and skewness, to population growth. We introduce a function that contains all the essential information of cell lineage statistics, including mean lineage fitness and selection strength. We reveal a relation between fitness heterogeneity and population growth rate response to perturbation. We apply the framework to experimental cell lineage data from bacteria to mammalian cells, revealing distinct levels of growth rate gain from fitness heterogeneity across environments and organisms. Furthermore, third or higher order cumulants' contributions are negligible under constant growth conditions but could be significant in regrowing processes from growth-arrested conditions. We identify cellular populations in which selection leads to an increase of fitness variance among lineages in retrospective statistics compared to chronological statistics. The framework assumes no particular growth models or environmental conditions, and is thus applicable to various biological phenomena for which phenotypic heterogeneity and cellular proliferation are important.
Collapse
Affiliation(s)
- Shunpei Yamauchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
| | - Takashi Nozoe
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
| | - Reiko Okura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
| | - Edo Kussell
- Department of Biology, New York UniversityNew YorkUnited States,Department of Physics, New York UniversityNew YorkUnited States
| | - Yuichi Wakamoto
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoTokyoJapan,Research Center for Complex Systems Biology, The University of TokyoTokyoJapan,Universal Biology Institute, The University of TokyoTokyoJapan
| |
Collapse
|