1
|
Santaquiteria A, Miller EC, Rosas-Puchuri U, Pedraza-Marrón CDR, Troyer EM, Westneat MW, Carnevale G, Arcila D, Betancur-R R. Colonization Dynamics Explain the Decoupling of Species Richness and Morphological Disparity in Syngnatharian Fishes across Oceans. Am Nat 2025; 205:E80-E99. [PMID: 39965231 DOI: 10.1086/733931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
AbstractA clear longitudinal gradient in species richness across oceans is observed in extant marine fishes, with the Indo-Pacific exhibiting the greatest diversity. Three non-mutually-exclusive evolutionary hypotheses have been proposed to explain this diversity gradient: time for speciation, center of accumulation, and in situ diversification rates. Using the morphologically disparate syngnatharians (seahorses, dragonets, goatfishes, and relatives) as a study system, we tested these hypotheses and additionally assessed whether patterns of morphological diversity are congruent with species richness patterns. We used well-sampled phylogenies and a suite of phylogenetic comparative methods (including a novel phylogenetically corrected Kruskal-Wallis test) that account for various sources of uncertainty to estimate rates of lineage diversification and morphological disparity within all three major oceanic realms (Indo-Pacific, Atlantic, and eastern Pacific), as well as within the Indo-Pacific region. We find similar lineage diversification rates across regions, indicating that increased syngnatharian diversity in the Indo-Pacific is due to earlier colonizations from the Tethys Sea followed by in situ speciation and more frequent colonizations during the Miocene coinciding with the formation of coral reefs. These results support both time for speciation and center of accumulation hypotheses. Unlike species richness unevenness, shape disparity and evolutionary rates are similar across oceans because of the early origin of major body plans and their subsequent spread via colonization rather than in situ evolution. Our results illustrate how species richness patterns became decoupled from morphological disparity patterns during the formation of a major biodiversity hot spot.
Collapse
|
2
|
Burns MD, Friedman ST, Corn KA, Larouche O, Price SA, Wainwright PC, Burress ED. High-latitude ocean habitats are a crucible of fish body shape diversification. Evol Lett 2024; 8:669-679. [PMID: 39328290 PMCID: PMC11424081 DOI: 10.1093/evlett/qrae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 09/28/2024] Open
Abstract
A decline in diversity from the equator to the poles is a common feature of Earth's biodiversity. Here, we examine body shape diversity in marine fishes across latitudes and explore the role of time and evolutionary rate in explaining the diversity gradient. Marine fishes' occupation of upper latitude environments has increased substantially over the last 80 million years. Fishes in the highest latitudes exhibit twice the rate of body shape evolution and one and a third times the disparity compared to equatorial latitudes. The faster evolution of body shape may be a response to increased ecological opportunity in polar and subpolar oceans due to (1) the evolution of antifreeze proteins allowing certain lineages to invade regions of cold water, (2) environmental disturbances driven by cyclical warming and cooling in high latitudes, and (3) rapid transitions across depth gradients. Our results add to growing evidence that evolutionary rates are often faster at temperate, not tropical, latitudes.
Collapse
Affiliation(s)
- Michael D Burns
- Department of Evolution & Ecology, University of California, Davis, Davis, CA, United States
| | - Sarah T Friedman
- Department of Evolution & Ecology, University of California, Davis, Davis, CA, United States
| | - Katherine A Corn
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, United States
| | - Olivier Larouche
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Samantha A Price
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Peter C Wainwright
- Department of Evolution & Ecology, University of California, Davis, Davis, CA, United States
| | - Edward D Burress
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
3
|
Drury JP, Clavel J, Tobias JA, Rolland J, Sheard C, Morlon H. Limited ecological opportunity influences the tempo of morphological evolution in birds. Curr Biol 2024; 34:661-669.e4. [PMID: 38218182 DOI: 10.1016/j.cub.2023.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
According to classic models of lineage diversification and adaptive radiation, phenotypic evolution should accelerate in the context of ecological opportunity and slow down when niches become saturated.1,2 However, only weak support for these ideas has been found in nature, perhaps because most analyses make the biologically unrealistic assumption that clade members contribute equally to reducing ecological opportunity, even when they occur in different continents or specialize on different habitats and diets. To view this problem through a different lens, we adapted a new phylogenetic modeling approach that accounts for the fact that competition for ecological opportunity only occurs between species that coexist and share similar habitats and diets. Applying this method to trait data for nearly all extant species of landbirds,3 we find a widespread signature of decelerating trait evolution in lineages adapted to similar habitats or diets. The strength of this pattern was consistent across latitudes when comparing tropical and temperate assemblages. Our results provide little support for the idea that increased diversity and tighter packing of niches accentuates evolutionary slowdowns in the tropics and instead suggest that limited ecological opportunity can be an important factor determining the rate of morphological diversification at a global scale.
Collapse
Affiliation(s)
- Jonathan P Drury
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK.
| | - Julien Clavel
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622 Villeurbanne, France
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot SL5 7PY, UK
| | - Jonathan Rolland
- CNRS, UMR5174, Laboratoire Evolution et Diversité Biologique, Université Toulouse 3 Paul Sabatier, Bâtiment 4R1, 118 Route de Narbonne, 31062 Toulouse, France
| | - Catherine Sheard
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Hélène Morlon
- Institut de Biologie - École Normale Supérieure, Université PSL, CNRS, INSERM, 75005 Paris, France
| |
Collapse
|
4
|
Rolland J, Henao-Diaz LF, Doebeli M, Germain R, Harmon LJ, Knowles LL, Liow LH, Mank JE, Machac A, Otto SP, Pennell M, Salamin N, Silvestro D, Sugawara M, Uyeda J, Wagner CE, Schluter D. Conceptual and empirical bridges between micro- and macroevolution. Nat Ecol Evol 2023; 7:1181-1193. [PMID: 37429904 DOI: 10.1038/s41559-023-02116-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
Explaining broad molecular, phenotypic and species biodiversity patterns necessitates a unifying framework spanning multiple evolutionary scales. Here we argue that although substantial effort has been made to reconcile microevolution and macroevolution, much work remains to identify the links between biological processes at play. We highlight four major questions of evolutionary biology whose solutions require conceptual bridges between micro and macroevolution. We review potential avenues for future research to establish how mechanisms at one scale (drift, mutation, migration, selection) translate to processes at the other scale (speciation, extinction, biogeographic dispersal) and vice versa. We propose ways in which current comparative methods to infer molecular evolution, phenotypic evolution and species diversification could be improved to specifically address these questions. We conclude that researchers are in a better position than ever before to build a synthesis to understand how microevolutionary dynamics unfold over millions of years.
Collapse
Affiliation(s)
- Jonathan Rolland
- CNRS, UMR5174, Laboratoire Evolution et Diversité Biologique, Université Toulouse 3 Paul Sabatier, Toulouse, France.
| | - L Francisco Henao-Diaz
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Michael Doebeli
- Department of Zoology, and Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel Germain
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke J Harmon
- Dept. of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | | | - Judith E Mank
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antonin Machac
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Prague, Czech Republic
| | - Sarah P Otto
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt Pennell
- Departments of Quantitative and Computational Biology and Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Mauro Sugawara
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Mário Schenberg Institute, São Paulo, Brazil
| | - Josef Uyeda
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Catherine E Wagner
- Department of Botany, and Program in Ecology and Evolution, University of Wyoming, Laramie, WY, USA
| | - Dolph Schluter
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Hodge JR, Price SA. Biotic Interactions and the Future of Fishes on Coral Reefs: The Importance of Trait-Based Approaches. Integr Comp Biol 2022; 62:1734-1747. [PMID: 36138511 DOI: 10.1093/icb/icac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023] Open
Abstract
Biotic interactions govern the structure and function of coral reef ecosystems. As environmental conditions change, reef-associated fish populations can persist by tracking their preferred niche or adapting to new conditions. Biotic interactions will affect how these responses proceed and whether they are successful. Yet, our understanding of these effects is currently limited. Ecological and evolutionary theories make explicit predictions about the effects of biotic interactions, but many remain untested. Here, we argue that large-scale functional trait datasets enable us to investigate how biotic interactions have shaped the assembly of contemporary reef fish communities and the evolution of species within them, thus improving our ability to predict future changes. Importantly, the effects of biotic interactions on these processes have occurred simultaneously within dynamic environments. Functional traits provide a means to integrate the effects of both ecological and evolutionary processes, as well as a way to overcome some of the challenges of studying biotic interactions. Moreover, functional trait data can enhance predictive modeling of future reef fish distributions and evolvability. We hope that our vision for an integrative approach, focused on quantifying functionally relevant traits and how they mediate biotic interactions in different environmental contexts, will catalyze new research on the future of reef fishes in a changing environment.
Collapse
Affiliation(s)
- Jennifer R Hodge
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Samantha A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
6
|
Martin BS, Bradburd GS, Harmon LJ, Weber MG. Modeling the Evolution of Rates of Continuous Trait Evolution. Syst Biol 2022:6830631. [PMID: 36380474 DOI: 10.1093/sysbio/syac068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Rates of phenotypic evolution vary markedly across the tree of life, from the accelerated evolution apparent in adaptive radiations to the remarkable evolutionary stasis exhibited by so-called "living fossils". Such rate variation has important consequences for large-scale evolutionary dynamics, generating vast disparities in phenotypic diversity across space, time, and taxa. Despite this, most methods for estimating trait evolution rates assume rates vary deterministically with respect to some variable of interest or change infrequently during a clade's history. These assumptions may cause underfitting of trait evolution models and mislead hypothesis testing. Here, we develop a new trait evolution model that allows rates to vary gradually and stochastically across a clade. Further, we extend this model to accommodate generally decreasing or increasing rates over time, allowing for flexible modeling of "early/late bursts" of trait evolution. We implement a Bayesian method, termed "evolving rates" (evorates for short), to efficiently fit this model to comparative data. Through simulation, we demonstrate that evorates can reliably infer both how and in which lineages trait evolution rates varied during a clade's history. We apply this method to body size evolution in cetaceans, recovering substantial support for an overall slowdown in body size evolution over time with recent bursts among some oceanic dolphins and relative stasis among beaked whales of the genus Mesoplodon. These results unify and expand on previous research, demonstrating the empirical utility of evorates.
Collapse
Affiliation(s)
- B S Martin
- Department of Plant Biology, Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - G S Bradburd
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - L J Harmon
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83843, USA
| | - M G Weber
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Tobias JA. A bird in the hand: Global-scale morphological trait datasets open new frontiers of ecology, evolution and ecosystem science. Ecol Lett 2022; 25:573-580. [PMID: 35199920 DOI: 10.1111/ele.13960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
8
|
Abstract
An influential hypothesis proposes that the tempo of evolution is faster in the tropics. Emerging evidence, including a study in this issue of PLOS Biology, challenges this view, raising new questions about the causes of Earth’s iconic latitudinal diversity gradient (LDG).
Collapse
Affiliation(s)
- Daniel L. Rabosky
- Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|