1
|
Yanase R, Zeeshan M, Ferguson DJ, Markus R, Brady D, Bottrill AR, Holder AA, Guttery DS, Tewari R. Divergent Plasmodium kinases drive MTOC, kinetochore and axoneme organisation in male gametogenesis. Life Sci Alliance 2025; 8:e202403056. [PMID: 40127922 PMCID: PMC11933671 DOI: 10.26508/lsa.202403056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Sexual development and male gamete formation of the malaria parasite in the mosquito midgut are initiated by rapid endomitosis in the activated male gametocyte. This process is highly regulated by protein phosphorylation, specifically by three divergent male-specific protein kinases (PKs): CDPK4, SRPK1, and MAP2. Here, we localise each PK during male gamete formation using live-cell imaging, identify their putative interacting partners by immunoprecipitation, and determine the morphological consequences of their absence using ultrastructure expansion and transmission electron microscopy. Each PK has a distinct location in either the nuclear or the cytoplasmic compartment. Protein interaction studies revealed that CDPK4 and MAP2 interact with key drivers of rapid DNA replication, whereas SRPK1 is involved in RNA translation. The absence of each PK results in severe defects in either microtubule-organising centre organisation, kinetochore segregation, or axoneme formation. This study reveals the crucial role of these PKs during endomitosis in formation of the flagellated male gamete and uncovers some of their interacting partners that may drive this process.
Collapse
Affiliation(s)
- Ryuji Yanase
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - David Jp Ferguson
- Nuffield Department of Clinical Laboratory Sciences and John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Robert Markus
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Declan Brady
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andrew R Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK
| | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, UK
| | - David S Guttery
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Zeeshan M, Blatov I, Yanase R, Ferguson DJP, Pashley SL, Chahine Z, Yamaryo-Botté Y, Mishra A, Marche B, Bhanvadia S, Hair M, Batra S, Markus R, Brady D, Bottrill AR, Vaughan S, Botté CY, Le Roch KG, Holder AA, Tromer E, Tewari R. A novel SUN1-ALLAN complex coordinates segregation of the bipartite MTOC across the nuclear envelope during rapid closed mitosis in Plasmodium berghei. eLife 2025; 14:RP106537. [PMID: 40392232 PMCID: PMC12092005 DOI: 10.7554/elife.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
Mitosis in eukaryotes involves reorganisation of the nuclear envelope (NE) and microtubule-organising centres (MTOCs). During male gametogenesis in Plasmodium, the causative agent of malaria, mitosis is exceptionally rapid and highly divergent. Within 8 min, the haploid male gametocyte genome undergoes three replication cycles (1N to 8N), while maintaining an intact NE. Axonemes assemble in the cytoplasm and connect to a bipartite MTOC-containing nuclear pole (NP) and cytoplasmic basal body, producing eight flagellated gametes. The mechanisms coordinating NE remodelling, MTOC dynamics, and flagellum assembly remain poorly understood. We identify the SUN1-ALLAN complex as a novel mediator of NE remodelling and bipartite MTOC coordination during Plasmodium berghei male gametogenesis. SUN1, a conserved NE protein, localises to dynamic loops and focal points at the nucleoplasmic face of the spindle poles. ALLAN, a divergent allantoicase, has a location like that of SUN1, and these proteins form a unique complex, detected by live-cell imaging, ultrastructural expansion microscopy, and interactomics. Deletion of either SUN1 or ALLAN genes disrupts nuclear MTOC organisation, leading to basal body mis-segregation, defective spindle assembly, and impaired spindle microtubule-kinetochore attachment, but axoneme formation remains intact. Ultrastructural analysis revealed nuclear and cytoplasmic MTOC miscoordination, producing aberrant flagellated gametes lacking nuclear material. These defects block development in the mosquito and parasite transmission, highlighting the essential functions of this complex.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Igor Blatov
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Ryuji Yanase
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - David JP Ferguson
- Oxford Brookes University, Department of Biological and Medical SciencesOxfordUnited Kingdom
| | - Sarah L Pashley
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble AlpesGrenobleFrance
| | - Akancha Mishra
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Baptiste Marche
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Suhani Bhanvadia
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Molly Hair
- Oxford Brookes University, Department of Biological and Medical SciencesOxfordUnited Kingdom
| | - Sagar Batra
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Robert Markus
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Declan Brady
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| | - Andrew R Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of WarwickCoventryUnited Kingdom
| | - Sue Vaughan
- Oxford Brookes University, Department of Biological and Medical SciencesOxfordUnited Kingdom
| | - Cyrille Y Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble AlpesGrenobleFrance
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Eelco Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of GroningenGroningenNetherlands
| | - Rita Tewari
- University of Nottingham, School of Life SciencesNottinghamUnited Kingdom
| |
Collapse
|
3
|
Zeeshan M, Blatov I, Yanase R, Ferguson DJP, Pashley SL, Chahine Z, Botté YY, Mishra A, Marché B, Bhanvadia S, Hair M, Batra S, Markus R, Brady D, Bottrill A, Vaughan S, Botté CY, Le Roch K, Holder AA, Tromer EC, Tewari R. A novel SUN1-ALLAN complex coordinates segregation of the bipartite MTOC across the nuclear envelope during rapid closed mitosis in Plasmodium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.04.625416. [PMID: 39677758 PMCID: PMC11642927 DOI: 10.1101/2024.12.04.625416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Mitosis in eukaryotes involves reorganization of the nuclear envelope (NE) and microtubule-organizing centres (MTOCs). During male gametogenesis in Plasmodium, the causative agent of malaria, mitosis is exceptionally rapid and highly divergent. Within 8 min, the haploid male gametocyte genome undergoes three replication cycles (1N to 8N), while maintaining an intact NE. Axonemes assemble in the cytoplasm and connect to a bipartite MTOC-containing nuclear pole (NP) and cytoplasmic basal body, producing eight flagellated gametes. The mechanisms coordinating NE remodelling, MTOC dynamics, and flagellum assembly remain poorly understood. We identify the SUN1-ALLAN complex as a novel mediator of NE remodelling and bipartite MTOC coordination during Plasmodium male gametogenesis. SUN1, a conserved NE protein, localizes to dynamic loops and focal points at the nucleoplasmic face of the spindle poles. ALLAN, a divergent allantoicase, has a location like that of SUN1, and these proteins form a unique complex, detected by live-cell imaging, ultrastructural expansion microscopy, and interactomics. Deletion of either SUN1 or ALLAN genes disrupts nuclear MTOC organization, leading to basal body mis-segregation, defective spindle assembly, and impaired spindle microtubule-kinetochore attachment, but axoneme formation remains intact. Ultrastructural analysis revealed nuclear and cytoplasmic MTOC miscoordination, producing aberrant flagellated gametes lacking nuclear material. These defects block development in the mosquito and parasite transmission, highlighting the essential functions of this complex.
Collapse
|
4
|
Liu Y, Cheng S, He G, He D, Wang D, Wang S, Chen L, Zhu L, Feng Y, Cui L, Cao Y, Zhu X. An inner membrane complex protein IMC1g in Plasmodium berghei is involved in asexual stage schizogony and parasite transmission. mBio 2025; 16:e0265224. [PMID: 39576115 PMCID: PMC11708024 DOI: 10.1128/mbio.02652-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025] Open
Abstract
The inner membrane complex (IMC), a double-membrane organelle underneath the plasma membrane in apicomplexan parasites, plays a significant role in motility and invasion and confers shape to the cell. We characterized the function of PbIMC1g, a component of the IMC1 family member in Plasmodium berghei. PbIMC1g is recruited to the IMC in late schizonts, activated gametocytes, and ookinetes. Pairwise yeast two-hybrid assays demonstrate that PbIMC1g interacts with IMC1c, a component of the PHIL1 complex, and the core sub-repeat motif "EKI(V)V(I)EVP" in PbIMC1g is essential for this interaction. Localization of PbIMC1g to the IMC was dependent on its IMCp domain, while its C-terminus and palmitoylation sites were required for the full efficiency of proper IMC targeting. PbIMC1g is required for asexual stage development, and its conditional knockdown resulted in a defect in schizogony. Additionally, PbIMC1g was also important for male gametogenesis and ookinete development. As an IMC component that assists in anchoring the glideosome to the subpellicular network, PbIMC1g was also involved in ookinete motility and mosquito midgut invasion. IMC1g from the human parasite Plasmodium vivax could functionally replace PbIMC1g in P. berghei, confirming the evolutionary conservation of IMC1g proteins in Plasmodium spp. Together, this work reveals an essential role of IMC1g in the parasite life cycle and suggests that IMC1 family members likely contribute to parasite gliding and invasion. IMPORTANCE The malaria parasite's inner membrane complex is critical to maintain its structural integrity and motility. Here, we identified the function of the IMC1g protein, a member of the IMC1 family, in invasive and proliferative stages of P. berghei. We found that the IMCp domain of PbIMC1g is critical for proper IMC targeting, and PbIMC1g interacts with PbIMC1c. Conditional knockdown of PbIMC1g expression affects schizogony, gametogenesis, and ookinete conversion. PbIMC1g interacts with IMC1c to firmly anchor the glideosome to the subpellicular network. Additionally, we confirmed that IMC1g is functionally conserved in Plasmodium spp. These data reveal the function of IMC1g protein in anchoring the glideosome, providing further insight into the mechanism of the glideosome function.
Collapse
Affiliation(s)
- Yinjie Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shitong Cheng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gang He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dawei He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Duo Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Sicong Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yonghui Feng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Sayers C, Pandey V, Balakrishnan A, Michie K, Svedberg D, Hunziker M, Pardo M, Choudhary J, Berntsson R, Billker O. Systematic screens for fertility genes essential for malaria parasite transmission reveal conserved aspects of sex in a divergent eukaryote. Cell Syst 2024; 15:1075-1091.e6. [PMID: 39541984 DOI: 10.1016/j.cels.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Sexual reproduction in malaria parasites is essential for their transmission to mosquitoes and offers a divergent eukaryote model to understand the evolution of sex. Through a panel of genetic screens in Plasmodium berghei, we identify 348 sex and transmission-related genes and define roles for unstudied genes as putative targets for transmission-blocking interventions. The functional data provide a deeper understanding of female metabolic reprogramming, meiosis, and the axoneme. We identify a complex of a SUN domain protein (SUN1) and a putative allantoicase (ALLC1) that is essential for male fertility by linking the microtubule organizing center to the nuclear envelope and enabling mitotic spindle formation during male gametogenesis. Both proteins have orthologs in mouse testis, and the data raise the possibility of an ancient role for atypical SUN domain proteins in coupling the nucleus and axoneme. Altogether, our data provide an unbiased picture of the molecular processes that underpin malaria parasite transmission. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Claire Sayers
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Vikash Pandey
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Arjun Balakrishnan
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Katharine Michie
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Dennis Svedberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Mirjam Hunziker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mercedes Pardo
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Jyoti Choudhary
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Ronnie Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Oliver Billker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
6
|
Liu B, Liu C, Li Z, Liu W, Cui H, Yuan J. A subpellicular microtubule dynein transport machinery regulates ookinete morphogenesis for mosquito transmission of Plasmodium yoelii. Nat Commun 2024; 15:8590. [PMID: 39366980 PMCID: PMC11452633 DOI: 10.1038/s41467-024-52970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
The cortical cytoskeleton of subpellicular microtubules (SPMTs) supports the Plasmodium ookinete morphogenesis during mosquito transmission of malaria. SPMTs are hypothesized to function as the cytoskeletal tracks in motor-driven cargo transport for apical organelle and structure assembly in ookinetes. However, the SPMT-based transport motor has not been identified in the Plasmodium. The cytoplasmic dynein is the motor moving towards the minus end of microtubules (MTs) and likely be responsible for cargo transport to the apical part in ookinetes. Here we screen 7 putative dynein heavy chain (DHC) proteins in the P. yoelii and identify DHC3 showing peripheral localization in ookinetes. DHC3 is localized at SPMTs throughout ookinete morphogenesis. We also identify five other dynein subunits localizing at SPMTs. DHC3 disruption impairs ookinete development, shape, and gliding, leading to failure in mosquito infection of Plasmodium. The DHC3-deficient ookinetes display defective formation or localization of apical organelles and structures. Rab11A and Rab11B interact with DHC3 at SPMTs in a DHC3-dependent manner, likely functioning as the receptors for the cargoes driven by SPMT-dynein. Disturbing Rab11A or Rab11B phenocopies DHC3 deficiency in ookinete morphogenesis. Our study reveals an SPMT-based dynein motor driving the transport of Rab11A- and Rab11B-labeled cargoes in the ookinete morphogenesis of Plasmodium.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Cong Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenjia Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
7
|
Zeeshan M, Rashpa R, Ferguson DJ, Mckeown G, Nugmanova R, Subudhi AK, Beyeler R, Pashley SL, Markus R, Brady D, Roques M, Bottrill AR, Fry AM, Pain A, Vaughan S, Holder AA, Tromer EC, Brochet M, Tewari R. Plasmodium NEK1 coordinates MTOC organisation and kinetochore attachment during rapid mitosis in male gamete formation. PLoS Biol 2024; 22:e3002802. [PMID: 39255311 DOI: 10.1371/journal.pbio.3002802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/20/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Mitosis is an important process in the cell cycle required for cells to divide. Never in mitosis (NIMA)-like kinases (NEKs) are regulators of mitotic functions in diverse organisms. Plasmodium spp., the causative agent of malaria is a divergent unicellular haploid eukaryote with some unusual features in terms of its mitotic and nuclear division cycle that presumably facilitate proliferation in varied environments. For example, during the sexual stage of male gametogenesis that occurs within the mosquito host, an atypical rapid closed endomitosis is observed. Three rounds of genome replication from 1N to 8N and successive cycles of multiple spindle formation and chromosome segregation occur within 8 min followed by karyokinesis to generate haploid gametes. Our previous Plasmodium berghei kinome screen identified 4 Nek genes, of which 2, NEK2 and NEK4, are required for meiosis. NEK1 is likely to be essential for mitosis in asexual blood stage schizogony in the vertebrate host, but its function during male gametogenesis is unknown. Here, we study NEK1 location and function, using live cell imaging, ultrastructure expansion microscopy (U-ExM), and electron microscopy, together with conditional gene knockdown and proteomic approaches. We report spatiotemporal NEK1 location in real-time, coordinated with microtubule organising centre (MTOC) dynamics during the unusual mitoses at various stages of the Plasmodium spp. life cycle. Knockdown studies reveal NEK1 to be an essential component of the MTOC in male cell differentiation, associated with rapid mitosis, spindle formation, and kinetochore attachment. These data suggest that P. berghei NEK1 kinase is an important component of MTOC organisation and essential regulator of chromosome segregation during male gamete formation.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| | - Ravish Rashpa
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - David J Ferguson
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, United Kingdom
- University of Oxford, John Radcliffe Hospital, Nuffield Department of Clinical Laboratory Science, Oxford, United Kingdom
| | - George Mckeown
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| | - Raushan Nugmanova
- Pathogen Genomics Group, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Amit K Subudhi
- Pathogen Genomics Group, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Raphael Beyeler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Sarah L Pashley
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| | - Robert Markus
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| | - Declan Brady
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| | - Magali Roques
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Andrew R Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Sue Vaughan
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, United Kingdom
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eelco C Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Mathieu Brochet
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Rita Tewari
- University of Nottingham, School of Life Sciences, Nottingham, United Kingdom
| |
Collapse
|
8
|
Tell I Puig A, Soldati-Favre D. Roles of the tubulin-based cytoskeleton in the Toxoplasma gondii apical complex. Trends Parasitol 2024; 40:401-415. [PMID: 38531711 DOI: 10.1016/j.pt.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.
Collapse
Affiliation(s)
- Albert Tell I Puig
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Liffner B, Absalon S. Expansion microscopy of apicomplexan parasites. Mol Microbiol 2024; 121:619-635. [PMID: 37571814 DOI: 10.1111/mmi.15135] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Apicomplexan parasites comprise significant pathogens of humans, livestock and wildlife, but also represent a diverse group of eukaryotes with interesting and unique cell biology. The study of cell biology in apicomplexan parasites is complicated by their small size, and historically this has required the application of cutting-edge microscopy techniques to investigate fundamental processes like mitosis or cell division in these organisms. Recently, a technique called expansion microscopy has been developed, which rather than increasing instrument resolution like most imaging modalities, physically expands a biological sample. In only a few years since its development, a derivative of expansion microscopy known as ultrastructure-expansion microscopy (U-ExM) has been widely adopted and proven extremely useful for studying cell biology of Apicomplexa. Here, we review the insights into apicomplexan cell biology that have been enabled through the use of U-ExM, with a specific focus on Plasmodium, Toxoplasma and Cryptosporidium. Further, we summarize emerging expansion microscopy modifications and modalities and forecast how these may influence the field of parasite cell biology in future.
Collapse
Affiliation(s)
- Benjamin Liffner
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Guttery DS, Zeeshan M, Holder AA, Tromer EC, Tewari R. Meiosis in Plasmodium: how does it work? Trends Parasitol 2023; 39:812-821. [PMID: 37541799 DOI: 10.1016/j.pt.2023.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
Meiosis is sexual cell division, a process in eukaryotes whereby haploid gametes are produced. Compared to canonical model eukaryotes, meiosis in apicomplexan parasites appears to diverge from the process with respect to the molecular mechanisms involved; the biology of Plasmodium meiosis, and its regulation by means of post-translational modification, are largely unexplored. Here, we discuss the impact of technological advances in cell biology, evolutionary bioinformatics, and genome-wide functional studies on our understanding of meiosis in the Apicomplexa. These parasites, including Plasmodium falciparum, Toxoplasma gondii, and Eimeria spp., have significant socioeconomic impact on human and animal health. Understanding this key stage during the parasite's life cycle may well reveal attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- David S Guttery
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, UK.
| | - Mohammad Zeeshan
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK
| | - Eelco C Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Rita Tewari
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
11
|
Nascimento IJDS, Cavalcanti MDAT, de Moura RO. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur J Med Chem 2023; 258:115550. [PMID: 37336067 DOI: 10.1016/j.ejmech.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Neglected tropical diseases (NTDs) constitute a group of approximately 20 infectious diseases that mainly affect the impoverished population without basic sanitation in tropical countries. These diseases are responsible for many deaths worldwide, costing billions of dollars in public health investment to treat and control these infections. Among them are the diseases caused by protozoa of the Trypanosomatid family, which constitute Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness), and Leishmaniasis. In addition, there is a classification of other diseases, called the big three, AIDS, tuberculosis, and malaria, which are endemic in countries with tropical conditions. Despite the high mortality rates, there is still a gap in the treatment. The drugs have a high incidence of side effects and protozoan resistance, justifying the investment in developing new alternatives. In fact, the Target-Based Drug Design (TBDD) approach is responsible for identifying several promising compounds, and among the targets explored through this approach, N-myristoyltransferase (NMT) stands out. It is an enzyme related to the co-translational myristoylation of N-terminal glycine in various peptides. The myristoylation process is a co-translation that occurs after removing the initiator methionine. This process regulates the assembly of protein complexes and stability, which justifies its potential as a drug target. In order to propose NMT as a potential target for parasitic diseases, this review will address the entire structure and function of this enzyme and the primary studies demonstrating its promising potential against Leishmaniasis, T. cruzi, T. brucei, and malaria. We hope our information can help researchers worldwide search for potential drugs against these diseases that have been threatening the health of the world's population.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Cesmac University Center, Pharmacy Departament, Maceió, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil.
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
12
|
Liu T, Shilliday F, Cook AD, Zeeshan M, Brady D, Tewari R, Sutherland CJ, Roberts AJ, Moores CA. Mechanochemical tuning of a kinesin motor essential for malaria parasite transmission. Nat Commun 2022; 13:6988. [PMID: 36384964 PMCID: PMC9669022 DOI: 10.1038/s41467-022-34710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Plasmodium species cause malaria and kill hundreds of thousands annually. The microtubule-based motor kinesin-8B is required for development of the flagellated Plasmodium male gamete, and its absence completely blocks parasite transmission. To understand the molecular basis of kinesin-8B's essential role, we characterised the in vitro properties of kinesin-8B motor domains from P. berghei and P. falciparum. Both motors drive ATP-dependent microtubule gliding, but also catalyse ATP-dependent microtubule depolymerisation. We determined these motors' microtubule-bound structures using cryo-electron microscopy, which showed very similar modes of microtubule interaction in which Plasmodium-distinct sequences at the microtubule-kinesin interface influence motor function. Intriguingly however, P. berghei kinesin-8B exhibits a non-canonical structural response to ATP analogue binding such that neck linker docking is not induced. Nevertheless, the neck linker region is required for motility and depolymerisation activities of these motors. These data suggest that the mechanochemistry of Plasmodium kinesin-8Bs is functionally tuned to support flagella formation.
Collapse
Affiliation(s)
- Tianyang Liu
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | - Fiona Shilliday
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | - Alexander D Cook
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Declan Brady
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK.
| |
Collapse
|
13
|
Abstract
Serine/arginine-rich protein kinases (SRPKs) are cell cycle-regulated serine/threonine protein kinases and are important regulators of splicing factors. In this study, we functionally characterize SRPK1 of the human malaria parasite Plasmodium falciparum. P. falciparum SRPK1 (PfSRPK1) was expressed in asexual blood-stage and sexual-stage gametocytes. Pfsrpk1- parasites formed asexual schizonts that generated far fewer merozoites than wild-type parasites, causing reduced replication rates. Pfsrpk1- parasites also showed a severe defect in the differentiation of male gametes, causing a complete block in parasite transmission to mosquitoes. RNA sequencing (RNA-seq) analysis of wild-type PfNF54 and Pfsrpk1- stage V gametocytes suggested a role for PfSRPK1 in regulating transcript splicing and transcript abundance of genes coding for (i) microtubule/cilium morphogenesis-related proteins, (ii) proteins involved in cyclic nucleotide metabolic processes, (iii) proteins involved in signaling such as PfMAP2, (iv) lipid metabolism enzymes, (v) proteins of osmophilic bodies, and (vi) crystalloid components. Our study reveals an essential role for PfSRPK1 in parasite cell morphogenesis and suggests this kinase as a target to prevent malaria transmission from humans to mosquitoes. IMPORTANCE Plasmodium sexual stages represent a critical bottleneck in the parasite life cycle. Gametocytes taken up in an infectious blood meal by female anopheline mosquito get activated to form gametes and fuse to form short-lived zygotes, which transform into ookinetes to infect mosquitoes. In the present study, we demonstrate that PfSRPK1 is important for merozoite formation and critical for male gametogenesis and is involved in transcript homeostasis for numerous parasite genes. Targeting PfSRPK1 and its downstream pathways may reduce parasite replication and help achieve effective malaria transmission-blocking strategies.
Collapse
|