1
|
Wang Y, Lu L, Wu M. Statistical learning across cognitive and affective domains: a multidimensional review. Front Integr Neurosci 2025; 19:1460471. [PMID: 40416080 PMCID: PMC12098634 DOI: 10.3389/fnint.2025.1460471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 04/21/2025] [Indexed: 05/27/2025] Open
Abstract
Statistical learning (SL) is a fundamental cognitive ability enabling individuals to detect and exploit regularities in environmental input. It plays a crucial role in language acquisition, perceptual processing, and social learning, supporting development from infancy through adulthood. In this review, we adopt a multidimensional perspective to synthesize empirical and theoretical findings on SL, covering experimental paradigms, developmental trajectories, and neural mechanisms. Furthermore, we extend the discussion to the emerging intersection between SL and affective processes. Although emotional factors have recently been proposed to modulate SL performance, this area remains underexplored. We highlight current insights and theoretical frameworks addressing the SL-emotion interaction, such as predictive coding theory, and propose directions for future research. This review provides a comprehensive yet focused overview of SL across cognitive and affective domains, aiming to clarify the scope and future potential of this growing field.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People's Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Li Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Meiyun Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Rajendran VG, Tsdaka Y, Keung TY, Schnupp JW, Nelken I. Rats synchronize predictively to metronomes. iScience 2024; 27:111053. [PMID: 39507253 PMCID: PMC11539146 DOI: 10.1016/j.isci.2024.111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
Predictive auditory-motor synchronization, in which rhythmic movements anticipate rhythmic sounds, is at the core of the human capacity for music. Rodents show impressive capabilities in timing and motor tasks, but their ability to predictively coordinate sensation and action has not been demonstrated. Here, we reveal a clear capacity for predictive auditory-motor synchronization in rodent species using a modeling approach for the quantitative exploration of synchronization behaviors. We trained 8 rats to synchronize their licking to metronomes with tempi ranging from 0.5to 2 Hz and observed periodic lick patterns locked to metronome beats. We developed a flexible Markovian modeling framework to formally test how well different candidate strategies could explain the observed lick patterns. The best models required predictive control of licking that could not be explained by reactive strategies, indicating that predictive auditory-motor synchronization may be more widely shared across mammalian species than previously appreciated.
Collapse
Affiliation(s)
- Vani G. Rajendran
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yehonadav Tsdaka
- Edmond and Lily Safra Center for Brain Sciences and the Department for Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tung Yee Keung
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jan W.H. Schnupp
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Otolaryngology, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Israel Nelken
- Edmond and Lily Safra Center for Brain Sciences and the Department for Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Fan T, Decker W, Schneider J. The Domain-Specific Neural Basis of Auditory Statistical Learning in 5-7-Year-Old Children. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:981-1007. [PMID: 39483699 PMCID: PMC11527419 DOI: 10.1162/nol_a_00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/17/2024] [Indexed: 11/03/2024]
Abstract
Statistical learning (SL) is the ability to rapidly track statistical regularities and learn patterns in the environment. Recent studies show that SL is constrained by domain-specific features, rather than being a uniform learning mechanism across domains and modalities. This domain-specificity has been reflected at the neural level, as SL occurs in regions primarily involved in processing of specific modalities or domains of input. However, our understanding of how SL is constrained by domain-specific features in the developing brain is severely lacking. The present study aims to identify the functional neural profiles of auditory SL of linguistic and nonlinguistic regularities among children. Thirty children between 5 and 7 years old completed an auditory fMRI SL task containing interwoven sequences of structured and random syllable/tone sequences. Using traditional group univariate analyses and a group-constrained subject-specific analysis, frontal and temporal cortices showed significant activation when processing structured versus random sequences across both linguistic and nonlinguistic domains. However, conjunction analyses failed to identify overlapping neural indices across domains. These findings are the first to compare brain regions supporting SL of linguistic and nonlinguistic regularities in the developing brain and indicate that auditory SL among developing children may be constrained by domain-specific features.
Collapse
Affiliation(s)
- Tengwen Fan
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Will Decker
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
- Department of Psychology, Georgia Tech University, Atlanta, GA, USA
| | - Julie Schneider
- Department of Communications Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
- School of Education and Information Studies, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Berthault E, Chen S, Falk S, Morillon B, Schön D. Auditory and motor priming of metric structure improves understanding of degraded speech. Cognition 2024; 248:105793. [PMID: 38636164 DOI: 10.1016/j.cognition.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Speech comprehension is enhanced when preceded (or accompanied) by a congruent rhythmic prime reflecting the metrical sentence structure. Although these phenomena have been described for auditory and motor primes separately, their respective and synergistic contribution has not been addressed. In this experiment, participants performed a speech comprehension task on degraded speech signals that were preceded by a rhythmic prime that could be auditory, motor or audiomotor. Both auditory and audiomotor rhythmic primes facilitated speech comprehension speed. While the presence of a purely motor prime (unpaced tapping) did not globally benefit speech comprehension, comprehension accuracy scaled with the regularity of motor tapping. In order to investigate inter-individual variability, participants also performed a Spontaneous Speech Synchronization test. The strength of the estimated perception-production coupling correlated positively with overall speech comprehension scores. These findings are discussed in the framework of the dynamic attending and active sensing theories.
Collapse
Affiliation(s)
- Emma Berthault
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| | - Sophie Chen
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| | - Simone Falk
- Department of Linguistics and Translation, University of Montreal, Canada; International Laboratory for Brain, Music and Sound Research, Montreal, Canada.
| | - Benjamin Morillon
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| | - Daniele Schön
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| |
Collapse
|
5
|
Schneider JM, Scott TL, Legault J, Qi Z. Limited but specific engagement of the mature language network during linguistic statistical learning. Cereb Cortex 2024; 34:bhae123. [PMID: 38566510 PMCID: PMC10987970 DOI: 10.1093/cercor/bhae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Statistical learning (SL) is the ability to detect and learn regularities from input and is foundational to language acquisition. Despite the dominant role of SL as a theoretical construct for language development, there is a lack of direct evidence supporting the shared neural substrates underlying language processing and SL. It is also not clear whether the similarities, if any, are related to linguistic processing, or statistical regularities in general. The current study tests whether the brain regions involved in natural language processing are similarly recruited during auditory, linguistic SL. Twenty-two adults performed an auditory linguistic SL task, an auditory nonlinguistic SL task, and a passive story listening task as their neural activation was monitored. Within the language network, the left posterior temporal gyrus showed sensitivity to embedded speech regularities during auditory, linguistic SL, but not auditory, nonlinguistic SL. Using a multivoxel pattern similarity analysis, we uncovered similarities between the neural representation of auditory, linguistic SL, and language processing within the left posterior temporal gyrus. No other brain regions showed similarities between linguistic SL and language comprehension, suggesting that a shared neurocomputational process for auditory SL and natural language processing within the left posterior temporal gyrus is specific to linguistic stimuli.
Collapse
Affiliation(s)
- Julie M Schneider
- Department of Communication Sciences and Disorders, Louisiana State University, 77 Hatcher Hall, Field House Dr., Baton Rouge, LA 70803, United States
- Department of Linguistics & Cognitive Science, University of Delaware, 125 E Main St, Newark, DE 19716, United States
| | - Terri L Scott
- Department of Communication Sciences and Disorders, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, United States
| | - Jennifer Legault
- Department of Psychology, Elizabethtown College, One Alpha Dr, Elizabethtown, PA 17022, United States
| | - Zhenghan Qi
- Department of Linguistics & Cognitive Science, University of Delaware, 125 E Main St, Newark, DE 19716, United States
- Bouvé College of Health Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
- Department of Psychology, Northeastern University, 105-107 Forsyth St., Boston, MA, 02115, United States
| |
Collapse
|
6
|
Gómez Varela I, Orpella J, Poeppel D, Ripolles P, Assaneo MF. Syllabic rhythm and prior linguistic knowledge interact with individual differences to modulate phonological statistical learning. Cognition 2024; 245:105737. [PMID: 38342068 DOI: 10.1016/j.cognition.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Phonological statistical learning - our ability to extract meaningful regularities from spoken language - is considered critical in the early stages of language acquisition, in particular for helping to identify discrete words in continuous speech. Most phonological statistical learning studies use an experimental task introduced by Saffran et al. (1996), in which the syllables forming the words to be learned are presented continuously and isochronously. This raises the question of the extent to which this purportedly powerful learning mechanism is robust to the kinds of rhythmic variability that characterize natural speech. Here, we tested participants with arhythmic, semi-rhythmic, and isochronous speech during learning. In addition, we investigated how input rhythmicity interacts with two other factors previously shown to modulate learning: prior knowledge (syllable order plausibility with respect to participants' first language) and learners' speech auditory-motor synchronization ability. We show that words are extracted by all learners even when the speech input is completely arhythmic. Interestingly, high auditory-motor synchronization ability increases statistical learning when the speech input is temporally more predictable but only when prior knowledge can also be used. This suggests an additional mechanism for learning based on predictions not only about when but also about what upcoming speech will be.
Collapse
Affiliation(s)
- Ireri Gómez Varela
- Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, Mexico
| | - Joan Orpella
- Department of Psychology, New York University, New York, NY, USA
| | - David Poeppel
- Department of Psychology, New York University, New York, NY, USA; Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany; Center for Language, Music and Emotion (CLaME), New York University, New York, NY, USA; Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Pablo Ripolles
- Department of Psychology, New York University, New York, NY, USA; Center for Language, Music and Emotion (CLaME), New York University, New York, NY, USA; Music and Audio Research Lab (MARL), New York University, New York, NY, USA; Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - M Florencia Assaneo
- Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, Mexico.
| |
Collapse
|
7
|
Barchet AV, Henry MJ, Pelofi C, Rimmele JM. Auditory-motor synchronization and perception suggest partially distinct time scales in speech and music. COMMUNICATIONS PSYCHOLOGY 2024; 2:2. [PMID: 39242963 PMCID: PMC11332030 DOI: 10.1038/s44271-023-00053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/19/2023] [Indexed: 09/09/2024]
Abstract
Speech and music might involve specific cognitive rhythmic timing mechanisms related to differences in the dominant rhythmic structure. We investigate the influence of different motor effectors on rate-specific processing in both domains. A perception and a synchronization task involving syllable and piano tone sequences and motor effectors typically associated with speech (whispering) and music (finger-tapping) were tested at slow (~2 Hz) and fast rates (~4.5 Hz). Although synchronization performance was generally better at slow rates, the motor effectors exhibited specific rate preferences. Finger-tapping was advantaged compared to whispering at slow but not at faster rates, with synchronization being effector-dependent at slow, but highly correlated at faster rates. Perception of speech and music was better at different rates and predicted by a fast general and a slow finger-tapping synchronization component. Our data suggests partially independent rhythmic timing mechanisms for speech and music, possibly related to a differential recruitment of cortical motor circuitry.
Collapse
Affiliation(s)
- Alice Vivien Barchet
- Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany.
| | - Molly J Henry
- Research Group 'Neural and Environmental Rhythms', Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Department of Psychology, Toronto Metropolitan University, Toronto, Canada
| | - Claire Pelofi
- Music and Audio Research Laboratory, New York University, New York, NY, USA
- Max Planck NYU Center for Language, Music, and Emotion, New York, NY, USA
| | - Johanna M Rimmele
- Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany.
- Max Planck NYU Center for Language, Music, and Emotion, New York, NY, USA.
| |
Collapse
|
8
|
Sjuls GS, Vulchanova MD, Assaneo MF. Replication of population-level differences in auditory-motor synchronization ability in a Norwegian-speaking population. COMMUNICATIONS PSYCHOLOGY 2023; 1:47. [PMID: 39242904 PMCID: PMC11332004 DOI: 10.1038/s44271-023-00049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/05/2023] [Indexed: 09/09/2024]
Abstract
The Speech-to-Speech Synchronization test is a powerful tool in assessing individuals' auditory-motor synchronization ability, namely the ability to synchronize one's own utterances to the rhythm of an external speech signal. Recent studies using the test have revealed that participants fall into two distinct groups-high synchronizers and low synchronizers-with significant differences in their neural (structural and functional) underpinnings and outcomes on several behavioral tasks. Therefore, it is critical to assess the universality of the population-level distribution (indicating two groups rather than a normal distribution) across populations of speakers. Here we demonstrate that the previous results replicate with a Norwegian-speaking population, indicating that the test is generalizable beyond previously tested populations of native English- and German-speakers.
Collapse
Affiliation(s)
- Guro S Sjuls
- Language Acquisition and Language Processing Lab, Norwegian University of Science and Technology, Department of Language and Literature, Trondheim, Norway.
| | - Mila D Vulchanova
- Language Acquisition and Language Processing Lab, Norwegian University of Science and Technology, Department of Language and Literature, Trondheim, Norway
| | - M Florencia Assaneo
- Institute of Neurobiology, National Autonomous University of Mexico, Santiago de Querétaro, México
| |
Collapse
|
9
|
Mares C, Echavarría Solana R, Assaneo MF. Auditory-motor synchronization varies among individuals and is critically shaped by acoustic features. Commun Biol 2023; 6:658. [PMID: 37344562 DOI: 10.1038/s42003-023-04976-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
The ability to synchronize body movements with quasi-regular auditory stimuli represents a fundamental trait in humans at the core of speech and music. Despite the long trajectory of the study of such ability, little attention has been paid to how acoustic features of the stimuli and individual differences can modulate auditory-motor synchrony. Here, by exploring auditory-motor synchronization abilities across different effectors and types of stimuli, we revealed that this capability is more restricted than previously assumed. While the general population can synchronize to sequences composed of the repetitions of the same acoustic unit, the synchrony in a subgroup of participants is impaired when the unit's identity varies across the sequence. In addition, synchronization in this group can be temporarily restored by being primed by a facilitator stimulus. Auditory-motor integration is stable across effectors, supporting the hypothesis of a central clock mechanism subserving the different articulators but critically shaped by the acoustic features of the stimulus and individual abilities.
Collapse
Affiliation(s)
- Cecilia Mares
- Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla, Querétaro, Mexico
| | | | - M Florencia Assaneo
- Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
10
|
Luo L, Lu L. Studying rhythm processing in speech through the lens of auditory-motor synchronization. Front Neurosci 2023; 17:1146298. [PMID: 36937684 PMCID: PMC10017839 DOI: 10.3389/fnins.2023.1146298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Continuous speech is organized into a hierarchy of rhythms. Accurate processing of this rhythmic hierarchy through the interactions of auditory and motor systems is fundamental to speech perception and production. In this mini-review, we aim to evaluate the implementation of behavioral auditory-motor synchronization paradigms when studying rhythm processing in speech. First, we present an overview of the classic finger-tapping paradigm and its application in revealing differences in auditory-motor synchronization between the typical and clinical populations. Next, we highlight key findings on rhythm hierarchy processing in speech and non-speech stimuli from finger-tapping studies. Following this, we discuss the potential caveats of the finger-tapping paradigm and propose the speech-speech synchronization (SSS) task as a promising tool for future studies. Overall, we seek to raise interest in developing new methods to shed light on the neural mechanisms of speech processing.
Collapse
Affiliation(s)
- Lu Luo
- School of Psychology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing, China
| | - Lingxi Lu
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China
- *Correspondence: Lingxi Lu,
| |
Collapse
|