1
|
Huang S, Piao C, Zhao Z, Beuschel CB, Turrel O, Toppe D, Sigrist SJ. Enhanced memory despite severe sleep loss in Drosophila insomniac mutants. PLoS Biol 2025; 23:e3003076. [PMID: 40111981 DOI: 10.1371/journal.pbio.3003076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Sleep is crucial for cognitive functions and life span across species. While sleep homeostasis and cognitive processes are linked through cellular and synaptic plasticity, the signaling pathways connecting them remain unclear. Here, we show that Drosophila insomniac (inc) short sleep mutants, which lack an adaptor protein for the autism-associated Cullin-3 ubiquitin ligase, exhibited enhanced Pavlovian aversive olfactory learning and memory, unlike other sleep mutants with normal or reduced memory. Through a genetic modifier screen, we found that a mild reduction of Protein Kinase A (PKA) signaling specifically rescued the sleep and longevity phenotypes of inc mutants. However, this reduction further increased their excessive memory and mushroom body overgrowth. Since inc mutants displayed higher PKA signaling, we propose that inc loss-of-function suppresses sleep via increased PKA activity, which also constrains the excessive memory of inc mutants. Our data identify a signaling cascade for balancing sleep and memory functions, and provide a plausible explanation for the sleep phenotypes of inc mutants, suggesting that memory hyperfunction can provoke sleep deficits.
Collapse
Affiliation(s)
- Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Chengji Piao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Zhiying Zhao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Christine B Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Oriane Turrel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - David Toppe
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
2
|
Fei L, Liang Y, Kintscher U, Sigrist SJ. Coupling of mitochondrial state with active zone plasticity in early brain aging. Redox Biol 2025; 79:103454. [PMID: 39642596 PMCID: PMC11666929 DOI: 10.1016/j.redox.2024.103454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Neurodegenerative diseases typically emerge after an extended prodromal period, underscoring the critical importance of initiating interventions during the early stages of brain aging to enhance later resilience. Changes in presynaptic active zone proteins ("PreScale") are considered a dynamic, resilience-enhancing form of plasticity in the process of early, still reversible aging of the Drosophila brain. Aging, however, triggers significant changes not only of synapses but also mitochondria. While the two organelles are spaced in close proximity, likely reflecting a direct functional coupling in regard to ATP and Ca2+ homeostasis, the exact modes of coupling in the aging process remain to understood. We here show that genetic manipulations of mitochondrial functional status, which alters brain oxidative phosphorylation, ATP levels, or the production of reactive oxygen species (ROS), can bidirectionally regulate PreScale during early Drosophila brain aging. Conversely, genetic mimicry of PreScale resulted in decreased oxidative phosphorylation and ATP production, potentially due to reduced mitochondrial calcium (Ca2+) import. Our findings indicate the existence of a positive feedback loop where mitochondrial functional state and PreScale are reciprocally coupled to optimize protection during the early stages of brain aging.
Collapse
Affiliation(s)
- Lu Fei
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Yongtian Liang
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, 10117, Berlin, Germany
| | - Ulrich Kintscher
- Institute of Pharmacology, Center for Cardiovascular Research, Charité Universitätmedizin Berlin, 10115, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, 10117, Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, 14195, Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Mou Y, Zhang Y, Zheng Y, He G, Xu Z, Xiao X, Ping Y. Intermittent Vibration Induces Sleep via an Allatostatin A-GABA Signaling Pathway and Provides Broad Benefits in Alzheimer's Disease Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411768. [PMID: 39656885 PMCID: PMC11791986 DOI: 10.1002/advs.202411768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/24/2024] [Indexed: 12/17/2024]
Abstract
While animals across species typically experience suppressed consciousness and an increased arousal threshold during sleep, the responsiveness to specific sensory inputs persists. Previous studies have demonstrated that rhythmic and continuous vibration can enhance sleep in both animals and humans. However, the neural circuits underlying vibration-induced sleep (VIS) and its potential therapeutic benefits on neuropathological processes in disease models remain unclear. Here, it is shown that intermittent vibration, such as cycles of 30 s on followed by 30 s off, is more effective in inducing sleep compared to continuous vibration. A clear evidence is further provided that allatostatin A (AstA)-GABA signaling mediates short-term intermittent vibration-induced sleep (iVIS) by inhibiting octopaminergic arousal neurons through activating GABAA receptors. The existence of iVIS in mice is corroborated, implicating the GABAergic system in this process. Finally, intermittent vibration not only enhances sleep but also reduces amyloid-β (Aβ) deposition and reverses memory defects in Alzheimer's disease models. In conclusion, the study defines a central neural circuit involved in mediating short-term iVIS and the potential implications of vibration in treating sleep-related brain disorders.
Collapse
Affiliation(s)
- Yang Mou
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Yan Zhang
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Yuxian Zheng
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Guang He
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Zhi‐Xiang Xu
- State Key Laboratory of Medical NeurobiologyMOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghai200032China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceMinistry of EducationBehavioural and Cognitive Neuroscience CenterInstitute of Science and Technology for Brain‐Inspired IntelligenceMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200433China
| | - Yong Ping
- Bio‐X InstitutesKey Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
4
|
Wortha SM, Schulz J, Hanna J, Schwarz C, Stubbe B, Frenzel S, Bülow R, Friedrich N, Nauck M, Völzke H, Ewert R, Vogelgesang A, Grabe HJ, Ladenbauer J, Flöel A. Association of spermidine blood levels with microstructure of sleep-implications from a population-based study. GeroScience 2024; 46:1319-1330. [PMID: 37548882 PMCID: PMC10828152 DOI: 10.1007/s11357-023-00886-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
Deteriorations in slow wave sleep (SWS) have been linked to brain aging and Alzheimer's disease (AD), possibly due to its key role in clearance of amyloid-beta and tau (Aß/tau), two pathogenic hallmarks of AD. Spermidine administration has been shown to improve sleep quality in animal models. So far, the association between spermidine levels in humans and parameters of SWS physiology are unknown but may be valuable for therapeutic strategies. Data from 216 participants (age range 50-81 years) of the population-based Study of Health in Pomerania TREND were included in our analysis. We investigated associations between spermidine plasma levels, key parameters of sleep macroarchitecture and microarchitecture that were previously associated with AD pathology, and brain health measured via a marker of structural brain atrophy (AD score). Higher spermidine levels were significantly associated with lower coupling between slow oscillations and spindle activity. No association was evident for SWS, slow oscillatory, and spindle activity throughout non-rapid eye movement sleep. Furthermore, elevated spermidine blood levels were significantly associated with a higher AD score, while sleep markers revealed no association with AD score. The association between higher spermidine levels and brain health was not mediated by coupling between slow oscillations and spindle activity. We report that higher spermidine blood levels are associated not only with deteriorated brain health but also with less advantageous markers of sleep quality in older adults. Future studies need to evaluate whether sleep, spermidine, and Aß/tau deposition are interrelated and whether sleep may play a mediating role.
Collapse
Affiliation(s)
- Silke M Wortha
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
- Centre for Mathematical Cognition, School of Science, Loughborough University, Loughborough, UK.
| | - Juliane Schulz
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Jevri Hanna
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Claudia Schwarz
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Beate Stubbe
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ralf Ewert
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Antje Vogelgesang
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Julia Ladenbauer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Brown EB, Zhang J, Lloyd E, Lanzon E, Botero V, Tomchik S, Keene AC. Neurofibromin 1 mediates sleep depth in Drosophila. PLoS Genet 2023; 19:e1011049. [PMID: 38091360 PMCID: PMC10763969 DOI: 10.1371/journal.pgen.1011049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 11/03/2023] [Indexed: 01/04/2024] Open
Abstract
Neural regulation of sleep and metabolic homeostasis are critical in many aspects of human health. Despite extensive epidemiological evidence linking sleep dysregulation with obesity, diabetes, and metabolic syndrome, little is known about the neural and molecular basis for the integration of sleep and metabolic function. The RAS GTPase-activating gene Neurofibromin (Nf1) has been implicated in the regulation of sleep and metabolic rate, raising the possibility that it serves to integrate these processes, but the effects on sleep consolidation and physiology remain poorly understood. A key hallmark of sleep depth in mammals and flies is a reduction in metabolic rate during sleep. Here, we examine multiple measures of sleep quality to determine the effects of Nf1 on sleep-dependent changes in arousal threshold and metabolic rate. Flies lacking Nf1 fail to suppress metabolic rate during sleep, raising the possibility that loss of Nf1 prevents flies from integrating sleep and metabolic state. Sleep of Nf1 mutant flies is fragmented with a reduced arousal threshold in Nf1 mutants, suggesting Nf1 flies fail to enter deep sleep. The effects of Nf1 on sleep can be localized to a subset of neurons expressing the GABAA receptor Rdl. Sleep loss has been associated with changes in gut homeostasis in flies and mammals. Selective knockdown of Nf1 in Rdl-expressing neurons within the nervous system increases gut permeability and reactive oxygen species (ROS) in the gut, raising the possibility that loss of sleep quality contributes to gut dysregulation. Together, these findings suggest Nf1 acts in GABA-sensitive neurons to modulate sleep depth in Drosophila.
Collapse
Affiliation(s)
- Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Jiwei Zhang
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Elizabeth Lanzon
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Seth Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|