1
|
Wang Z, Di Y, Ye L, Fang W, Wen X, Zhang X, Qin J, Wang Y, Hu K, Zhu Z, He W, Chen Y. NANS suppresses NF-κB signaling to promote ferroptosis by perturbing iron homeostasis. Cell Rep 2025; 44:115701. [PMID: 40349344 DOI: 10.1016/j.celrep.2025.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/20/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Metastatic colorectal cancer (CRC) cells endure survival challenges, including treatment-induced ferroptosis. While adaptation to ferroptosis stress facilitates metastasis, reciprocal regulatory mechanisms remain unclear. Here, a CRISPR-Cas9 screen identifies N-acetylneuraminate synthase (NANS) as a ferroptosis promoter in CRC, regardless of its metabolic function. NANS expression is downregulated and correlates with poor prognosis in patients with CRC. Under ferroptotic stress, cyclin-dependent kinase 1 (CDK1) phosphorylates NANS at serine 275 (S275), triggering its dissociation from TAK1. Phosphorylated NANS is ubiquitinated by UBE2N at K246, leading to degradation, which activates TAK1-NF-κB signaling and upregulates the ferroptosis inhibitor FTH1, enabling metastasis via ferroptosis resistance. NANS pS275 levels are associated with tumor aggressiveness and clinical outcomes in patients with CRC. These findings indicate that NANS suppresses CRC metastasis by enhancing ferroptosis susceptibility, while CDK1-mediated phosphorylation at S275 drives adaptive resistance. Targeting this phosphorylation axis may improve ferroptosis-inducing therapies to restrict metastatic progression in CRC.
Collapse
Affiliation(s)
- Ziyang Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Yuqin Di
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lvlan Ye
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wenzheng Fang
- Department of Oncology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fujian 350000, China
| | - Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Youpeng Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Kunhua Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zhenxin Zhu
- Gastrointestinal Surgery Department, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China.
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
| | - Ying Chen
- Department of Gastroenterology, Changhai Hospital affiliated to the Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Liu X, Zhang D, Qiu H. NMF typing and machine learning algorithm-based exploration of preeclampsia-related mechanisms on ferroptosis signature genes. Cell Biol Toxicol 2024; 41:14. [PMID: 39707003 PMCID: PMC11662041 DOI: 10.1007/s10565-024-09963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Globally, pre-eclampsia (PE) poses a major threat to the health and survival of pregnant women and fetuses, contributing significantly to morbidity and mortality. Recent studies suggest a pathological link between PE and ferroptosis. We aim to utilize non-negative matrix factorization (NMF) clustering and machine learning algorithms to pinpoint disease-specific genes related to the process of ferroptosis in PE and investigate likely underlying biochemistry mechanisms. METHODS The acquisition of four microarray datasets from the Gene Expression Omnibus (GEO) repository, the integration of these datasets, and the elimination of batch effects formed the core procedure. Genes related to ferroptosis in PE (DE-FRG) were identified. NMF clustering was performed on DE-FRG for unsupervised analysis, generating a heatmap for clustering validation via principal component analysis. Immunocyte infiltration differences between different subtypes were compared to elucidate the impact of ferroptosis on immune infiltration in the placental tissue of PE patients. The application of weighted gene co-expression network analysis (WGCNA) revealed important module genes linked to sample subtypes and disease status. The screening of PE feature genes involved employing SVM, RF, GLM, and XGB machine learning algorithms, and their predictive performance was validated using various analyses and an external dataset. The iRegulon tool was utilized to predict upstream transcription factors associated with ferroptosis feature genes, from which differentially expressed transcription factors were screened to construct a "Transcription Factor-FRG-ferroptosis" regulatory network. Finally, in vitro (cultured cells) and in vivo (rat) models were utilized to evaluate the regulatory mechanisms of ferroptosis in normal and PE placental tissues. RESULTS Differential analysis of the four merged GEO datasets identified 41 DE-FRGs. NMF clustering based on DE-FRGs revealed two PE subtypes. Immunocyte infiltration analysis indicated significant differences in immune levels between these subtypes. Further WGCNA analysis identified module genes associated with PE and these two subtypes. Subsequently, we developed an integrated machine learning model incorporating five FRGs and validated its predictive efficacy using various analyses and an external validation dataset. Finally, based on the transcription factor ARID3A and ferroptosis feature genes EPHB3 and PAPPA2, we constructed a "Transcription Factor-FRG-ferroptosis" regulatory network, with in vitro and in vivo experiments confirming that ARID3A promotes the progression of PE and ferroptosis by activating the expression of EPHB3 and PAPPA2. CONCLUSION This analytical journey illuminated a critical regulatory nexus in PE, underscoring the central influence of ARID3A on PE through ferroptosis-mediated pathways.
Collapse
Affiliation(s)
- Xuemin Liu
- Department of Obsterics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Di Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Hui Qiu
- Department of Obsterics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
3
|
Tang S, Chen L. The recent advancements of ferroptosis of gynecological cancer. Cancer Cell Int 2024; 24:351. [PMID: 39462352 PMCID: PMC11520064 DOI: 10.1186/s12935-024-03537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Ovarian, endometrial, and cervical cancer are the most common types of gynecologic tumor in women. Surgery, combined with radiotherapy and chemotherapy, is commonly used to treat these tumors. Unfortunately, difficulties in early diagnosis and acquired drug resistance have resulted in poor outcomes for most patients. Ferroptosis is a form of regulated cell death that depends on iron and is characterized by iron accumulation, reactive oxygen species production, and lipid peroxidation. The strong association between ferroptosis and many diseases, especially tumor diseases, has been confirmed by numerous studies. Many studies have demonstrated that ferroptosis is involved in initiating, progressing and metastasizing gynecologic tumors. This review summarizes the pathogenesis of ferroptosis and its association with the development, treatment, and prognosis of gynecologic tumors, and further explore the potential utility of ferroptosis in treating gynecologic tumors.
Collapse
Affiliation(s)
- Shenglan Tang
- Department of the First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People's Republic of China
| | - Li Chen
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Shangcheng, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
4
|
Zhang J, Yimamu M, Cheng Z, Ji J, Wu L, Feng J, Xu X, Wu J, Guo C. TRIM47-CDO1 axis dictates hepatocellular carcinoma progression by modulating ferroptotic cell death through the ubiquitin‒proteasome system. Free Radic Biol Med 2024; 219:31-48. [PMID: 38614226 DOI: 10.1016/j.freeradbiomed.2024.04.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer, characterized by high morbidity and mortality rates, as well as unfavorable treatment outcomes. Tripartite motif-containing protein 47 (TRIM47) has been implicated in various diseases including tumor progression with the activity of E3 ubiquitin ligase. However, the precise regulatory mechanisms underlying the involvement of TRIM47 in HCC remain largely unexplored. Here, we provide evidence that TRIM47 exhibits heightened expression in tumor tissues, and its expression is in intimate association with clinical staging and patient prognosis. TRIM47 promotes HCC proliferation, migration, and invasion as an oncogene by in vitro gain- and loss-of-function experiments. TRIM47 knockdown results in HCC ferroptosis induction, primarily through CDO1 involvement to regulate GSH synthesis. Subsequent experiments confirm the interaction between TRIM47 and CDO1 dependent on B30.2 domain, wherein TRIM47 facilitates K48-linked ubiquitination, leading to a decrease in CDO1 protein abundance in HCC. Furthermore, CDO1 is able to counteract the promotional effect of TRIM47 on HCC biological functions. Overall, our research provides novel insight into the mechanism of TRIM47 in CDO1-mediated ferroptosis in HCC cells, highlighting its value as a potential target candidate for HCC therapeutic approaches.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Malire Yimamu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ziqi Cheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, University of Shanghai for Science and Technology, Shanghai, 200433, China.
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
5
|
Ji H, Zhao Y, Ma X, Wu L, Guo F, Huang F, Song Y, Wang J, Qin G. Upregulation of UHRF1 Promotes PINK1-mediated Mitophagy to Alleviates Ferroptosis in Diabetic Nephropathy. Inflammation 2024; 47:718-732. [PMID: 38055118 DOI: 10.1007/s10753-023-01940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Diabetic nephropathy (DN) is a common diabetic complication. Studies show that mitophagy inhibition induced-ferroptosis plays a crucial role in DN progression. UHRF1 is associated with mitophagy and is highly expression in DN patients, however, the effect of UHRF1 on DN is still unclear. Thus, in this study, we aimed to investigate whether UHRF1 involves DN development by the mitophagy/ferroptosis pathway. We overexpressed UHRF1 using an adeno-associated virus 9 (AAV9) system in high-fat diet/streptozotocin-induced diabetic mice. Renal function index, pathological changes, mitophagy factors, and ferroptosis factors were detected in vivo. High-glucose cultured human renal proximal tubular (HK-2) cells were used as in vitro models to investigate the mechanism of UHRF1 in DN. We found that diabetic mice exhibited kidney damage, which was alleviated by UHRF1 overexpression. UHRF1 overexpression promoted PINK1-mediated mitophagy and inhibited the expression of thioredoxin interacting protein (TXNIP), a factor associated with mitochondrial dysfunction. Additionally, UHRF1 overexpression alleviated lipid peroxidation and free iron accumulation, and upregulated the expression of GPX4 and Slc7a11, indicating the inhibition effect of UHRF1 overexpression on ferroptosis. We further investigated the mechanism of UHRF1 in the mitophagy/ferroptosis pathway in DN. We found that UHRF1 overexpression promoted PINK1-mediated mitophagy via inhibiting TXNIP expression, thus suppressing ferroptosis. These findings confirmed that upregulation of UHRF1 expression alleviates DN, indicating that UHRF1 has a reno-protective effect against DN.
Collapse
Affiliation(s)
- Hongfei Ji
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yanyan Zhao
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiaojun Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lina Wu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Feng Guo
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fengjuan Huang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yi Song
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|