1
|
Anderson M, Lopez J, Wyr M, Ramirez PW. Defining diverse spike-receptor interactions involved in SARS-CoV-2 entry: Mechanisms and therapeutic opportunities. Virology 2025; 607:110507. [PMID: 40157321 DOI: 10.1016/j.virol.2025.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped RNA virus that caused the Coronavirus Disease 2019 (COVID-19) pandemic. The SARS-CoV-2 Spike glycoprotein binds to angiotensin converting enzyme 2 (ACE2) on host cells to facilitate viral entry. However, the presence of SARS-CoV-2 in nearly all human organs - including those with little or no ACE2 expression - suggests the involvement of alternative receptors. Recent studies have identified several cellular proteins and molecules that influence SARS-CoV-2 entry through ACE2-dependent, ACE2-independent, or inhibitory mechanisms. In this review, we explore how these alternative receptors were identified, their expression patterns and roles in viral entry, and their impact on SARS-CoV-2 infection. Additionally, we discuss therapeutic strategies aimed at disrupting these virus-receptor interactions to mitigate COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Michael Anderson
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Julian Lopez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Maya Wyr
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Peter W Ramirez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA.
| |
Collapse
|
2
|
Cole AJ, Denes CE, Moreno CL, Hunault L, Dobson T, Hesselson D, Neely GG. A chimeric viral platform for directed evolution in mammalian cells. Nat Commun 2025; 16:4250. [PMID: 40335481 PMCID: PMC12059018 DOI: 10.1038/s41467-025-59438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025] Open
Abstract
Directed evolution is a process of mutation and artificial selection to breed biomolecules with new or improved activity. Directed evolution platforms are primarily prokaryotic or yeast-based, and stable mammalian systems have been challenging to establish and apply. To this end, we develop PROTein Evolution Using Selection (PROTEUS), a platform that uses chimeric virus-like vesicles to enable extended mammalian directed evolution campaigns without loss of system integrity. This platform is stable and can generate sufficient diversity for directed evolution in mammalian systems. Using PROTEUS, we alter the doxycycline responsiveness of tetracycline-controlled transactivators, generating a more sensitive TetON-4G tool for gene regulation with mammalian-specific adaptations. PROTEUS is also compatible with intracellular nanobody evolution, and we use it to evolve a DNA damage-responsive anti-p53 nanobody. Overall, PROTEUS is an efficient and stable platform to direct evolution of biomolecules within mammalian cells.
Collapse
Affiliation(s)
- Alexander J Cole
- Centenary Institute and Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Christopher E Denes
- The Dr. John and Anne Chong Lab for Functional Genomics, School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Cesar L Moreno
- The Dr. John and Anne Chong Lab for Functional Genomics, School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Lise Hunault
- Centenary Institute and Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Thomas Dobson
- Centenary Institute and Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Daniel Hesselson
- Centenary Institute and Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| | - G Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, School of Life & Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Boschiero C, Beshah E, Bakshi M, Miramontes E, Hebert D, Thompson PC, Li CJ, Zhu X, Zarlenga D, Liu GE, Tuo W. Transcriptional Profiling of Abomasal Mucosa from Young Calves Experimentally Infected with Ostertagia ostertagi. Int J Mol Sci 2025; 26:2264. [PMID: 40076885 PMCID: PMC11900041 DOI: 10.3390/ijms26052264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Ostertagia ostertagi, also known as the brown stomach worm, causes significant pathology in the abomasum, resulting in production and nutritional losses in cattle. Alternative control measures, such as vaccination, are urgently needed because of rapidly growing anthelmintic drug resistance. There is a need to understand host responses to the infection, especially immune responses, to advance vaccine discovery and design. Therefore, the present study investigated comprehensive changes in gene transcription in the abomasal mucosa of cattle infected with O. ostertagi at 0, 3-5, 7-9, 10, and 21 days post-infection (dpi) using RNA sequencing (RNA-seq). Compared to uninfected controls, infected animals exhibited significant increases in differentially expressed genes (DEGs) throughout the infection period. Infection induced more upregulated than downregulated genes in the abomasal fundic mucosa (FUN) when compared to the abomasal pyloric mucosa (PYL). The largest transcriptional changes occurred between 7-9 and 10 dpi during the final development of the L4 and their emergence from the gastric glands. Most DEGs are associated with host immunity, cellular reorganization, cell migration, and proliferation. Tuft/epithelial cell response to the infection was atypical, lacking an anticipated increase in key alarmin cytokine genes. Numerous genes associated with T helper (Th) 1, Th2, and Th17 responses and T cell exhaustion were upregulated, suggesting altered immune regulation. The data collectively indicate that O. ostertagi infection elicits massive host responses, particularly immune responses, which are intertwined with the parasite's disruption of abomasal function, which likely impairs the nutrient utilization of the host. The infection is characterized by the absence of a dominant Th response and displaying a mixed activation of Th1, Th2, and Th17 pathways. Elevated expression of T cell exhaustion genes and lack of increase in epithelial alarmin cytokine genes suggest a downregulation of, or a deficiency in initiating, effective host immunity to the infection. Understanding mechanisms of parasite-mediated immune evasion and their nutritional consequences will facilitate the rational design of protective vaccines against infections of complex nematode parasites.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Ethiopia Beshah
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Mariam Bakshi
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Eliseo Miramontes
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Deborah Hebert
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Peter C. Thompson
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Dante Zarlenga
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
4
|
Shilts J. How to build a human: Piecing together the body's cellular puzzle. Science 2024; 386:739. [PMID: 39541445 DOI: 10.1126/science.adt9012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Piecing together the body's cellular puzzle.
Collapse
|
5
|
See WR, Yousefi M, Ooi YS. A review of virus host factor discovery using CRISPR screening. mBio 2024; 15:e0320523. [PMID: 39422472 PMCID: PMC11559068 DOI: 10.1128/mbio.03205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The emergence of genome-scale forward genetic screening techniques, such as Haploid Genetic screen and clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen has opened new horizons in our understanding of virus infection biology. CRISPR screening has become a popular tool for the discovery of novel host factors for several viruses due to its specificity and efficiency in genome editing. Here, we review how CRISPR screening has revolutionized our understanding of virus-host interactions from scientific and technological viewpoints. A summary of the published screens conducted thus far to uncover virus host factors is presented, highlighting their experimental design and significant findings. We will outline relevant methods for customizing the CRISPR screening process to answer more specific hypotheses and compile a glossary of conducted CRISPR screens to show their design aspects. Furthermore, using flaviviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as examples, we hope to offer a broad-based perspective on the capabilities of CRISPR screening to serve as a reference point to guide future unbiased discovery of virus host factors.
Collapse
Affiliation(s)
- Wayne Ren See
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
6
|
Liu P, Huang ML, Guo H, McCallum M, Si JY, Chen YM, Wang CL, Yu X, Shi LL, Xiong Q, Ma CB, Bowen JE, Tong F, Liu C, Sun YH, Yang X, Chen J, Guo M, Li J, Corti D, Veesler D, Shi ZL, Yan H. Design of customized coronavirus receptors. Nature 2024; 635:978-986. [PMID: 39478224 DOI: 10.1038/s41586-024-08121-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Although coronaviruses use diverse receptors, the characterization of coronaviruses with unknown receptors has been impeded by a lack of infection models1,2. Here we introduce a strategy to engineer functional customized viral receptors (CVRs). The modular design relies on building artificial receptor scaffolds comprising various modules and generating specific virus-binding domains. We identify key factors for CVRs to functionally mimic native receptors by facilitating spike proteolytic cleavage, membrane fusion, pseudovirus entry and propagation for various coronaviruses. We delineate functional SARS-CoV-2 spike receptor-binding sites for CVR design and reveal the mechanism of cell entry promoted by the N-terminal domain-targeting S2L20-CVR. We generated CVR-expressing cells for 12 representative coronaviruses from 6 subgenera, most of which lack known receptors, and show that a pan-sarbecovirus CVR supports propagation of a propagation-competent HKU3 pseudovirus and of authentic RsHuB2019A3. Using an HKU5-specific CVR, we successfully rescued wild-type and ZsGreen-HiBiT-incorporated HKU5-1 (LMH03f) and isolated a HKU5 strain from bat samples. Our study demonstrates the potential of the CVR strategy for establishing native receptor-independent infection models, providing a tool for studying viruses that lack known susceptible target cells.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hua Guo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jun-Yu Si
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chun-Li Wang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lu-Lu Shi
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qing Xiong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Fei Tong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chen Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Guo
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Davide Corti
- Humabs BioMed SA, subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Zheng-Li Shi
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Sun Y, Li ZZ, Yang J, Sha YR, Hou XY, Fu H, Li JY, Bai SC, Xie YF, Wang GH. Molecular mechanism of hypoxia and alpha-ketoglutaric acid on collagen expression in scleral fibroblasts. Int J Ophthalmol 2024; 17:1780-1790. [PMID: 39430015 PMCID: PMC11422372 DOI: 10.18240/ijo.2024.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
AIM To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid (α-KG) on scleral collagen expression. METHODS Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness (ChT) during myopia. The establishment of a hypoxic myopia model (HYP) for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia and α-KG on collagen expression were demonstrated by Sirius red staining. Transcriptome analysis was used to verify the genes and pathways that hypoxia and α-KG affect collagen expression. Finally, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used for reverse verification. RESULTS Meta-analysis results aligned with clinical statistics, revealing a thinning of ChT, leading to scleral hypoxia. Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group, showed that hypoxia reduced collagen expression in scleral fibroblasts, while α-KG can elevated collagen expression under HYP conditions. Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia and α-KG affect scleral collagen expression and the results were verified by RT-qPCR. CONCLUSION The potential molecular mechanisms through which hypoxia and α-KG influencing myopia is unraveled and three novel genes TLCD4, TBC1D4, and EPHX3 are identified. These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.
Collapse
Affiliation(s)
- Yun Sun
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zhuo-Zheng Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jing Yang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Ya-Ru Sha
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xin-Yu Hou
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Hong Fu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jia-Yin Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Shu-Chang Bai
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Yong-Fang Xie
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Guo-Hui Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
8
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle Paniccia
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Michael Bauer
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ansgar F. Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Edwin A. Rosado-Olivieri
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, New York, United States of America
| | - Kenneth H. Dinnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - William C. Doyle
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Carltin Schmidt
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Roni Winkler
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Elaine Z. Yip
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Timothy McGinn
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Lavoisier Ramos-Espiritu
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, United States of America
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Francisco J. Sànchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - J. Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
9
|
Clark T, Waller MA, Loo L, Moreno CL, Denes CE, Neely GG. CRISPR activation screens: navigating technologies and applications. Trends Biotechnol 2024; 42:1017-1034. [PMID: 38493051 DOI: 10.1016/j.tibtech.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) has become an integral part of the molecular biology toolkit. CRISPRa genetic screens are an exciting high-throughput means of identifying genes the upregulation of which is sufficient to elicit a given phenotype. Activation machinery is continually under development to achieve greater, more robust, and more consistent activation. In this review, we offer a succinct technological overview of available CRISPRa architectures and a comprehensive summary of pooled CRISPRa screens. Furthermore, we discuss contemporary applications of CRISPRa across broad fields of research, with the aim of presenting a view of exciting emerging applications for CRISPRa screening.
Collapse
Affiliation(s)
- Teleri Clark
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Matthew A Waller
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Lipin Loo
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Cesar L Moreno
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Christopher E Denes
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
10
|
Du TY, Hall SR, Chung F, Kurdyukov S, Crittenden E, Patel K, Dawson CA, Westhorpe AP, Bartlett KE, Rasmussen SA, Moreno CL, Denes CE, Albulescu LO, Marriott AE, Mackay JP, Wilkinson MC, Gutiérrez JM, Casewell NR, Neely GG. Molecular dissection of cobra venom highlights heparinoids as an antidote for spitting cobra envenoming. Sci Transl Med 2024; 16:eadk4802. [PMID: 39018365 DOI: 10.1126/scitranslmed.adk4802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/28/2024] [Accepted: 05/31/2024] [Indexed: 07/19/2024]
Abstract
Snakebites affect about 1.8 million people annually. The current standard of care involves antibody-based antivenoms, which can be difficult to access and are generally not effective against local tissue injury, the primary cause of morbidity. Here, we used a pooled whole-genome CRISPR knockout screen to define human genes that, when targeted, modify cell responses to spitting cobra venoms. A large portion of modifying genes that conferred resistance to venom cytotoxicity was found to control proteoglycan biosynthesis, including EXT1, B4GALT7, EXT2, EXTL3, XYLT2, NDST1, and SLC35B2, which we validated independently. This finding suggested heparinoids as possible inhibitors. Heparinoids prevented venom cytotoxicity through binding to three-finger cytotoxins, and the US Food and Drug Administration-approved heparinoid tinzaparin was found to reduce tissue damage in mice when given via a medically relevant route and dose. Overall, our systematic molecular dissection of cobra venom cytotoxicity provides insight into how we can better treat cobra snakebite envenoming.
Collapse
Affiliation(s)
- Tian Y Du
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Steven R Hall
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Felicity Chung
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sergey Kurdyukov
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Edouard Crittenden
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Karishma Patel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2008, Australia
| | - Charlotte A Dawson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Adam P Westhorpe
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Keirah E Bartlett
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Sean A Rasmussen
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Sciences Centre and Dalhousie University, 7th Floor of MacKenzie Building, 5788 University Avenue, Halifax, NS B3H 1V8, Canada
| | - Cesar L Moreno
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Christopher E Denes
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Laura-Oana Albulescu
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Amy E Marriott
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2008, Australia
| | - Mark C Wilkinson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - José María Gutiérrez
- Clodomiro Picado Institute, School of Microbiology, University of Costa Rica, P.O. Box 15501, 11501-2060 San José, Costa Rica
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
11
|
Munir M, Embry A, Doench JG, Heaton NS, Wilen CB, Orchard RC. Genome-wide CRISPR activation screen identifies JADE3 as an antiviral activator of NF-kB-dependent IFITM3 expression. J Biol Chem 2024; 300:107153. [PMID: 38462163 PMCID: PMC11001640 DOI: 10.1016/j.jbc.2024.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape, we conducted a gain-of-function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including Jade family PHD zinc finger 3 (JADE3) a protein involved in directing the histone acetyltransferase histone acetyltransferase binding to ORC1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Our results suggest a distinct function for JADE3 as expression of the closely related paralogs JADE1 and JADE2 does not confer resistance to influenza A virus infection. JADE3 is required for both constitutive and inducible expression of the well-characterized antiviral gene interferon-induced transmembrane protein 3 (IFITM3). Furthermore, we find JADE3 activates the NF-kB signaling pathway, which is required for the promotion of IFITM3 expression by JADE3. Therefore, we propose JADE3 activates an antiviral genetic program involving NF-kB-dependent IFITM3 expression to restrict influenza A virus infection.
Collapse
Affiliation(s)
- Moiz Munir
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aaron Embry
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Craig B Wilen
- Department of Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert C Orchard
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
12
|
Miura F, Klinkenberg D, Wallinga J. Quantifying the Individual Variation in Susceptibility to Endemic Coronavirus and SARS-CoV-2 with Human Challenge Trials. Epidemiology 2024; 35:113-117. [PMID: 38032803 PMCID: PMC10683973 DOI: 10.1097/ede.0000000000001679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023]
Abstract
Human challenge trials reveal how the infection risk depends on a given infectious dose. We propose a mathematical framework to analyze and interpret the outcomes of human challenge trials by incorporating the variability between individuals in susceptibility to infection. We illustrate the framework for two distinctive diseases; endemic diseases where a fraction of the study population has been exposed to the target pathogen previously and is thus immune, and novel diseases where the study population is fully susceptible. Based on available data from published trials, we estimate the immune proportion and the variation in susceptibility to endemic HCoV-229E and present plausible infection risks with SARS-CoV-2 over multiple orders of magnitude of the infectious dose. The results show that the proposed method captures heterogeneous background susceptibility in the study population, and we suggest ways to improve the design of future trials and to translate their outcomes to the general population.
Collapse
Affiliation(s)
- Fuminari Miura
- From the Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Don Klinkenberg
- From the Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jacco Wallinga
- From the Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Takeuchi F, Sugano A, Yoneshige A, Hagiyama M, Inoue T, Wada A, Takaoka Y, Ito A. Potential Contribution of Cell Adhesion Molecule 1 to the Binding of SARS-CoV-2 Spike Protein to Mouse Nasal Mucosa. Cells Tissues Organs 2023; 213:326-337. [PMID: 37903481 PMCID: PMC11251658 DOI: 10.1159/000534892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first infects the host nasal mucosa, where the viral spike protein binds to angiotensin-converting enzyme 2 (ACE2) on the mucosal cells. This study aimed at searching host cell surface molecules that could contribute to the infection in two views; abundance on host cells and affinity to the spike protein. Since the nasal mucosa is lined by respiratory and olfactory epithelia, and both express an immunoglobulin superfamily member cell adhesion molecule 1 (CADM1), whether CADM1 would participate in the spike protein binding was examined. Immunohistochemistry on the mouse nasal cavity detected CADM1 strongly in the olfactory epithelium at cell-cell contacts and on the apical surface but just faintly in the respiratory epithelium. In contrast, ACE2 was detected in the respiratory, not olfactory, epithelium. When mice were administered intranasally with SARS-CoV-2 S1 spike protein and an anti-CADM1 ectodomain antibody separately, both were detected exclusively on the olfactory, not respiratory, epithelium. Then, the antibody and S1 spike protein were administered intranasally to mice in this order with an interval of 1 h. After 3 h, S1 spike protein was detected as a protein aggregate floating in the nasal cavity. Next, S1 spike protein labeled with fluorescein was added to the monolayer cultures of epithelial cells exogenously expressing ACE2 or CADM1. Quantitative detection of fluorescein bound to the cells revealed that S1 spike protein bound to CADM1 with affinity half as high as to ACE2. Consistently, docking simulation analyses revealed that S1 spike protein could bind to CADM1 three-quarters as strongly as to ACE2 and that the interface of ACE2 was similar in both binding modes. Collectively, intranasal S1 spike protein appeared to prefer to accumulate on the olfactory epithelium, and CADM1 was suggested to contribute to this preference of S1 spike protein based on the molecular abundance and affinity.
Collapse
Affiliation(s)
- Fuka Takeuchi
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan,
| | - Aki Sugano
- Center for Clinical Research, Toyama University Hospital, Toyama, Japan
- Data Science Center for Medicine and Hospital Management, Toyama University Hospital, Toyama, Japan
- Department of Medical Systems, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Man Hagiyama
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Takao Inoue
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Akihiro Wada
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Yutaka Takaoka
- Data Science Center for Medicine and Hospital Management, Toyama University Hospital, Toyama, Japan
- Department of Medical Systems, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| |
Collapse
|
15
|
Mishra S, Sharma M, Singh MK, Pati S, Dehury B. Dissecting the Molecular Basis of Host Leucine-Rich Repeat Containing 15 Mediated Interaction with Receptor Binding Domain of SARS-CoV-2 Spike Protein: A Computational Approach. J Phys Chem Lett 2023; 14:8994-9001. [PMID: 37781985 DOI: 10.1021/acs.jpclett.3c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The detection of leucine-rich repeat containing 15 (LRRC15) as a connecting link with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the possibility of its involvement in differential restriction activity of SARS-CoV-2 pathways. However, the structure-function mechanism of LRRC15 involving the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and their mode of interaction is largely unknown. Using state-of-the-art AlphaFold2 and all-atom molecular dynamics simulations, our findings provide evidences of alternative binding modes of RBD with LRR units of LRRC15 having varied affinities. Contribution of both the receptor binding regions in RBD, including receptor binding motif in accommodating the LRR domain, towards the C-terminal region, emphasizes its differential role in modulating host cell receptiveness for SARS-CoV-2, the innate immune system, as well as antiviral tone. However, further experimental validations are necessary for unravelling the unknown mechanism and distinctive features of this host receptor in the COVID-19 pandemic, involving both the transmembrane as well as cytoplasmic domain.
Collapse
Affiliation(s)
- Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, Odisha, India
| | - Mansi Sharma
- KIIT School of Biotechnology, Sikharchandi Vihar, Bhubaneswar 751024, Odisha, India
| | - Mahendra Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana 122052, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, Odisha, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, Odisha, India
| |
Collapse
|
16
|
Munir M, Embry A, Doench JG, Heaton NS, Wilen CB, Orchard RC. Genome-wide CRISPR activation screen identifies JADE3 as an antiviral activator of NF-kB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560128. [PMID: 37808733 PMCID: PMC10557722 DOI: 10.1101/2023.09.29.560128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape we conducted a gain of function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including JADE3 a protein involved in directing the histone acetyltransferase HBO1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Interestingly, expression of the closely related paralogues JADE1 and JADE2 are unable to restrict influenza A virus infection, suggesting a distinct function of JADE3. We identify both shared and unique transcriptional signatures between uninfected cells expressing JADE3 and JADE2. These data provide a framework for understanding the overlapping and distinct functions of the JADE family of paralogues. Specifically, we find that JADE3 expression activates the NF-kB signaling pathway, consistent with an antiviral function. Therefore, we propose JADE3, but not JADE1 or JADE2, activates an antiviral genetic program involving the NF-kB pathway to restrict influenza A virus infection.
Collapse
Affiliation(s)
- Moiz Munir
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aaron Embry
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Craig B. Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Robert C. Orchard
- Departments of Immunology and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Kambouris ME, Patrinos GP, Velegraki A, Manoussopoulos Y. Historical microbiology: researching past bioevents by integrating scholarship (re)sources with paleomicrobiology assets. Future Microbiol 2023; 18:681-693. [PMID: 37584528 DOI: 10.2217/fmb-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The analysis of past epidemics and pandemics, either spontaneous or of human origin, may revise the physical history of microbiota and create a temporal context in our understanding regarding pathogen attributes like virulence, evolution, transmission and disease dynamics. The data of high-tech scientific methods seem reliable, but their interpretation may still be biased when tackling events of the distant past. Such endeavors should be adjusted to other cognitive resources including historical accounts reporting the events of interest and references in alien medical cultures and terminologies; the latter may contextualize them differently from current practices. Thus 'historical microbiology' emerges. Validating such resources requires utmost care, as these may be susceptible to different biases regarding the interpretation of facts and phenomena; biases partly due to methodological limitations.
Collapse
Affiliation(s)
| | - George P Patrinos
- Department of Pharmacy, University of Patras, Rio Patras, 26504, Greece
- Department of Genetics & Genomics, College of Medicine & Health Sciences & Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Yiannis Manoussopoulos
- Plant Protection Division of Patras, Institute of Industrial & Forage Plants, NEO & Amerikis, Patras, 26004, Greece
| |
Collapse
|
18
|
Ngiam JN, Liong TS, Poh KK. Response to comments on: Silent hypoxia: pulse oximetry and its relation to COVID-19 in Singapore. Singapore Med J 2023; 64:476. [PMID: 37459002 PMCID: PMC10395804 DOI: 10.4103/singaporemedj.smj-2023-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/20/2023]
Affiliation(s)
- Jinghao Nicholas Ngiam
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
| | - Tze Sian Liong
- Department of Medicine, National University Health System, Singapore
| | - Kian Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore E-mail:
| |
Collapse
|
19
|
Di Guardo G. Comments on: Silent hypoxia: pulse oximetry and its relation to COVID-19 in Singapore. Singapore Med J 2023; 64:475. [PMID: 37459001 PMCID: PMC10395810 DOI: 10.4103/singaporemedj.smj-2023-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 07/20/2023]
Affiliation(s)
- Giovanni Di Guardo
- Professor (retired), General Pathology and Veterinary Pathophysiology, Veterinary Medical Faculty, University of Teramo, Teramo, Italy E-mail:
| |
Collapse
|
20
|
Božič A, Podgornik R. Evolutionary changes in the number of dissociable amino acids on spike proteins and nucleoproteins of SARS-CoV-2 variants. Virus Evol 2023; 9:vead040. [PMID: 37583936 PMCID: PMC10424713 DOI: 10.1093/ve/vead040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023] Open
Abstract
The spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for target recognition, cellular entry, and endosomal escape of the virus. At the same time, it is the part of the virus that exhibits the greatest sequence variation across the many variants which have emerged during its evolution. Recent studies have indicated that with progressive lineage emergence, the positive charge on the spike protein has been increasing, with certain positively charged amino acids (AAs) improving the binding of the spike protein to cell receptors. We have performed a detailed analysis of dissociable AAs of more than 1400 different SARS-CoV-2 lineages, which confirms these observations while suggesting that this progression has reached a plateau with Omicron and its subvariants and that the positive charge is not increasing further. Analysis of the nucleocapsid protein shows no similar increase in positive charge with novel variants, which further indicates that positive charge of the spike protein is being evolutionarily selected for. Furthermore, comparison with the spike proteins of known coronaviruses shows that already the wild-type SARS-CoV-2 spike protein carries an unusually large amount of positively charged AAs when compared to most other betacoronaviruses. Our study sheds light on the evolutionary changes in the number of dissociable AAs on the spike protein of SARS-CoV-2, complementing existing studies and providing a stepping stone towards a better understanding of the relationship between the spike protein charge and viral infectivity and transmissibility.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, Ljubljana SI-1000, Slovenia
| | - Rudolf Podgornik
- School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, No. 3 Nanyitiao, Zhongguancun, Haidian District, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, No. 8 3rd South Street, Zhongguancun, Haidian District, Beijing 100190, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, No.1 Jinlian Road, Wenzhou, Zhejiang 325001, China
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana SI-1000, Slovenia
| |
Collapse
|
21
|
Barthe M, Hertereau L, Lamghari N, Osman-Ponchet H, Braud VM. Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry? Int J Mol Sci 2023; 24:ijms24076253. [PMID: 37047226 PMCID: PMC10094153 DOI: 10.3390/ijms24076253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
To prevent the spread of SARS-CoV-2, all routes of entry of the virus into the host must be mapped. The skin is in contact with the external environment and thus may be an alternative route of entry to transmission via the upper respiratory tract. SARS-CoV-2 cell entry is primarily dependent on ACE2 and the proteases TMPRSS2 or cathepsin L but other cofactors and attachment receptors have been identified that may play a more important role in specific tissues such as the skin. The continued emergence of new variants may also alter the tropism of the virus. In this review, we summarize current knowledge on these receptors and cofactors, their expression profile, factors modulating their expression and their role in facilitating SARS-CoV-2 infection. We discuss their expression in the skin and their possible involvement in percutaneous infection since the presence of the virus has been detected in the skin.
Collapse
Affiliation(s)
- Manon Barthe
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Leslie Hertereau
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
| | - Noura Lamghari
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
| | - Hanan Osman-Ponchet
- PKDERM Laboratories, 45 Boulevard Marcel Pagnol, 06130 Grasse, France
- Correspondence: (H.O.-P.); (V.M.B.)
| | - Véronique M. Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS UMR7275, 06560 Valbonne, France; (M.B.); (L.H.); (N.L.)
- Correspondence: (H.O.-P.); (V.M.B.)
| |
Collapse
|
22
|
Wong YP, Tan GC, Khong TY. SARS-CoV-2 Transplacental Transmission: A Rare Occurrence? An Overview of the Protective Role of the Placenta. Int J Mol Sci 2023; 24:4550. [PMID: 36901979 PMCID: PMC10002996 DOI: 10.3390/ijms24054550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) pandemic, caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global public health crisis, causing substantial concern especially to the pregnant population. Pregnant women infected with SARS-CoV-2 are at greater risk of devastating pregnancy complications such as premature delivery and stillbirth. Irrespective of the emerging reported cases of neonatal COVID-19, reassuringly, confirmatory evidence of vertical transmission is still lacking. The protective role of the placenta in limiting in utero spread of virus to the developing fetus is intriguing. The short- and long-term impact of maternal COVID-19 infection in the newborn remains an unresolved question. In this review, we explore the recent evidence of SARS-CoV-2 vertical transmission, cell-entry pathways, placental responses towards SARS-CoV-2 infection, and its potential effects on the offspring. We further discuss how the placenta serves as a defensive front against SARS-CoV-2 by exerting various cellular and molecular defense pathways. A better understanding of the placental barrier, immune defense, and modulation strategies involved in restricting transplacental transmission may provide valuable insights for future development of antiviral and immunomodulatory therapies to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Pathology, SA Pathology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - T. Yee Khong
- Department of Pathology, SA Pathology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
- Department of Pathology, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|