1
|
Fu C, Wang X, Wu Y, Li L. LuxR solo regulates recalcitrant aromatic compound biodegradation: Repression and activation of dibenzofuran-catabolic genes expression in a Rhodococcus sp. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137923. [PMID: 40107099 DOI: 10.1016/j.jhazmat.2025.137923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Aromatic compounds contribute to the category of prevalent, toxic, and persistent pollutants in the environment. Microbial degradation of aromatic pollutants is eco-friendly, which depends on efficient manipulation of catabolic enzyme activity. As homologs of quorum sensing LuxR family regulators, LuxR solos play important roles in cell-cell interaction; however, there are few studies on its regulation of recalcitrant aromatic compounds degradation. In this study, the transcriptional regulatory mechanism of dibenzofuran catabolic genes controlled by LuxR solo was elucidated in the dioxin-degrader Rhodococcus sp. strain p52. LuxR solo encoded by catabolic plasmid pDF01 was detected to bind to the promoters of dfdA and dfdB and inhibit the genes expression, which are involved in dibenzofuran degradation. The repression of the LuxR on the catabolic genes expression was not affected by dibenzofuran, but could be alleviated by the intermediate of dibenzofuran degradation, salicylic acid. RNA-Seq analysis suggested that the LuxR solo related to regulating the expression of multiple key genes on the chromosome and catabolic plasmids pDF02. Phylogenetic analysis indicated that LuxR solos frequently distribute among aromatics-degrading bacteria. This study reveals the molecular regulatory network of dibenzofuran degradation mediated by LuxR solo and deepens the understanding of transcriptional regulatory mechanisms of aromatic compounds degradation.
Collapse
Affiliation(s)
- Changai Fu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Yanan Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, China.
| |
Collapse
|
2
|
Toribio-Celestino L, San Millan A. Plasmid-bacteria associations in the clinical context. Trends Microbiol 2025:S0966-842X(25)00122-2. [PMID: 40374465 DOI: 10.1016/j.tim.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025]
Abstract
Antimicrobial resistance (AMR) is one of the most pressing global health problems, with plasmids playing a central role in its evolution and dissemination. Over the past decades, many studies have investigated the ecoevolutionary dynamics between plasmids and their bacterial hosts. However, what drives the epidemiological success of certain plasmid-bacterium associations remains unclear. In this opinion article, we review which factors influence these associations and underline that studying plasmid-host interactions of clinical relevance is critical for understanding the evolution and spread of AMR. We also highlight the increasing importance of integrating experimental research with bioinformatics and machine learning tools to study plasmid-bacteria dynamics. This combined approach will assist researchers to dissect the molecular mechanisms underlying successful plasmid-host associations and to design strategies to prevent and predict future high-risk associations.
Collapse
Affiliation(s)
| | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Elg CA, Mack E, Rolfsmeier M, McLean TC, Sneddon D, Kosterlitz O, Soderling E, Narum S, Rowley PA, Sullivan J, Thomas CM, Top EM. Evolution of a Plasmid Regulatory Circuit Ameliorates Plasmid Fitness Cost. Mol Biol Evol 2025; 42:msaf062. [PMID: 40138356 PMCID: PMC11997246 DOI: 10.1093/molbev/msaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 02/13/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Plasmids promote adaptation of bacteria by facilitating horizontal transfer of diverse genes, notably those conferring antibiotic resistance. Some plasmids, like those of the incompatibility group IncP-1, are known to replicate and persist in a broad range of bacteria. We investigated a poorly understood exception, the IncP-1β plasmid pBP136 from a clinical Bordetella pertussis isolate, which quickly became extinct in laboratory Escherichia coli populations. Through experimental evolution, we found that the inactivation of a previously uncharacterized plasmid gene, upf31, drastically improved plasmid persistence in E. coli. The gene inactivation caused alterations in the plasmid regulatory system, including decreased transcription of the global plasmid regulators (korA, korB, and korC) and numerous genes in their regulons. This is consistent with our findings that Upf31 represses its own transcription. It also caused secondary transcriptional changes in many chromosomal genes. In silico analyses predicted that Upf31 interacts with the plasmid regulator KorB at its C-terminal dimerization domain (CTD). We showed experimentally that adding the CTD of upf31/pBP136 to the naturally truncated upf31 allele of the stable IncP-1β archetype R751 results in plasmid destabilization in E. coli. Moreover, mutagenesis showed that upf31 alleles encoded on nearly half of the sequenced IncP-1β plasmids also possess this destabilization phenotype. While Upf31 might be beneficial in many hosts, we show that in E. coli some alleles have harmful effects that can be rapidly alleviated with a single mutation. Thus, broad-host-range plasmid adaptation to new hosts can involve fine-tuning their transcriptional circuitry through evolutionary changes in a single gene.
Collapse
Affiliation(s)
- Clinton A Elg
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Erin Mack
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | | | - Thomas C McLean
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - David Sneddon
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Olivia Kosterlitz
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Biology Department, University of Washington, Seattle, WA, USA
| | | | - Solana Narum
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Jack Sullivan
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | | | - Eva M Top
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
4
|
Toribio-Celestino L, Calvo-Villamañán A, Herencias C, Alonso-Del Valle A, Sastre-Dominguez J, Quesada S, Mazel D, Rocha EPC, Fernández-Calvet A, San Millan A. A plasmid-chromosome crosstalk in multidrug resistant enterobacteria. Nat Commun 2024; 15:10859. [PMID: 39738078 PMCID: PMC11686079 DOI: 10.1038/s41467-024-55169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Conjugative plasmids promote the dissemination and evolution of antimicrobial resistance in bacterial pathogens. However, plasmid acquisition can produce physiological alterations in the bacterial host, leading to potential fitness costs that determine the clinical success of bacteria-plasmid associations. In this study, we use a transcriptomic approach to characterize the interactions between a globally disseminated carbapenem resistance plasmid, pOXA-48, and a diverse collection of multidrug resistant (MDR) enterobacteria. Although pOXA-48 produces mostly strain-specific transcriptional alterations, it also leads to the common overexpression of a small chromosomal operon present in Klebsiella spp. and Citrobacter freundii strains. This operon includes two genes coding for a pirin and an isochorismatase family proteins (pfp and ifp), and shows evidence of horizontal mobilization across Proteobacteria species. Combining genetic engineering, transcriptomics, and CRISPRi gene silencing, we show that a pOXA-48-encoded LysR regulator is responsible for the plasmid-chromosome crosstalk. Crucially, the operon overexpression produces a fitness benefit in a pOXA-48-carrying MDR K. pneumoniae strain, suggesting that this crosstalk promotes the dissemination of carbapenem resistance in clinical settings.
Collapse
Affiliation(s)
| | | | - Cristina Herencias
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Susana Quesada
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Didier Mazel
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Bacterial Genome Plasticity, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | | | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Hall JPJ. Loading and unloading plasmid cargoes. Trends Microbiol 2024; 32:1150-1152. [PMID: 39393940 DOI: 10.1016/j.tim.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Plasmids are vehicles for horizontal gene transfer between cells, but they also exchange genes with associated chromosomes in a process termed 'intracellular mobility'. I discuss a recent article by Kadibalban et al. mapping such plasmid-chromosomal sequence similarities across diverse bacteria.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
6
|
Sastre-Dominguez J, DelaFuente J, Toribio-Celestino L, Herencias C, Herrador-Gómez P, Costas C, Hernández-García M, Cantón R, Rodríguez-Beltrán J, Santos-Lopez A, San Millan A. Plasmid-encoded insertion sequences promote rapid adaptation in clinical enterobacteria. Nat Ecol Evol 2024; 8:2097-2112. [PMID: 39198572 PMCID: PMC7616626 DOI: 10.1038/s41559-024-02523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Plasmids are extrachromosomal genetic elements commonly found in bacteria. They are known to fuel bacterial evolution through horizontal gene transfer, and recent analyses indicate that they can also promote intragenomic adaptations. However, the role of plasmids as catalysts of bacterial evolution beyond horizontal gene transfer is poorly explored. In this study, we investigated the impact of a widespread conjugative plasmid, pOXA-48, on the evolution of several multidrug-resistant clinical enterobacteria. Combining experimental and within-patient evolution analyses, we unveiled that plasmid pOXA-48 promotes bacterial evolution through the transposition of plasmid-encoded insertion sequence 1 (IS1) elements. Specifically, IS1-mediated gene inactivation expedites the adaptation rate of clinical strains in vitro and fosters within-patient adaptation in the gut microbiota. We deciphered the mechanism underlying the plasmid-mediated surge in IS1 transposition, revealing a negative feedback loop regulated by the genomic copy number of IS1. Given the overrepresentation of IS elements in bacterial plasmids, our findings suggest that plasmid-mediated IS1 transposition represents a crucial mechanism for swift bacterial adaptation.
Collapse
Affiliation(s)
| | | | | | - Cristina Herencias
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Coloma Costas
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal-Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Centro de Investigación Biológica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Santos-Lopez
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Alvaro San Millan
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Centro de Investigación Biológica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Wang X, Wu Y, Chen M, Fu C, Xu H, Li L. Different Roles of Dioxin-Catabolic Plasmids in Growth, Biofilm Formation, and Metabolism of Rhodococcus sp. Strain p52. Microorganisms 2024; 12:1700. [PMID: 39203542 PMCID: PMC11357670 DOI: 10.3390/microorganisms12081700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Microorganisms harbor catabolic plasmids to tackle refractory organic pollutants, which is crucial for bioremediation and ecosystem health. Understanding the impacts of plasmids on hosts provides insights into the behavior and adaptation of degrading bacteria in the environment. Here, we examined alterations in the physiological properties and gene expression profiles of Rhodococcus sp. strain p52 after losing two conjugative dioxin-catabolic megaplasmids (pDF01 and pDF02). The growth of strain p52 accelerated after pDF01 loss, while it decelerated after pDF02 loss. During dibenzofuran degradation, the expression levels of dibenzofuran catabolic genes on pDF01 were higher compared to those on pDF02; accordingly, pDF01 loss markedly slowed dibenzofuran degradation. It was suggested that pDF01 is more beneficial to strain p52 under dibenzofuran exposure. Moreover, plasmid loss decreased biofilm formation, especially after pDF02 loss. Transcriptome profiling revealed different pathways enriched in upregulated and downregulated genes after pDF01 and pDF02 loss, indicating different adaptation mechanisms. Based on the transcriptional activity variation, pDF01 played roles in transcription and anabolic processes, while pDF02 profoundly influenced energy production and cellular defense. This study enhances our knowledge of the impacts of degradative plasmids on native hosts and the adaptation mechanisms of hosts, contributing to the application of plasmid-mediated bioremediation in contaminated environments.
Collapse
Affiliation(s)
- Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Qingdao 266237, China; (X.W.); (Y.W.); (M.C.); (C.F.); (H.X.)
| | - Yanan Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Qingdao 266237, China; (X.W.); (Y.W.); (M.C.); (C.F.); (H.X.)
| | - Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Qingdao 266237, China; (X.W.); (Y.W.); (M.C.); (C.F.); (H.X.)
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Changai Fu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Qingdao 266237, China; (X.W.); (Y.W.); (M.C.); (C.F.); (H.X.)
| | - Hangzhou Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Qingdao 266237, China; (X.W.); (Y.W.); (M.C.); (C.F.); (H.X.)
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Qingdao 266237, China; (X.W.); (Y.W.); (M.C.); (C.F.); (H.X.)
| |
Collapse
|
8
|
Cyriaque V, Ibarra-Chávez R, Kuchina A, Seelig G, Nesme J, Madsen JS. Single-cell RNA sequencing reveals plasmid constrains bacterial population heterogeneity and identifies a non-conjugating subpopulation. Nat Commun 2024; 15:5853. [PMID: 38997267 PMCID: PMC11245611 DOI: 10.1038/s41467-024-49793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Transcriptional heterogeneity in isogenic bacterial populations can play various roles in bacterial evolution, but its detection remains technically challenging. Here, we use microbial split-pool ligation transcriptomics to study the relationship between bacterial subpopulation formation and plasmid-host interactions at the single-cell level. We find that single-cell transcript abundances are influenced by bacterial growth state and plasmid carriage. Moreover, plasmid carriage constrains the formation of bacterial subpopulations. Plasmid genes, including those with core functions such as replication and maintenance, exhibit transcriptional heterogeneity associated with cell activity. Notably, we identify a cell subpopulation that does not transcribe conjugal plasmid transfer genes, which may help reduce plasmid burden on a subset of cells. Our study advances the understanding of plasmid-mediated subpopulation dynamics and provides insights into the plasmid-bacteria interplay.
Collapse
Affiliation(s)
- Valentine Cyriaque
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, Mons, Belgium.
| | | | - Anna Kuchina
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
- Paul G. Allen School for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
9
|
Gluck-Thaler E, Vogan A. Systematic identification of cargo-mobilizing genetic elements reveals new dimensions of eukaryotic diversity. Nucleic Acids Res 2024; 52:5496-5513. [PMID: 38686785 PMCID: PMC11162782 DOI: 10.1093/nar/gkae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Cargo-mobilizing mobile elements (CMEs) are genetic entities that faithfully transpose diverse protein coding sequences. Although common in bacteria, we know little about eukaryotic CMEs because no appropriate tools exist for their annotation. For example, Starships are giant fungal CMEs whose functions are largely unknown because they require time-intensive manual curation. To address this knowledge gap, we developed starfish, a computational workflow for high-throughput eukaryotic CME annotation. We applied starfish to 2 899 genomes of 1 649 fungal species and found that starfish recovers known Starships with 95% combined precision and recall while expanding the number of annotated elements ten-fold. Extant Starship diversity is partitioned into 11 families that differ in their enrichment patterns across fungal classes. Starship cargo changes rapidly such that elements from the same family differ substantially in their functional repertoires, which are predicted to contribute to diverse biological processes such as metabolism. Many elements have convergently evolved to insert into 5S rDNA and AT-rich sequence while others integrate into random locations, revealing both specialist and generalist strategies for persistence. Our work establishes a framework for advancing mobile element biology and provides the means to investigate an emerging dimension of eukaryotic genetic diversity, that of genomes within genomes.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Neuchâtel 2000, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, Madison, WI 53706, USA
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
10
|
Hall RJ, Snaith AE, Thomas MJN, Brockhurst MA, McNally A. Multidrug resistance plasmids commonly reprogram the expression of metabolic genes in Escherichia coli. mSystems 2024; 9:e0119323. [PMID: 38376169 PMCID: PMC10949484 DOI: 10.1128/msystems.01193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Multidrug-resistant Escherichia coli is a leading cause of global mortality. Transfer of plasmids carrying genes encoding beta-lactamases, carbapenamases, and colistin resistance between lineages is driving the rising rates of hard-to-treat nosocomial and community infections. Multidrug resistance (MDR) plasmid acquisition commonly causes transcriptional disruption, and while a number of studies have shown strain-specific fitness and transcriptional effects of an MDR plasmid across diverse bacterial lineages, fewer studies have compared the impacts of different MDR plasmids in a common bacterial host. As such, our ability to predict which MDR plasmids are the most likely to be maintained and spread in bacterial populations is limited. Here, we introduced eight diverse MDR plasmids encoding resistances against a range of clinically important antibiotics into E. coli K-12 MG1655 and measured their fitness costs and transcriptional impacts. The scale of the transcriptional responses varied substantially between plasmids, ranging from >650 to <20 chromosomal genes being differentially expressed. However, the scale of regulatory disruption did not correlate significantly with the magnitude of the plasmid fitness cost, which also varied between plasmids. The identities of differentially expressed genes differed between transconjugants, although the expression of certain metabolic genes and functions were convergently affected by multiple plasmids, including the downregulation of genes involved in L-methionine transport and metabolism. Our data show the complexity of the interaction between host genetic background and plasmid genetic background in determining the impact of MDR plasmid acquisition on E. coli. IMPORTANCE The increase in infections that are resistant to multiple classes of antibiotics, including those isolates that carry carbapenamases, beta-lactamases, and colistin resistance genes, is of global concern. Many of these resistances are spread by conjugative plasmids. Understanding more about how an isolate responds to an incoming plasmid that encodes antibiotic resistance will provide information that could be used to predict the emergence of MDR lineages. Here, the identification of metabolic networks as being particularly sensitive to incoming plasmids suggests the possible targets for reducing plasmid transfer.
Collapse
Affiliation(s)
- Rebecca J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ann E. Snaith
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew J. N. Thomas
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Malone JG, Thompson CMA. Mechanisms of Plasmid Behavioral Manipulation. DNA Cell Biol 2024; 43:105-107. [PMID: 38294780 DOI: 10.1089/dna.2023.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Affiliation(s)
- Jacob G Malone
- Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | |
Collapse
|
12
|
Thompson CMA, Hall JPJ, Chandra G, Martins C, Saalbach G, Panturat S, Bird SM, Ford S, Little RH, Piazza A, Harrison E, Jackson RW, Brockhurst MA, Malone JG. Correction: Plasmids manipulate bacterial behaviour through translational regulatory crosstalk. PLoS Biol 2024; 22:e3002531. [PMID: 38359383 PMCID: PMC10869162 DOI: 10.1371/journal.pbio.3002531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pbio.3001988.].
Collapse
|
13
|
Fuentes-León F, Quintero-Ruiz N, Fernández-Silva FS, Munford V, Vernhes Tamayo M, Menck CFM, Galhardo RS, Sánchez-Lamar A. Genotoxicity of ultraviolet light and sunlight in the bacterium Caulobacter crescentus: Wavelength-dependence. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 894:503727. [PMID: 38432774 DOI: 10.1016/j.mrgentox.2024.503727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 03/05/2024]
Abstract
The ultraviolet (UV) component of sunlight can damage DNA. Although most solar UV is absorbed by the ozone layer, wavelengths > 300 nm (UVA and UVB bands) can reach the Earth's surface. It is essential to understand the genotoxic effects of UV light, particularly in natural environments. Caulobacter crescentus, a bacterium widely employed as a model for cell cycle studies, was selected for this study. Strains proficient and deficient in DNA repair (uvrA-) were used to concurrently investigate three genotoxic endpoints: cytotoxicity, SOS induction, and gene mutation, using colony-formation, the SOS chromotest, and RifR mutagenesis, respectively. Our findings underscore the distinct impacts of individual UV bands and the full spectrum of sunlight itself in C. crescentus. UVC light was highly genotoxic, especially for the repair-deficient strain. A UVB dose equivalent to 20 min sunlight exposure also affected the cells. UVA exposure caused a significant response only at high doses, likely due to activation of photorepair. Exposure to solar irradiation resulted in reduced levels of SOS induction, possibly due to decreased cell survival. However, mutagenicity is increased, particularly in uvrA- deficient cells.
Collapse
Affiliation(s)
- Fabiana Fuentes-León
- Laboratorio de Genotoxicología, Facultad de Biología, Universidad de La Habana, Calle 25 # 455 e\ J e I, Vedado, 10400 La Habana, Cuba; Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, Ed. Biomédicas 2, São Paulo 05508-900, São Paulo, Brazil.
| | - Nathalia Quintero-Ruiz
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, Ed. Biomédicas 2, São Paulo 05508-900, São Paulo, Brazil
| | - Frank S Fernández-Silva
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, Ed. Biomédicas 2, São Paulo 05508-900, São Paulo, Brazil
| | - Veridiana Munford
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, Ed. Biomédicas 2, São Paulo 05508-900, São Paulo, Brazil
| | - Marioly Vernhes Tamayo
- Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Calle 5ta # 502 e/ 5ta Avenida y7ma, Miramar, Playa, La Habana, Cuba
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, Ed. Biomédicas 2, São Paulo 05508-900, São Paulo, Brazil
| | - Rodrigo S Galhardo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, Ed. Biomédicas 2, São Paulo 05508-900, São Paulo, Brazil
| | - Angel Sánchez-Lamar
- Laboratorio de Genotoxicología, Facultad de Biología, Universidad de La Habana, Calle 25 # 455 e\ J e I, Vedado, 10400 La Habana, Cuba.
| |
Collapse
|
14
|
Chu WHW, Tan YH, Tan SY, Chen Y, Yong M, Lye DC, Kalimuddin S, Archuleta S, Gan YH. Acquisition of regulator on virulence plasmid of hypervirulent Klebsiella allows bacterial lifestyle switch in response to iron. mBio 2023; 14:e0129723. [PMID: 37530523 PMCID: PMC10470599 DOI: 10.1128/mbio.01297-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 08/03/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae causes liver abscess and potentially devastating metastatic complications. The majority of Klebsiella-induced liver abscess are caused by the CG23-I sublineage of hypervirulent Klebsiella pneumoniae. This and some other lineages possess a >200-kb virulence plasmid. We discovered a novel protein IroP nestled in the virulence plasmid-encoded salmochelin operon that cross-regulates and suppresses the promoter activity of chromosomal type 3 fimbriae (T3F) gene transcription. IroP is itself repressed by iron through the ferric uptake regulator. Iron-rich conditions increase T3F and suppress capsule mucoviscosity, leading to biofilm formation and cell adhesion. Conversely, iron-poor conditions cause a transcriptional switch to hypermucoid capsule production and T3F repression. The likely acquisition of iroP on mobile genetic elements and successful adaptive integration into the genetic circuitry of a major lineage of hypervirulent K. pneumoniae reveal a powerful example of plasmid chromosomal cross talk that confers an evolutionary advantage. Our discovery also addresses the conundrum of how the hypermucoid capsule that impedes adhesion could be regulated to facilitate biofilm formation and colonization. The acquired ability of the bacteria to alternate between a state favoring dissemination and one that favors colonization in response to iron availability through transcriptional regulation offers novel insights into the evolutionary success of this pathogen. IMPORTANCE Hypervirulent Klebsiella pneumoniae contributes to the majority of monomicrobial-induced liver abscess infections that can lead to several other metastatic complications. The large virulence plasmid is highly stable in major lineages, suggesting that it provides survival benefits. We discovered a protein IroP encoded on the virulence plasmid that suppresses expression of the type 3 fimbriae. IroP itself is regulated by iron, and we showed that iron regulates hypermucoid capsule production while inversely regulating type 3 fimbriae expression through IroP. The acquisition and integration of this inverse transcriptional switch between fimbriae and capsule mucoviscosity shows an evolved sophisticated plasmid-chromosomal cross talk that changes the behavior of hypervirulent K. pneumoniae in response to a key nutrient that could contribute to the evolutionary success of this pathogen.
Collapse
Affiliation(s)
- Wilson H. W. Chu
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Han Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Si Yin Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yahua Chen
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Melvin Yong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David C. Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Sophia Archuleta
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Sánchez-Salazar AM, Taparia T, Olesen AK, Acuña JJ, Sørensen SJ, Jorquera MA. An overview of plasmid transfer in the plant microbiome. Plasmid 2023; 127:102695. [PMID: 37295540 DOI: 10.1016/j.plasmid.2023.102695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Plant microbiomes are pivotal for healthy plant physiological development. Microbes live in complex co-association with plant hosts, and interactions within these microbial communities vary with plant genotype, plant compartment, phenological stage, and soil properties, among others. Plant microbiomes also harbor a substantial and diverse pool of mobile genes encoded on plasmids. Several plasmid functions attributed to plant-associated bacteria are relatively poorly understood. Additionally, the role of plasmids in disseminating genetic traits within plant compartments is not well known. Here, we present the current knowledge on the occurrence, diversity, function, and transfer of plasmids in plant microbiomes, emphasizing the factors that could modulate gene transfer in-planta. We also describe the role of the plant microbiome as a plasmid reservoir and the dissemination of its genetic material. We include a brief discussion on the current methodological limitations in studying plasmid transfer within plant microbiomes. This information could be useful to elucidate the dynamics of the bacterial gene pools, the adaptations different organisms have made, and variations in bacterial populations that might have never been described before, particularly in complex microbial communities associated with plants in natural and anthropogenic impacted environments.
Collapse
Affiliation(s)
- Angela M Sánchez-Salazar
- Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencia, Universidad de La Frontera, Av. Francisco Salazar, 01145 Temuco, Chile; Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar, 01145 Temuco, Chile
| | - Tanvi Taparia
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15 Bldg 1, 2100 Copenhagen, Denmark
| | - Asmus K Olesen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15 Bldg 1, 2100 Copenhagen, Denmark
| | - Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar, 01145 Temuco, Chile; The Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. Francisco Salazar, 01145 Temuco, Chile
| | - Søren J Sørensen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15 Bldg 1, 2100 Copenhagen, Denmark.
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar, 01145 Temuco, Chile; The Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Av. Francisco Salazar, 01145 Temuco, Chile.
| |
Collapse
|