1
|
Computational investigation of the dynamic control of cAMP signaling by PDE4 isoform types. Biophys J 2022; 121:2693-2711. [PMID: 35717559 DOI: 10.1016/j.bpj.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a generic signaling molecule that, through precise control of its signaling dynamics, exerts distinct cellular effects. Consequently, aberrant cAMP signaling can have detrimental effects. Phosphodiesterase 4 (PDE4) enzymes profoundly control cAMP signaling and comprise different isoform types of which the enzymatic activity is modulated by differential feedback mechanisms. Because these feedback dynamics are non-linear and occur coincidentally, their effects are difficult to examine experimentally, but can be well simulated computationally. Through understanding the role of PDE4 isoform types in regulating cAMP signaling, PDE4-targeted therapeutic strategies can be better specified. Here, we established a computational model to study how feedback mechanisms on different PDE4 isoform types lead to dynamic, isoform-specific control of cAMP signaling. Ordinary differential equations describing cAMP dynamics were implemented in the VirtualCell (VCell) environment. Simulations indicated that long PDE4 isoforms exert the most profound control on oscillatory cAMP signaling, as opposed to the PDE4-mediated control of single cAMP input pulses. Moreover, elevating cAMP levels or decreasing PDE4 levels revealed different effects on downstream signaling. Together these results underline that cAMP signaling is distinctly regulated by different PDE4 isoform types and that this isoform-specificity should be considered in both computational and experimental follow-up studies to better define PDE4 enzymes as therapeutic targets in diseases in which cAMP signaling is aberrant.
Collapse
|
2
|
Bonilla-Quintana M, Rangamani P. Can biophysical models of dendritic spines be used to explore synaptic changes associated with addiction? Phys Biol 2022; 19. [PMID: 35508164 DOI: 10.1088/1478-3975/ac6cbe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Effective treatments that prevent or reduce drug relapse vulnerability should be developed to relieve the high burden of drug addiction on society. This will only be possible by enhancing the understanding of the molecular mechanisms underlying the neurobiology of addiction. Recent experimental data have shown that dendritic spines, small protrusions from the dendrites that receive excitatory input, of spiny neurons in the nucleus accumbens exhibit morphological changes during drug exposure and withdrawal. Moreover, these changes relate to the characteristic drug-seeking behavior of addiction. However, due to the complexity of the dendritic spines, we do not yet fully understand the processes underlying their structural changes in response to different inputs. We propose that biophysical models can enhance the current understanding of these processes by incorporating different, and sometimes, discrepant experimental data to identify the shared underlying mechanisms and generate experimentally testable hypotheses. This review aims to give an up-to-date report on biophysical models of dendritic spines, focusing on those models that describe their shape changes, which are well-known to relate to learning and memory. Moreover, it examines how these models can enhance our understanding of the effect of the drugs and the synaptic changes during withdrawal, as well as during neurodegenerative disease progression such as Alzheimer's disease.
Collapse
Affiliation(s)
- Mayte Bonilla-Quintana
- Mechanical Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0021, UNITED STATES
| | - Padmini Rangamani
- Mechanical Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0021, UNITED STATES
| |
Collapse
|
3
|
Miningou Zobon NT, Jędrzejewska-Szmek J, Blackwell KT. Temporal pattern and synergy influence activity of ERK signaling pathways during L-LTP induction. eLife 2021; 10:e64644. [PMID: 34374340 PMCID: PMC8363267 DOI: 10.7554/elife.64644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Long-lasting long-term potentiation (L-LTP) is a cellular mechanism of learning and memory storage. Studies have demonstrated a requirement for extracellular signal-regulated kinase (ERK) activation in L-LTP produced by a diversity of temporal stimulation patterns. Multiple signaling pathways converge to activate ERK, with different pathways being required for different stimulation patterns. To answer whether and how different temporal patterns select different signaling pathways for ERK activation, we developed a computational model of five signaling pathways (including two novel pathways) leading to ERK activation during L-LTP induction. We show that calcium and cAMP work synergistically to activate ERK and that stimuli given with large intertrial intervals activate more ERK than shorter intervals. Furthermore, these pathways contribute to different dynamics of ERK activation. These results suggest that signaling pathways with different temporal sensitivities facilitate ERK activation to diversity of temporal patterns.
Collapse
Affiliation(s)
| | - Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatic, Nencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience, Bioengineering Department, George Mason UniversityFairfaxUnited States
- Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
| |
Collapse
|
4
|
Romero-Pimentel AL, Almeida D, Muñoz-Montero S, Rangel C, Mendoza-Morales R, Gonzalez-Saenz EE, Nagy C, Chen G, Aouabed Z, Theroux JF, Turecki G, Martinez-Levy G, Walss-Bass C, Monroy-Jaramillo N, Fernández-Figueroa EA, Gómez-Cotero A, García-Dolores F, Morales-Marin ME, Nicolini H. Integrative DNA Methylation and Gene Expression Analysis in the Prefrontal Cortex of Mexicans Who Died by Suicide. Int J Neuropsychopharmacol 2021; 24:935-947. [PMID: 34214149 PMCID: PMC8653872 DOI: 10.1093/ijnp/pyab042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Suicide represents a major health concern, especially in developing countries. While many demographic risk factors have been proposed, the underlying molecular pathology of suicide remains poorly understood. A body of evidence suggests that aberrant DNA methylation and expression is involved. In this study, we examined DNA methylation profiles and concordant gene expression changes in the prefrontal cortex of Mexicans who died by suicide. METHODS In collaboration with the coroner's office in Mexico City, brain samples of males who died by suicide (n = 35) and age-matched sudden death controls (n = 13) were collected. DNA and RNA were extracted from prefrontal cortex tissue and analyzed with the Infinium Methylation480k and the HumanHT-12 v4 Expression Beadchips, respectively. RESULTS We report evidence of altered DNA methylation profiles at 4430 genomic regions together with 622 genes characterized by differential expression in cases vs controls. Seventy genes were found to have concordant methylation and expression changes. Metacore-enriched analysis identified 10 genes with biological relevance to psychiatric phenotypes and suicide (ADCY9, CRH, NFATC4, ABCC8, HMGA1, KAT2A, EPHA2, TRRAP, CD22, and CBLN1) and highlighted the association that ADCY9 has with various pathways, including signal transduction regulated by the cAMP-responsive element modulator, neurophysiological process regulated by the corticotrophin-releasing hormone, and synaptic plasticity. We therefore went on to validate the observed hypomethylation of ADCY9 in cases vs control through targeted bisulfite sequencing. CONCLUSION Our study represents the first, to our knowledge, analysis of DNA methylation and gene expression associated with suicide in a Mexican population using postmortem brain, providing novel insights for convergent molecular alterations associated with suicide.
Collapse
Affiliation(s)
- Ana L Romero-Pimentel
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico,McGill Group of Suicide Studies, Montreal,Canada
| | - Daniel Almeida
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Said Muñoz-Montero
- Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia Rangel
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Roberto Mendoza-Morales
- Instituto de Ciencias Forenses del Tribunal Superior de Justicia de la CDMX, Mexico City, Mexico
| | - Eli E Gonzalez-Saenz
- Instituto de Ciencias Forenses del Tribunal Superior de Justicia de la CDMX, Mexico City, Mexico
| | - Corina Nagy
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Gary Chen
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Zahia Aouabed
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Gustavo Turecki
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Gabriela Martinez-Levy
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry Ramón de la Fuente, Mexico City, Mexico
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas,USA
| | - Nancy Monroy-Jaramillo
- Department of Neurogenetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suarez, Mexico City, Mexico
| | | | - Amalia Gómez-Cotero
- Centro Interdisciplinario de Ciencias de la Salud, Instituto Politécnico Nacional, Unidad Santo Tomás, Mexico City, Mexico
| | - Fernando García-Dolores
- Instituto de Ciencias Forenses del Tribunal Superior de Justicia de la CDMX, Mexico City, Mexico
| | | | - Humberto Nicolini
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico,Correspondence: José Humberto Nicolini Sánchez, MD, PhD, Laboratorio de Genómica de Enfermedades Psiquiátricas y neurodegenerativas, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, 14610, Ciudad de México, CDMX, México ()
| |
Collapse
|
5
|
Asirvatham AL, Schworer CM, Stahl R, Heitzman D, Carey DJ. Role of A-kinase anchoring proteins in cyclic-AMP-mediated Schwann cell proliferation. Cell Signal 2021; 83:109977. [PMID: 33716104 DOI: 10.1016/j.cellsig.2021.109977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Proliferation of Schwann cells during peripheral nerve development is stimulated by the heregulin/neuregulin family of growth factors expressed by neurons. However, for neonatal rat Schwann cells growing in culture, heregulins produce only a weak mitogenic response. Supplementing heregulin with forskolin, an agent that elevates cyclic AMP levels, produces a dramatic increase in the proliferation of cultured Schwann cells. The mechanisms underlying this synergistic effect required for Schwann cell proliferation in vivo is not well established. Characterizing the A-kinase anchoring proteins (AKAPs) in Schwann cells might help identify substrates tethered to and phosphorylated by the cAMP-dependent protein kinase A (PKA). Using an RII overlay assay that detects AKAPs that are bound to the type II regulatory subunits of PKA, we identified AKAP150 in Schwann cells. Western blot analysis revealed that additional AKAPs, specifically AKAP95, and yotiao were also present. Disruption of PKA/AKAP interaction with Ht-31 peptide resulted in an increase in luciferase-conjugated cyclin D3 promoter activity. Transfection with sequence-specific AKAP siRNAs for AKAP150 and AKAP95 produced a marked reduction in cell proliferation. Immunoblot analysis revealed that knock down of AKAP95 protein caused a significant decrease in expression of the cell cycle regulatory proteins cyclin D2, cyclin D3 and the cell survival signal Akt/Protein Kinase B (Akt/PKB). Morphological characterization of Schwann cell AKAPs indicated the presence of nuclear (AKAP95), cytoplasm-associated (AKAP150) and perinuclear (yotiao) A-kinase anchoring proteins. These results indicate a role for AKAP95 and AKAP150 in the synergistic response of Schwann cells to treatment with heregulin and forskolin.
Collapse
Affiliation(s)
- Angela L Asirvatham
- Department of Biology, Misericordia University, 301 Lake Street Dallas, PA 18612, United States of America.
| | - Charles M Schworer
- Geisinger Medical Center Weis Center for Research, 100 N Academy Avenue, Danville, PA 17822, United States of America
| | - Rick Stahl
- Geisinger Medical Center Weis Center for Research, 100 N Academy Avenue, Danville, PA 17822, United States of America
| | - Deborah Heitzman
- Department of Biology, Bloomsburg University, 400 E. Second Street, Bloomsburg, PA 17815, United States of America
| | - David J Carey
- Geisinger Medical Center Weis Center for Research, 100 N Academy Avenue, Danville, PA 17822, United States of America
| |
Collapse
|
6
|
Chiarante N, Alonso CAI, Plaza J, Lottero-Leconte R, Arroyo-Salvo C, Yaneff A, Osycka-Salut CE, Davio C, Miragaya M, Perez-Martinez S. Cyclic AMP efflux through MRP4 regulates actin dynamics signalling pathway and sperm motility in bovines. Sci Rep 2020; 10:15619. [PMID: 32973195 PMCID: PMC7518284 DOI: 10.1038/s41598-020-72425-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 11/15/2022] Open
Abstract
Previously we demonstrated that multidrug resistance-associated protein 4 transporter (MRP4) mediates cAMP efflux in bovine spermatozoa and that extracellular cAMP (ecAMP) triggers events associated to capacitation. Here, we deepen the study of the role of MRP4 in bovine sperm function by using MK571, an MRP4 inhibitor. The incubation of spermatozoa with MK571 during 45 min inhibited capacitation-associated events. MRP4 was localized in post-acrosomal region and mid-piece at 15 min capacitation, while at 45 min it was mainly located in the acrosome. After 15 min, MK571 decreased total sperm motility (TM), progressive motility (PM) and several kinematic parameters. The addition of ecAMP rescued MK571 effect and ecAMP alone increased the percentage of motile sperm and kinematics parameters. Since actin cytoskeleton plays essential roles in the regulation of sperm motility, we investigated if MRP4 activity might affect actin polymerization. After 15 min capacitation, an increase in F-actin was observed, which was inhibited by MK571. This effect was reverted by the addition of ecAMP. Furthermore, ecAMP alone increased F-actin levels while no F-actin was detected with ecAMP in the presence of PKA inhibitors. Our results support the importance of cAMP efflux through MRP4 in sperm capacitation and suggest its involvement in the regulation of actin polymerization and motility.
Collapse
Affiliation(s)
- Nicolás Chiarante
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jessica Plaza
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Raquel Lottero-Leconte
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Camila Arroyo-Salvo
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Claudia E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIIB-UNSAM/CONICET), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, B1650HMP, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Silvina Perez-Martinez
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
8
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
9
|
Ohadi D, Rangamani P. Geometric Control of Frequency Modulation of cAMP Oscillations due to Calcium in Dendritic Spines. Biophys J 2019; 117:1981-1994. [PMID: 31668747 PMCID: PMC7018999 DOI: 10.1016/j.bpj.2019.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
The spatiotemporal regulation of cyclic adenosine monophosphate (cAMP) and its dynamic interactions with other second messengers such as calcium are critical features of signaling specificity required for neuronal development and connectivity. cAMP is known to contribute to long-term potentiation and memory formation by controlling the formation and regulation of dendritic spines. Despite the recent advances in biosensing techniques for monitoring spatiotemporal cAMP dynamics, the underlying molecular mechanisms that attribute to the subcellular modulation of cAMP remain unknown. In this work, we model the spatiotemporal dynamics of calcium-induced cAMP signaling pathway in dendritic spines. Using a three-dimensional reaction-diffusion model, we investigate the effect of different spatial characteristics of cAMP dynamics that may be responsible for subcellular regulation of cAMP concentrations. Our model predicts that the volume/surface ratio of the spine, regulated through the spine head size, spine neck size, and the presence of physical barriers (spine apparatus), is an important regulator of cAMP dynamics. Furthermore, localization of the enzymes responsible for the synthesis and degradation of cAMP in different compartments also modulates the oscillatory patterns of cAMP through exponential relationships. Our findings shed light on the significance of complex geometric and localization relationships for cAMP dynamics in dendritic spines.
Collapse
Affiliation(s)
- Donya Ohadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California.
| |
Collapse
|
10
|
Ohadi D, Schmitt DL, Calabrese B, Halpain S, Zhang J, Rangamani P. Computational Modeling Reveals Frequency Modulation of Calcium-cAMP/PKA Pathway in Dendritic Spines. Biophys J 2019; 117:1963-1980. [PMID: 31668749 PMCID: PMC7031750 DOI: 10.1016/j.bpj.2019.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Dendritic spines are the primary excitatory postsynaptic sites that act as subcompartments of signaling. Ca2+ is often the first and most rapid signal in spines. Downstream of calcium, the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway plays a critical role in the regulation of spine formation, morphological modifications, and ultimately, learning and memory. Although the dynamics of calcium are reasonably well-studied, calcium-induced cAMP/PKA dynamics, particularly with respect to frequency modulation, are not fully explored. In this study, we present a well-mixed model for the dynamics of calcium-induced cAMP/PKA dynamics in dendritic spines. The model is constrained using experimental observations in the literature. Further, we measured the calcium oscillation frequency in dendritic spines of cultured hippocampal CA1 neurons and used these dynamics as model inputs. Our model predicts that the various steps in this pathway act as frequency modulators for calcium, and the high frequency of calcium input is filtered by adenylyl cyclase 1 and phosphodiesterases in this pathway such that cAMP/PKA only responds to lower frequencies. This prediction has important implications for noise filtering and long-timescale signal transduction in dendritic spines. A companion manuscript presents a three-dimensional spatial model for the same pathway.
Collapse
Affiliation(s)
- Donya Ohadi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California
| | - Danielle L Schmitt
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Barbara Calabrese
- Division of Biological Sciences and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Shelley Halpain
- Division of Biological Sciences and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| |
Collapse
|
11
|
From membrane receptors to protein synthesis and actin cytoskeleton: Mechanisms underlying long lasting forms of synaptic plasticity. Semin Cell Dev Biol 2019; 95:120-129. [PMID: 30634048 DOI: 10.1016/j.semcdb.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Synaptic plasticity, the activity dependent change in synaptic strength, forms the molecular foundation of learning and memory. Synaptic plasticity includes structural changes, with spines changing their size to accomodate insertion and removal of postynaptic receptors, which are correlated with functional changes. Of particular relevance for memory storage are the long lasting forms of synaptic plasticity which are protein synthesis dependent. Due to the importance of spine structural plasticity and protein synthesis, this review focuses on the signaling pathways that connect synaptic stimulation with regulation of protein synthesis and remodeling of the actin cytoskeleton. We also review computational models that implement novel aspects of molecular signaling in synaptic plasticity, such as the role of neuromodulators and spatial microdomains, as well as highlight the need for computational models that connect activation of memory kinases with spine actin dynamics.
Collapse
|
12
|
Automated Metadata Suggestion During Repository Submission. Neuroinformatics 2018; 17:361-371. [PMID: 30382537 DOI: 10.1007/s12021-018-9403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Knowledge discovery via an informatics resource is constrained by the completeness of the resource, both in terms of the amount of data it contains and in terms of the metadata that exists to describe the data. Increasing completeness in one of these categories risks reducing completeness in the other because manually curating metadata is time consuming and is restricted by familiarity with both the data and the metadata annotation scheme. The diverse interests of a research community may drive a resource to have hundreds of metadata tags with few examples for each making it challenging for humans or machine learning algorithms to learn how to assign metadata tags properly. We demonstrate with ModelDB, a computational neuroscience model discovery resource, that using manually-curated regular-expression based rules can overcome this challenge by parsing existing texts from data providers during user data entry to suggest metadata annotations and prompt them to suggest other related metadata annotations rather than leaving the task to a curator. In the ModelDB implementation, analyzing the abstract identified 6.4 metadata tags per abstract at 79% precision. Using the full-text produced higher recall with low precision (41%), and the title alone produced few (1.3) metadata annotations per entry; we thus recommend data providers use their abstract during upload. Grouping the possible metadata annotations into categories (e.g. cell type, biological topic) revealed that precision and recall for the different text sources varies by category. Given this proof-of-concept, other bioinformatics resources can likewise improve the quality of their metadata by adopting our approach of prompting data uploaders with relevant metadata at the minimal cost of formalizing rules for each potential metadata annotation.
Collapse
|
13
|
Pharris MC, Patel NM, Kinzer-Ursem TL. Competitive Tuning Among Ca 2+/Calmodulin-Dependent Proteins: Analysis of in silico Model Robustness and Parameter Variability. Cell Mol Bioeng 2018; 11:353-365. [PMID: 31105797 DOI: 10.1007/s12195-018-0549-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction Calcium/Calmodulin-dependent (Ca2+/CaM-dependent) regulation of protein signaling has long been recognized for its importance in a number of physiological contexts. Found in almost all eukaryotic cells, Ca2+/CaM-dependent signaling participates in muscle development, immune responses, cardiac myocyte function and regulation of neuronal connectivity. In excitatory neurons, dynamic changes in the strength of synaptic connections, known as synaptic plasticity, occur when calcium ions (Ca2+) flux through NMDA receptors and bind the Ca2+-sensor calmodulin (CaM). Ca2+/CaM, in turn, regulates downstream protein signaling in actin polymerization, receptor trafficking, and transcription factor activation.The activation of downstream Ca2+/CaM-dependent binding proteins (CBPs) is a function of the frequency of Ca2+ flux, such that each CBP is preferentially "tuned" to different Ca2+ input signals. We have recently reported that competition among CBPs for CaM binding is alone sufficient to recreate in silico the observed in vivo frequency-dependence of several CBPs. However, CBP activation may strongly depend on the identity and concentration of proteins that constitute the competitive pool; with important implications in the regulation of CBPs in both normal and disease states. Methods Here, we extend our previous deterministic model of competition among CBPs to include phosphodiesterases, AMPAR receptors that are important in synaptic plasticity, and enzymatic function of CBPs: cAMP regulation, kinase activity, and phosphatase activity. After rigorous parameterization and validation by global sensitivity analysis using Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCC), we explore how perturbing the competitive pool of CBPs influences downstream signaling events. In particular, we hypothesize that although perturbations may decrease activation of one CBP, increased activation of a separate, but enzymatically-related CBP could compensate for this loss, providing a homeostatic effect. Results and Conclusions First we compare dynamic model output of two models: a two-state model of Ca2+/CaM binding and a four-state model of Ca2+/CaM binding. We find that a four-state model of Ca2+/CaM binding best captures the dynamic nature of the rapid response of CaM and CBPs to Ca2+ flux in the system. Using global sensitivity analysis, we find that model output is robust to parameter variability. Indeed, although variations in the expression of the CaM buffer neurogranin (Ng) may cause a decrease in Ca2+/CaM-dependent kinase II (CaMKII) activation, overall AMPA receptor phosphorylation is preserved; ostensibly by a concomitant increase in adenylyl cyclase 8 (AC8)-mediated activation of protein kinase A (PKA). Indeed phosphorylation of AMPAR receptors by CaMKII and PKA is robust across a wide range of Ng concentrations, though increases in AMPAR phosphorylation is seen at low Ng levels approaching zero. Our results may explain recent counter-intuitive results in neurogranin knockout mice and provide further evidence that competitive tuning is an important mechanism in synaptic plasticity. These results may be readily translated to other Ca2+/CaM-dependent signaling systems in other cell types and can be used to suggest targeted experimental investigation to explain counter-intuitive or unexpected downstream signaling outcomes.Tamara Kinzer-Ursem is an Assistant Professor in the Weldon School of Biomedical Engineering. She received her B.S. in Bioengineering from the University of Toledo and her M.S. and Ph.D. degrees in Chemical Engineering from the University of Michigan, and her post-doctoral training in Molecular Neuroscience at the California Institute of Technology. Prior to joining Purdue she was the Head of R&D in Biochemistry at Maven Biotechnologies and Visiting Associate in Chemical Engineering at the California Institute of Technology.Research in the Kinzer-Ursem lab focuses on developing tools to advance quantitative descriptions of cellular processes and disease within three areas of expertise: 1) Using particle diffusivity measurements to quantify biomolecular processes. Particle diffusometry is being used as a sensitive biosensor to detect the presence of pathogens in environmental and patient samples. 2) Development of novel protein tagging technologies that are used to label proteins in vivo to enable quantitative description of protein function and elucidate disease mechanisms. 3) Computational modeling of signal transduction mechanisms to understand cellular processes. Using computational techniques, we have recently described "competitive tuning" as a mechanism that might be used to regulate information transfer through protein networks, with implications in cell behavior and drug target analysis.
Collapse
Affiliation(s)
- Matthew C Pharris
- Weldon School of Biomedical Engineering, Purdue University, 260 South Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Neal M Patel
- Weldon School of Biomedical Engineering, Purdue University, 260 South Martin Jischke Drive, West Lafayette, IN 47907 USA
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, 260 South Martin Jischke Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
14
|
Yapo C, Nair AG, Hellgren Kotaleski J, Vincent P, Castro LRV. Switch-like PKA responses in the nucleus of striatal neurons. J Cell Sci 2018; 131:jcs.216556. [DOI: 10.1242/jcs.216556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022] Open
Abstract
Although it is known that Protein Kinase A (PKA) in the nucleus regulates gene expression, the specificities of nuclear PKA signaling remain poorly understood. Here, we combined computational modeling and live-cell imaging of PKA-dependent phosphorylation in mouse brain slices to investigate how transient dopamine signals are translated into nuclear PKA activity in cortical pyramidal neurons and striatal medium spiny neurons. We observed that the nuclear PKA signal in striatal neurons featured an ultrasensitive responsiveness, associated with fast, all or none responses, which is not consistent with the commonly accepted theory of a slow and passive diffusion of catalytic PKA in the nucleus. Our numerical model suggests that a positive feed-forward mechanism inhibiting nuclear phosphatase activity - possibly mediated by DARPP-32 - could be responsible for this non-linear pattern of nuclear PKA response, allowing for a better detection of the transient dopamine signals that are often associated with reward-mediated learning.
Collapse
Affiliation(s)
- Cédric Yapo
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| | - Anu G. Nair
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
- Department of Neuroscience, Karolinska Institutet, Solna, 17177, Sweden
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| | - Liliana R. V. Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, F-75005 Paris, France
- Member of the Bio-Psy Labex, France
| |
Collapse
|
15
|
Romano DR, Pharris MC, Patel NM, Kinzer-Ursem TL. Competitive tuning: Competition's role in setting the frequency-dependence of Ca2+-dependent proteins. PLoS Comput Biol 2017; 13:e1005820. [PMID: 29107982 PMCID: PMC5690689 DOI: 10.1371/journal.pcbi.1005820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/16/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023] Open
Abstract
A number of neurological disorders arise from perturbations in biochemical signaling and protein complex formation within neurons. Normally, proteins form networks that when activated produce persistent changes in a synapse’s molecular composition. In hippocampal neurons, calcium ion (Ca2+) flux through N-methyl-D-aspartate (NMDA) receptors activates Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the neuronal synapse, phenomena known as long-term potentiation (LTP) or long-term depression (LTD), respectively. The calcium-sensor calmodulin (CaM) acts as a common activator of the networks responsible for both LTP and LTD. This is possible, in part, because CaM binding proteins are “tuned” to different Ca2+ flux signals by their unique binding and activation dynamics. Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM signal transduction and can be used to guide focused experimental studies. Although CaM binds over 100 proteins, practical limitations cause many models to include only one or two CaM-activated proteins. In this work, we view Ca2+/CaM as a limiting resource in the signal transduction pathway owing to its low abundance relative to its binding partners. With this view, we investigate the effect of competitive binding on the dynamics of CaM binding partner activation. Using an explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, we find that competition for CaM binding serves as a tuning mechanism: the presence of competitors shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, we find that simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-dependent phosphatase calcineurin. Additionally, competition alone (without feedback mechanisms or spatial parameters) could replicate counter-intuitive experimental observations of decreased activation of Ca2+/CaM-dependent protein kinase II in knockout models of neurogranin. We conclude that competitive tuning could be an important dynamic process underlying synaptic plasticity. Learning and memory formation are likely associated with dynamic fluctuations in the connective strength of neuronal synapses. These fluctuations, called synaptic plasticity, are regulated by calcium ion (Ca2+) influx through ion channels localized to the post-synaptic membrane. Within the post-synapse, the dominant Ca2+ sensor protein, calmodulin (CaM), may activate a variety of downstream binding partners, each contributing to synaptic plasticity outcomes. The conditions at which certain binding partners most strongly activate are increasingly studied using computational models. Nearly all computational studies describe these binding partners in combinations of only one or two CaM binding proteins. In contrast, we combine seven well-studied CaM binding partners into a single model wherein they simultaneously compete for access to CaM. Our dynamic model suggests that competition narrows the window of conditions for optimal activation of some binding partners, mimicking the Ca2+-frequency dependence of some proteins in vivo. Further characterization of CaM-dependent signaling dynamics in neuronal synapses may benefit our understanding of learning and memory formation. Furthermore, we propose that competitive binding may be another framework, alongside feedback and feed-forward loops, signaling motifs, and spatial localization, that can be applied to other signal transduction networks, particularly second messenger cascades, to explain the dynamical behavior of protein activation.
Collapse
Affiliation(s)
- Daniel R. Romano
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Matthew C. Pharris
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Neal M. Patel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
16
|
Jȩdrzejewska-Szmek J, Luczak V, Abel T, Blackwell KT. β-adrenergic signaling broadly contributes to LTP induction. PLoS Comput Biol 2017; 13:e1005657. [PMID: 28742159 PMCID: PMC5546712 DOI: 10.1371/journal.pcbi.1005657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 08/07/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
Long-lasting forms of long-term potentiation (LTP) represent one of the major cellular mechanisms underlying learning and memory. One of the fundamental questions in the field of LTP is why different molecules are critical for long-lasting forms of LTP induced by diverse experimental protocols. Further complexity stems from spatial aspects of signaling networks, such that some molecules function in the dendrite and some are critical in the spine. We investigated whether the diverse experimental evidence can be unified by creating a spatial, mechanistic model of multiple signaling pathways in hippocampal CA1 neurons. Our results show that the combination of activity of several key kinases can predict the occurrence of long-lasting forms of LTP for multiple experimental protocols. Specifically Ca2+/calmodulin activated kinase II, protein kinase A and exchange protein activated by cAMP (Epac) together predict the occurrence of LTP in response to strong stimulation (multiple trains of 100 Hz) or weak stimulation augmented by isoproterenol. Furthermore, our analysis suggests that activation of the β-adrenergic receptor either via canonical (Gs-coupled) or non-canonical (Gi-coupled) pathways underpins most forms of long-lasting LTP. Simulations make the experimentally testable prediction that a complete antagonist of the β-adrenergic receptor will likely block long-lasting LTP in response to strong stimulation. Collectively these results suggest that converging molecular mechanisms allow CA1 neurons to flexibly utilize signaling mechanisms best tuned to temporal pattern of synaptic input to achieve long-lasting LTP and memory storage. Long-term potentiation of the strength of synaptic connections is a mechanism of learning and memory storage. One of the most confusing aspects of hippocampal synaptic potentiation is that numerous experiments have revealed the requirement for a plethora of signaling molecules. Furthermore the degree to which molecules activated by the stress response modify hippocampal synaptic potentiation and memory is still unclear. We used a computational model to demonstrate that this molecular diversity can be explained by considering a combination of several key molecules. We also show that activation of β-adrenergic receptors by the stress response appears to be involved in most forms of synaptic potentiation, though in some cases unconventional mechanisms are utilized. This suggests that novel treatments for stress-related disorders may have more success if they target unconventional mechanisms activated by β-adrenergic receptors.
Collapse
Affiliation(s)
- Joanna Jȩdrzejewska-Szmek
- The Krasnow Institute for Advanced Studies, George Mason University, Fairfax, Virginia, United States of America
| | - Vincent Luczak
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kim T Blackwell
- The Krasnow Institute for Advanced Studies, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Bhalla US. Synaptic input sequence discrimination on behavioral timescales mediated by reaction-diffusion chemistry in dendrites. eLife 2017; 6. [PMID: 28422010 PMCID: PMC5426902 DOI: 10.7554/elife.25827] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/17/2017] [Indexed: 11/13/2022] Open
Abstract
Sequences of events are ubiquitous in sensory, motor, and cognitive function. Key computational operations, including pattern recognition, event prediction, and plasticity, involve neural discrimination of spatio-temporal sequences. Here, we show that synaptically-driven reaction-diffusion pathways on dendrites can perform sequence discrimination on behaviorally relevant time-scales. We used abstract signaling models to show that selectivity arises when inputs at successive locations are aligned with, and amplified by, propagating chemical waves triggered by previous inputs. We incorporated biological detail using sequential synaptic input onto spines in morphologically, electrically, and chemically detailed pyramidal neuronal models based on rat data. Again, sequences were recognized, and local channel modulation downstream of putative sequence-triggered signaling could elicit changes in neuronal firing. We predict that dendritic sequence-recognition zones occupy 5 to 30 microns and recognize time-intervals of 0.2 to 5 s. We suggest that this mechanism provides highly parallel and selective neural computation in a functionally important time range.
Collapse
Affiliation(s)
- Upinder Singh Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
18
|
Guinzberg R, Díaz-Cruz A, Acosta-Trujillo C, Vilchis-Landeros MM, Vázquez-Meza H, Lozano-Flores C, Chiquete-Felix N, Varela-Echavarría A, Uribe-Carvajal S, Riveros-Rosas H, Piña E. Newly synthesized cAMP is integrated at a membrane protein complex signalosome to ensure receptor response specificity. FEBS J 2016; 284:258-276. [PMID: 27865066 DOI: 10.1111/febs.13969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/11/2016] [Accepted: 11/17/2016] [Indexed: 01/21/2023]
Abstract
Spatiotemporal regulation of cAMP within the cell is required to achieve receptor-specific responses. The mechanism through which the cell selects a specific response to newly synthesized cAMP is not fully understood. In hepatocyte plasma membranes, we identified two functional and independent cAMP-responsive signaling protein macrocomplexes that produce, use, degrade, and regulate their own nondiffusible (sequestered) cAMP pool to achieve their specific responses. Each complex responds to the stimulation of an adenosine G protein-coupled receptor (Ado-GPCR), bound to either A2A or A2B , but not simultaneously to both. Each isoprotein involved in each signaling cascade was identified by measuring changes in cAMP levels after receptor activation, and its participation was confirmed by antibody-mediated inactivation. A2A -Ado-GPCR selective stimulation activates adenylyl cyclase 6 (AC6), which is bound to AKAP79/150, to synthesize cAMP which is used by two other AKAP79/150-tethered proteins: protein kinase A (PKA) and phosphodiesterase 3A (PDE3A). In contrast, A2B -Ado-GPCR stimulation activates D-AKAP2-attached AC5 to generate cAMP, which is channeled to two other D-AKAP2-tethered proteins: guanine-nucleotide exchange factor 2 (Epac2) and PDE3B. In both cases, prior activation of PKA or Epac2 with selective cAMP analogs prevents de novo cAMP synthesis. In addition, we show that cAMP does not diffuse between these protein macrocomplexes or 'signalosomes'. Evidence of coimmunoprecipitation and colocalization of some proteins belonging to each signalosome is presented. Each signalosome constitutes a minimal functional signaling unit with its own machinery to synthesize and regulate a sequestered cAMP pool. Thus, each signalosome is devoted to ensure the transmission of a unique and unequivocal message through the cell.
Collapse
Affiliation(s)
- Raquel Guinzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Antonio Díaz-Cruz
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootécnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Carlos Acosta-Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Carlos Lozano-Flores
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Natalia Chiquete-Felix
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | - Salvador Uribe-Carvajal
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Enrique Piña
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
19
|
Wolff GH, Strausfeld NJ. Genealogical correspondence of a forebrain centre implies an executive brain in the protostome-deuterostome bilaterian ancestor. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150055. [PMID: 26598732 DOI: 10.1098/rstb.2015.0055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Orthologous genes involved in the formation of proteins associated with memory acquisition are similarly expressed in forebrain centres that exhibit similar cognitive properties. These proteins include cAMP-dependent protein kinase A catalytic subunit (PKA-Cα) and phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (pCaMKII), both required for long-term memory formation which is enriched in rodent hippocampus and insect mushroom bodies, both implicated in allocentric memory and both possessing corresponding neuronal architectures. Antibodies against these proteins resolve forebrain centres, or their equivalents, having the same ground pattern of neuronal organization in species across five phyla. The ground pattern is defined by olfactory or chemosensory afferents supplying systems of parallel fibres of intrinsic neurons intersected by orthogonal domains of afferent and efferent arborizations with local interneurons providing feedback loops. The totality of shared characters implies a deep origin in the protostome-deuterostome bilaterian ancestor of elements of a learning and memory circuit. Proxies for such an ancestral taxon are simple extant bilaterians, particularly acoels that express PKA-Cα and pCaMKII in discrete anterior domains that can be properly referred to as brains.
Collapse
Affiliation(s)
- Gabriella H Wolff
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA
| | - Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain, and Behavior, University of Arizona, Tucson, AZ 85721, USA Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
20
|
Luczak V, Blackwell KT, Abel T, Girault JA, Gervasi N. Dendritic diameter influences the rate and magnitude of hippocampal cAMP and PKA transients during β-adrenergic receptor activation. Neurobiol Learn Mem 2016; 138:10-20. [PMID: 27523748 DOI: 10.1016/j.nlm.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/15/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Abstract
In the hippocampus, cyclic-adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) form a critical signaling cascade required for long-lasting synaptic plasticity, learning and memory. Plasticity and memory are known to occur following pathway-specific changes in synaptic strength that are thought to result from spatially and temporally coordinated intracellular signaling events. To better understand how cAMP and PKA dynamically operate within the structural complexity of hippocampal neurons, we used live two-photon imaging and genetically-encoded fluorescent biosensors to monitor cAMP levels or PKA activity in CA1 neurons of acute hippocampal slices. Stimulation of β-adrenergic receptors (isoproterenol) or combined activation of adenylyl cyclase (forskolin) and inhibition of phosphodiesterase (IBMX) produced cAMP transients with greater amplitude and rapid on-rates in intermediate and distal dendrites compared to somata and proximal dendrites. In contrast, isoproterenol produced greater PKA activity in somata and proximal dendrites compared to intermediate and distal dendrites, and the on-rate of PKA activity did not differ between compartments. Computational models show that our observed compartmental difference in cAMP can be reproduced by a uniform distribution of PDE4 and a variable density of adenylyl cyclase that scales with compartment size to compensate for changes in surface to volume ratios. However, reproducing our observed compartmental difference in PKA activity required enrichment of protein phosphatase in small compartments; neither reduced PKA subunits nor increased PKA substrates were sufficient. Together, our imaging and computational results show that compartment diameter interacts with rate-limiting components like adenylyl cyclase, phosphodiesterase and protein phosphatase to shape the spatial and temporal components of cAMP and PKA signaling in CA1 neurons and suggests that small neuronal compartments are most sensitive to cAMP signals whereas large neuronal compartments accommodate a greater dynamic range in PKA activity.
Collapse
Affiliation(s)
- Vincent Luczak
- University of Pennsylvania, Department of Biology, 10-133 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
| | - Kim T Blackwell
- George Mason University, The Krasnow Institute for Advanced Studies, MS 2A1, Rockfish Creek Lane, Fairfax, VA 22030, USA
| | - Ted Abel
- University of Pennsylvania, Department of Biology, 10-133 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA.
| | - Jean-Antoine Girault
- INSERM, UMR-S 839, 75005 Paris, France; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités, 75005 Paris, France; Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005 Paris, France
| | - Nicolas Gervasi
- INSERM, UMR-S 839, 75005 Paris, France; Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités, 75005 Paris, France; Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005 Paris, France.
| |
Collapse
|
21
|
Chay A, Zamparo I, Koschinski A, Zaccolo M, Blackwell KT. Control of βAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons. PLoS Comput Biol 2016; 12:e1004735. [PMID: 26901880 PMCID: PMC4763502 DOI: 10.1371/journal.pcbi.1004735] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory. Noradrenaline is a stress related molecule that facilitates learning and memory when released in the hippocampus. The facilitation of memory is related to modulation of synaptic plasticity, but the mechanisms underlying this modulation are not well understood. We utilize a combination of live cell imaging and computational modeling to discover how noradrenergic receptor stimulation interacts with other molecules, such as calcium, required for synaptic plasticity and memory storage. Though prior work has shown that noradrenergic receptors and calcium interact synergistically to elevate intracellular second messengers when combined simultaneously, our results demonstrate that prior stimulation of noradrenergic receptors inhibits the elevation of intracellular second messengers. Our results further demonstrate that the inhibition may be caused by the noradrenergic receptor switching signaling pathways, thereby recruiting a different set of memory kinases. This switching represents a novel mechanism for recruiting molecules involved in synaptic plasticity and memory.
Collapse
Affiliation(s)
- Andrew Chay
- Molecular Neuroscience Department, Krasnow Institute, George Mason University, Fairfax, Virginia, United States of America
| | | | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, United Kingdom
| | - Kim T. Blackwell
- Molecular Neuroscience Department, Krasnow Institute, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Balakrishnan S, Niebert M, Richter DW. Rescue of Cyclic AMP Mediated Long Term Potentiation Impairment in the Hippocampus of Mecp2 Knockout (Mecp2(-/y) ) Mice by Rolipram. Front Cell Neurosci 2016; 10:15. [PMID: 26869885 PMCID: PMC4737891 DOI: 10.3389/fncel.2016.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/15/2016] [Indexed: 11/13/2022] Open
Abstract
Rett syndrome (RTT) patients experience learning difficulties and memory loss. Analogous deficits of hippocampal plasticity are reported in mouse models of RTT. To elucidate the underlying pathophysiology, we studied long term potentiation (LTP) at the CA3 to CA1 synapses in the hippocampus in acute brain slices from WT and Mecp2(-/y) mice, by either activating cAMP dependent pathway or using high frequency stimulation, by means of patch clamp. We have observed that, the NMDA channel current characteristics remain unchanged in the Mecp2(-/y) mice. The adenylyl cyclase (AC) agonist forskolin evoked a long lasting potentiation of evoked EPSCs in WT CA1 neurons, but only minimally enhanced the EPSCs in the Mecp2(-/y) mice. This weaker potentiation in Mecp2 (-/) (y) mice was ameliorated by application of phosphodiesterase 4 inhibitor rolipram. The hyperpolarization activated cyclic nucleotide gated channel current (I h) was potentiated to similar extent by forskolin in both phenotypes. Multiple tetanus induced cAMP-dependent plasticity was also impaired in the Mecp2 (-/) (y) mice, and was also partially rescued by rolipram. Western blot analysis of CA region of Mecp2 (-/) (y) mice hippocampus revealed more than twofold up-regulation of protein kinase A (PKA) regulatory subunits, while the expression of the catalytic subunit remained unchanged. We hypothesize that the overexpressed PKA regulatory subunits buffer cAMP and restrict the PKA mediated phosphorylation of target proteins necessary for LTP. Blocking the degradation of cAMP, thereby saturating the regulatory subunits alleviated this defect.
Collapse
Affiliation(s)
- Saju Balakrishnan
- Institute for Neuro and Sensory Physiology, University of Göttingen Göttingen, Germany
| | - Marcus Niebert
- Institute for Neuro and Sensory Physiology, University of Göttingen Göttingen, Germany
| | - Diethelm W Richter
- Institute for Neuro and Sensory Physiology, University of Göttingen Göttingen, Germany
| |
Collapse
|
23
|
Neves-Zaph SR, Song RS. Development of computational models of cAMP signaling. Methods Mol Biol 2015; 1294:203-17. [PMID: 25783888 DOI: 10.1007/978-1-4939-2537-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the growing evidence defining the cAMP signaling network as a master regulator of cellular function in a number of tissues, regulatory feedback loops, signal compartmentalization, as well as cross-talk with other signaling pathways make understanding the emergent properties of cAMP cellular action a daunting task. Dynamical models of signaling that combine quantitative rigor with molecular details can contribute valuable mechanistic insight into the complexity of intracellular cAMP signaling by complementing and guiding experimental efforts. In this chapter, we review the development of cAMP computational models. We describe how features of the cAMP network can be represented and review the types of experimental data useful in modeling cAMP signaling. We also compile a list of published cAMP models that can aid in the development of novel dynamical models of cAMP signaling.
Collapse
Affiliation(s)
- Susana R Neves-Zaph
- Department of Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA,
| | | |
Collapse
|
24
|
Transiently increasing cAMP levels selectively in hippocampal excitatory neurons during sleep deprivation prevents memory deficits caused by sleep loss. J Neurosci 2015; 34:15715-21. [PMID: 25411499 DOI: 10.1523/jneurosci.2403-14.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object-location task. Five hours of total sleep deprivation directly following training impaired the formation of object-location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation.
Collapse
|
25
|
He Y, Kulasiri D, Samarasinghe S. Systems biology of synaptic plasticity: a review on N-methyl-D-aspartate receptor mediated biochemical pathways and related mathematical models. Biosystems 2014; 122:7-18. [PMID: 24929130 DOI: 10.1016/j.biosystems.2014.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
Abstract
Synaptic plasticity, an emergent property of synaptic networks, has shown strong correlation to one of the essential functions of the brain, memory formation. Through understanding synaptic plasticity, we hope to discover the modulators and mechanisms that trigger memory formation. In this paper, we first review the well understood modulators and mechanisms underlying N-methyl-D-aspartate receptor dependent synaptic plasticity, a major form of synaptic plasticity in hippocampus, and then comment on the key mathematical modelling approaches available in the literature to understand synaptic plasticity as the integration of the established functionalities of synaptic components.
Collapse
Affiliation(s)
- Y He
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand
| | - D Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand.
| | - S Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
26
|
Park AJ, Havekes R, Choi JH, Luczak V, Nie T, Huang T, Abel T. A presynaptic role for PKA in synaptic tagging and memory. Neurobiol Learn Mem 2014; 114:101-112. [PMID: 24882624 DOI: 10.1016/j.nlm.2014.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/01/2014] [Accepted: 05/04/2014] [Indexed: 12/14/2022]
Abstract
Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and memory because PKA also regulates presynaptic transmitter release. Here, we examine this issue using genetic and pharmacological application of Ht31, a PKA anchoring disrupting peptide. At the hippocampal Schaffer collateral CA3-CA1 synapse, Ht31 treatment elicits a rapid decay of synaptic responses to repetitive stimuli, indicating a fast depletion of the readily releasable pool of synaptic vesicles. The interaction between PKA and proteins involved in producing this pool of synaptic vesicles is supported by biochemical assays showing that synaptic vesicle protein 2 (SV2), Rim1, and SNAP25 are components of a complex that interacts with cAMP. Moreover, acute treatment with Ht31 reduces the levels of SV2. Finally, experiments with transgenic mouse lines, which express Ht31 in excitatory neurons at the Schaffer collateral CA3-CA1 synapse, highlight a requirement for presynaptically anchored PKA in pathway-specific synaptic tagging and long-term contextual fear memory. These results suggest that a presynaptically compartmentalized PKA is critical for synaptic plasticity and memory by regulating the readily releasable pool of synaptic vesicles.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Jennifer Hk Choi
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Vince Luczak
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Ting Nie
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.,Department of Pediatrics, Emory University, VAMC, 1670 Clairmont Rd Atlanta, GA 30033, USA
| | - Ted Huang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| |
Collapse
|
27
|
Blackwell KT. Approaches and tools for modeling signaling pathways and calcium dynamics in neurons. J Neurosci Methods 2013; 220:131-40. [PMID: 23743449 PMCID: PMC3830683 DOI: 10.1016/j.jneumeth.2013.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 01/25/2023]
Abstract
Signaling pathways are cascades of intracellular biochemical reactions that are activated by transmembrane receptors, and ultimately lead to transcription in the nucleus. In neurons, both calcium permeable synaptic and ionic channels as well as G protein coupled receptors initiate activation of signaling pathway molecules that interact with electrical activity at multiple spatial and time scales. At small temporal and spatial scales, calcium modifies the properties of ionic channels, whereas at larger temporal and spatial scales, various kinases and phosphatases modify the properties of ionic channels, producing phenomena such as synaptic plasticity and homeostatic plasticity. The elongated structure of neuronal dendrites and the organization of multi-protein complexes by anchoring proteins imply that the spatial dimension must be explicit. Therefore, modeling signaling pathways in neurons utilizes algorithms for both diffusion and reactions. The small size of spines coupled with small concentrations of some molecules implies that some reactions occur stochastically. The need for stochastic simulation of many reaction and diffusion events coupled with the multiple temporal and spatial scales makes modeling of signaling pathways a difficult problem. Several different software programs have achieved different aspects of these capabilities. This review explains some of the mathematical formulas used for modeling reactions and diffusion. In addition, it briefly presents the simulators used for modeling reaction-diffusion systems in neurons, together with scientific problems addressed.
Collapse
Affiliation(s)
- K T Blackwell
- George Mason University, The Krasnow Institute for Advanced Studies, MS 2A1, Fairfax, VA 22030-444, USA.
| |
Collapse
|
28
|
Blackwell KT, Jedrzejewska-Szmek J. Molecular mechanisms underlying neuronal synaptic plasticity: systems biology meets computational neuroscience in the wilds of synaptic plasticity. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:717-31. [PMID: 24019266 PMCID: PMC3947422 DOI: 10.1002/wsbm.1240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/29/2022]
Abstract
Interactions among signaling pathways that are activated by transmembrane receptors produce complex networks and emergent dynamical behaviors that are implicated in synaptic plasticity. Temporal dynamics and spatial aspects are critical determinants of cell responses such as synaptic plasticity, although the mapping between spatiotemporal activity pattern and direction of synaptic plasticity is not completely understood. Computational modeling of neuronal signaling pathways has significantly contributed to understanding signaling pathways underlying synaptic plasticity. Spatial models of signaling pathways in hippocampal neurons have revealed mechanisms underlying the spatial distribution of extracellular signal-related kinase (ERK) activation in hippocampal neurons. Other spatial models have demonstrated that the major role of anchoring proteins in striatal and hippocampal synaptic plasticity is to place molecules near their activators. Simulations of yet other models have revealed that the spatial distribution of synaptic plasticity may differ for potentiation versus depression. In general, the most significant advances have been made by interactive modeling and experiments; thus, an interdisciplinary approach should be applied to investigate critical issues in neuronal signaling pathways. These issues include identifying which transmembrane receptors are key for activating ERK in neurons, and the crucial targets of kinases that produce long-lasting synaptic plasticity. Although the number of computer programs for computationally efficient simulation of large reaction-diffusion networks is increasing, parameter estimation and sensitivity analysis in these spatial models remain more difficult than in single compartment models. Advances in live cell imaging coupled with further software development will continue to accelerate the development of spatial models of synaptic plasticity.
Collapse
Affiliation(s)
- KT Blackwell
- Molecular Neuroscience Department, The Krasnow Institute for Advanced Studies George Mason University, Fairfax, VA 22030-444, USA
| | - J Jedrzejewska-Szmek
- Molecular Neuroscience Department, The Krasnow Institute for Advanced Studies George Mason University, Fairfax, VA 22030-444, USA
| |
Collapse
|
29
|
Wertheimer E, Krapf D, de la Vega-Beltran JL, Sánchez-Cárdenas C, Navarrete F, Haddad D, Escoffier J, Salicioni AM, Levin LR, Buck J, Mager J, Darszon A, Visconti PE. Compartmentalization of distinct cAMP signaling pathways in mammalian sperm. J Biol Chem 2013; 288:35307-20. [PMID: 24129574 DOI: 10.1074/jbc.m113.489476] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fertilization competence is acquired in the female tract in a process known as capacitation. Capacitation is needed for the activation of motility (e.g. hyperactivation) and to prepare the sperm for an exocytotic process known as acrosome reaction. Although the HCO3(-)-dependent soluble adenylyl cyclase Adcy10 plays a role in motility, less is known about the source of cAMP in the sperm head. Transmembrane adenylyl cyclases (tmACs) are another possible source of cAMP. These enzymes are regulated by stimulatory heterotrimeric Gs proteins; however, the presence of Gs or tmACs in mammalian sperm has been controversial. In this study, we used Western blotting and cholera toxin-dependent ADP-ribosylation to show the Gs presence in the sperm head. Also, we showed that forskolin, a tmAC-specific activator, induces cAMP accumulation in sperm from both WT and Adcy10-null mice. This increase is blocked by the tmAC inhibitor SQ22536 but not by the Adcy10 inhibitor KH7. Although Gs immunoreactivity and tmAC activity are detected in the sperm head, PKA is only found in the tail, where Adcy10 was previously shown to reside. Consistent with an acrosomal localization, Gs reactivity is lost in acrosome-reacted sperm, and forskolin is able to increase intracellular Ca(2+) and induce the acrosome reaction. Altogether, these data suggest that cAMP pathways are compartmentalized in sperm, with Gs and tmAC in the head and Adcy10 and PKA in the flagellum.
Collapse
Affiliation(s)
- Eva Wertheimer
- From the Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Marsden WN. Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:168-84. [PMID: 23268191 DOI: 10.1016/j.pnpbp.2012.12.012] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 12/31/2022]
Abstract
Synaptic plasticity confers environmental adaptability through modification of the connectivity between neurons and neuronal circuits. This is achieved through changes to synapse-associated signaling systems and supported by complementary changes to cellular morphology and metabolism within the tripartite synapse. Mounting evidence suggests region-specific changes to synaptic form and function occur as a result of chronic stress and in depression. Within subregions of the prefrontal cortex (PFC) and hippocampus structural and synapse-related findings seem consistent with a deficit in long-term potentiation (LTP) and facilitation of long-term depression (LTD), particularly at excitatory pyramidal synapses. Other brain regions are less well-studied; however the amygdala may feature a somewhat opposite synaptic pathology including reduced inhibitory tone. Changes to synaptic plasticity in stress and depression may correlate those to several signal transduction pathways (e.g. NOS-NO, cAMP-PKA, Ras-ERK, PI3K-Akt, GSK-3, mTOR and CREB) and upstream receptors (e.g. NMDAR, TrkB and p75NTR). Deficits in synaptic plasticity may further correlate disrupted brain redox and bioenergetics. Finally, at a functional level region-specific changes to synaptic plasticity in depression may relate to maladapted neurocircuitry and parallel reduced cognitive control over negative emotion.
Collapse
Affiliation(s)
- W N Marsden
- Highclere Court, Woking, Surrey, GU21 2QP, UK.
| |
Collapse
|
31
|
Horai S, Nakagawa S, Tanaka K, Morofuji Y, Couraud PO, Deli MA, Ozawa M, Niwa M. Cilostazol strengthens barrier integrity in brain endothelial cells. Cell Mol Neurobiol 2013; 33:291-307. [PMID: 23224787 PMCID: PMC11497939 DOI: 10.1007/s10571-012-9896-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 11/16/2012] [Indexed: 12/14/2022]
Abstract
We studied the effect of cilostazol, a selective inhibitor of phosphodiesterase 3, on barrier functions of blood-brain barrier (BBB)-related endothelial cells, primary rat brain capillary endothelial cells (RBEC), and the immortalized human brain endothelial cell line hCMEC/D3. The pharmacological potency of cilostazol was also evaluated on ischemia-related BBB dysfunction using a triple co-culture BBB model (BBB Kit™) subjected to 6-h oxygen glucose deprivation (OGD) and 3-h reoxygenation. There was expression of phosphodiesterase 3B mRNA in RBEC, and a significant increase in intracellular cyclic AMP (cAMP) content was detected in RBEC treated with both 1 and 10 μM cilostazol. Cilostazol increased the transendothelial electrical resistance (TEER), an index of barrier tightness of interendothelial tight junctions (TJs), and decreased the endothelial permeability of sodium fluorescein through the RBEC monolayer. The effects on these barrier functions were significantly reduced in the presence of protein kinase A (PKA) inhibitor H-89. Microscopic observation revealed smooth and even localization of occludin immunostaining at TJs and F-actin fibers at the cell borders in cilostazol-treated RBEC. In hCMEC/D3 cells treated with 1 and 10 μM cilostazol for 24 and 96 h, P-glycoprotein transporter activity was increased, as assessed by rhodamine 123 accumulation. Cilostazol improved the TEER in our triple co-culture BBB model with 6-h OGD and 3-h reoxygenation. As cilostazol stabilized barrier integrity in BBB-related endothelial cells, probably via cAMP/PKA signaling, the possibility that cilostazol acts as a BBB-protective drug against cerebral ischemic insults to neurons has to be considered.
Collapse
Affiliation(s)
- Shoji Horai
- Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Shinsuke Nakagawa
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- BBB Laboratory, PharmaCo-Cell Company Ltd., 1-43 Dejima, Nagasaki, 850-0862 Japan
| | - Kunihiko Tanaka
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Yoichi Morofuji
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Pierre-Oliver Couraud
- Inserm U1016 Institute Cochin, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, 22 rue Méchain, Paris, 75014 France
| | - Maria A. Deli
- BBB Laboratory, PharmaCo-Cell Company Ltd., 1-43 Dejima, Nagasaki, 850-0862 Japan
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári körút 62, Szeged, 6726 Hungary
| | - Masaki Ozawa
- Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Masami Niwa
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- BBB Laboratory, PharmaCo-Cell Company Ltd., 1-43 Dejima, Nagasaki, 850-0862 Japan
| |
Collapse
|