1
|
Barrio R, Jover-Galtier JA, Mayora-Cebollero A, Mayora-Cebollero C, Serrano S. Synaptic dependence of dynamic regimes when coupling neural populations. Phys Rev E 2024; 109:014301. [PMID: 38366490 DOI: 10.1103/physreve.109.014301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/04/2023] [Indexed: 02/18/2024]
Abstract
In this article we focus on the study of the collective dynamics of neural networks. The analysis of two recent models of coupled "next-generation" neural mass models allows us to observe different global mean dynamics of large neural populations. These models describe the mean dynamics of all-to-all coupled networks of quadratic integrate-and-fire spiking neurons. In addition, one of these models considers the influence of the synaptic adaptation mechanism on the macroscopic dynamics. We show how both models are related through a parameter and we study the evolution of the dynamics when switching from one model to the other by varying that parameter. Interestingly, we have detected three main dynamical regimes in the coupled models: Rössler-type (funnel type), bursting-type, and spiking-like (oscillator-type) dynamics. This result opens the question of which regime is the most suitable for realistic simulations of large neural networks and shows the possibility of the emergence of chaotic collective dynamics when synaptic adaptation is very weak.
Collapse
Affiliation(s)
- Roberto Barrio
- Department of Applied Mathematics and IUMA, Computational Dynamics group, University of Zaragoza, Zaragoza E-50009, Spain
| | - Jorge A Jover-Galtier
- Department of Applied Mathematics and IUMA, Computational Dynamics group, University of Zaragoza, Zaragoza E-50009, Spain
| | - Ana Mayora-Cebollero
- Department of Applied Mathematics and IUMA, Computational Dynamics group, University of Zaragoza, Zaragoza E-50009, Spain
| | - Carmen Mayora-Cebollero
- Department of Applied Mathematics and IUMA, Computational Dynamics group, University of Zaragoza, Zaragoza E-50009, Spain
| | - Sergio Serrano
- Department of Applied Mathematics and IUMA, Computational Dynamics group, University of Zaragoza, Zaragoza E-50009, Spain
| |
Collapse
|
2
|
Milicevic KD, Barbeau BL, Lovic DD, Patel AA, Ivanova VO, Antic SD. Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 6:100121. [PMID: 38616956 PMCID: PMC11015061 DOI: 10.1016/j.crneur.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 04/16/2024] Open
Abstract
Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30-80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed Before Axon), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed After Axon), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses - autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.
Collapse
Affiliation(s)
- Katarina D. Milicevic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Brianna L. Barbeau
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Darko D. Lovic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
- University of Belgrade, Faculty of Biology, Center for Laser Microscopy, Belgrade, 11000, Serbia
| | - Aayushi A. Patel
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Violetta O. Ivanova
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| | - Srdjan D. Antic
- University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT, 06030, USA
| |
Collapse
|
3
|
Shunting Inhibition Improves Synchronization in Heterogeneous Inhibitory Interneuronal Networks with Type 1 Excitability Whereas Hyperpolarizing Inhibition Is Better for Type 2 Excitability. eNeuro 2020; 7:ENEURO.0464-19.2020. [PMID: 32198159 PMCID: PMC7210489 DOI: 10.1523/eneuro.0464-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 11/27/2022] Open
Abstract
All-to-all homogeneous networks of inhibitory neurons synchronize completely under the right conditions; however, many modeling studies have shown that biological levels of heterogeneity disrupt synchrony. Our fundamental scientific question is “how can neurons maintain partial synchrony in the presence of heterogeneity and noise?” A particular subset of strongly interconnected interneurons, the PV+ fast-spiking (FS) basket neurons, are strongly implicated in γ oscillations and in phase locking of nested γ oscillations to theta. Their excitability type apparently varies between brain regions: in CA1 and the dentate gyrus they have type 1 excitability, meaning that they can fire arbitrarily slowly, whereas in the striatum and cortex they have type 2 excitability, meaning that there is a frequency thresh old below which they cannot sustain repetitive firing. We constrained the models to study the effect of excitability type (more precisely bifurcation type) in isolation from all other factors. We use sparsely connected, heterogeneous, noisy networks with synaptic delays to show that synchronization properties, namely the resistance to suppression and the strength of theta phase to γ amplitude coupling, are strongly dependent on the pairing of excitability type with the type of inhibition. Shunting inhibition performs better for type 1 and hyperpolarizing inhibition for type 2. γ Oscillations and their nesting within theta oscillations are thought to subserve cognitive functions like memory encoding and recall; therefore, it is important to understand the contribution of intrinsic properties to these rhythms.
Collapse
|
4
|
Reyes-Sanchez M, Amaducci R, Elices I, Rodriguez FB, Varona P. Automatic Adaptation of Model Neurons and Connections to Build Hybrid Circuits with Living Networks. Neuroinformatics 2020; 18:377-393. [PMID: 31930463 DOI: 10.1007/s12021-019-09440-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hybrid circuits built by creating mono- or bi-directional interactions among living cells and model neurons and synapses are an effective way to study neuron, synaptic and neural network dynamics. However, hybrid circuit technology has been largely underused in the context of neuroscience studies mainly because of the inherent difficulty in implementing and tuning this type of interactions. In this paper, we present a set of algorithms for the automatic adaptation of model neurons and connections in the creation of hybrid circuits with living neural networks. The algorithms perform model time and amplitude scaling, real-time drift adaptation, goal-driven synaptic and model tuning/calibration and also automatic parameter mapping. These algorithms have been implemented in RTHybrid, an open-source library that works with hard real-time constraints. We provide validation examples by building hybrid circuits in a central pattern generator. The results of the validation experiments show that the proposed dynamic adaptation facilitates closed-loop communication among living and artificial model neurons and connections, and contributes to characterize system dynamics, achieve control, automate experimental protocols and extend the lifespan of the preparations.
Collapse
Affiliation(s)
- Manuel Reyes-Sanchez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Rodrigo Amaducci
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Irene Elices
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Francisco B Rodriguez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Pablo Varona
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
5
|
Dumont G, Gutkin B. Macroscopic phase resetting-curves determine oscillatory coherence and signal transfer in inter-coupled neural circuits. PLoS Comput Biol 2019; 15:e1007019. [PMID: 31071085 PMCID: PMC6529019 DOI: 10.1371/journal.pcbi.1007019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/21/2019] [Accepted: 04/10/2019] [Indexed: 01/05/2023] Open
Abstract
Macroscopic oscillations of different brain regions show multiple phase relationships that are persistent across time and have been implicated in routing information. While multiple cellular mechanisms influence the network oscillatory dynamics and structure the macroscopic firing motifs, one of the key questions is to identify the biophysical neuronal and synaptic properties that permit such motifs to arise. A second important issue is how the different neural activity coherence states determine the communication between the neural circuits. Here we analyse the emergence of phase-locking within bidirectionally delayed-coupled spiking circuits in which global gamma band oscillations arise from synaptic coupling among largely excitable neurons. We consider both the interneuronal (ING) and the pyramidal-interneuronal (PING) population gamma rhythms and the inter coupling targeting the pyramidal or the inhibitory neurons. Using a mean-field approach together with an exact reduction method, we reduce each spiking network to a low dimensional nonlinear system and derive the macroscopic phase resetting-curves (mPRCs) that determine how the phase of the global oscillation responds to incoming perturbations. This is made possible by the use of the quadratic integrate-and-fire model together with a Lorentzian distribution of the bias current. Depending on the type of gamma (PING vs. ING), we show that incoming excitatory inputs can either speed up the macroscopic oscillation (phase advance; type I PRC) or induce both a phase advance and a delay (type II PRC). From there we determine the structure of macroscopic coherence states (phase-locking) of two weakly synaptically-coupled networks. To do so we derive a phase equation for the coupled system which links the synaptic mechanisms to the coherence states of the system. We show that a synaptic transmission delay is a necessary condition for symmetry breaking, i.e. a non-symmetric phase lag between the macroscopic oscillations. This potentially provides an explanation to the experimentally observed variety of gamma phase-locking modes. Our analysis further shows that symmetry-broken coherence states can lead to a preferred direction of signal transfer between the oscillatory networks where this directionality also depends on the timing of the signal. Hence we suggest a causal theory for oscillatory modulation of functional connectivity between cortical circuits. Large scale brain oscillations emerge from synaptic interactions within neuronal circuits. Over the past years, such macroscopic rhythms have been suggested to play a crucial role in routing the flow of information across cortical regions, resulting in a functional connectome. The underlying mechanism is cortical oscillations that bind together following a well-known motif called phase-locking. While there is significant experimental support for multiple phase-locking modes in the brain, it is still unclear what is the underlying mechanism that permits macroscopic rhythms to phase lock. In the present paper we take up with this issue, and to show that, one can study the emergent macroscopic phase-locking within the mathematical framework of weakly coupled oscillators. We find that under synaptic delays, fully symmetrically coupled networks can display symmetry-broken states of activity, where one network starts to lead in phase the second (also sometimes known as stuttering states). When we analyse how incoming transient signals affect the coupled system, we find that in the symmetry-broken state, the effect depends strongly on which network is targeted (the leader or the follower) as well as the timing of the input. Hence we show how the dynamics of the emergent phase-locked activity imposes a functional directionality on how signals are processed. We thus offer clarification on the synaptic and circuit properties responsible for the emergence of multiple phase-locking patterns and provide support for its functional implication in information transfer.
Collapse
Affiliation(s)
- Grégory Dumont
- Group for Neural Theory, LNC INSERM U960, DEC, Ecole Normale Supérieure PSL* University, Paris, France
- * E-mail: (GD); (BG)
| | - Boris Gutkin
- Group for Neural Theory, LNC INSERM U960, DEC, Ecole Normale Supérieure PSL* University, Paris, France
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, NRU Higher School of Economics, Moscow, Russia
- * E-mail: (GD); (BG)
| |
Collapse
|
6
|
Amaducci R, Reyes-Sanchez M, Elices I, Rodriguez FB, Varona P. RTHybrid: A Standardized and Open-Source Real-Time Software Model Library for Experimental Neuroscience. Front Neuroinform 2019; 13:11. [PMID: 30914940 PMCID: PMC6423167 DOI: 10.3389/fninf.2019.00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/14/2019] [Indexed: 12/05/2022] Open
Abstract
Closed-loop technologies provide novel ways of online observation, control and bidirectional interaction with the nervous system, which help to study complex non-linear and partially observable neural dynamics. These protocols are often difficult to implement due to the temporal precision required when interacting with biological components, which in many cases can only be achieved using real-time technology. In this paper we introduce RTHybrid (www.github.com/GNB-UAM/RTHybrid), a free and open-source software that includes a neuron and synapse model library to build hybrid circuits with living neurons in a wide variety of experimental contexts. In an effort to encourage the standardization of real-time software technology in neuroscience research, we compared different open-source real-time operating system patches, RTAI, Xenomai 3 and Preempt-RT, according to their performance and usability. RTHybrid has been developed to run over Linux operating systems supporting both Xenomai 3 and Preempt-RT real-time patches, and thus allowing an easy implementation in any laboratory. We report a set of validation tests and latency benchmarks for the construction of hybrid circuits using this library. With this work we want to promote the dissemination of standardized, user-friendly and open-source software tools developed for open- and closed-loop experimental neuroscience.
Collapse
Affiliation(s)
- Rodrigo Amaducci
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Pablo Varona
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Tikidji-Hamburyan RA, Leonik CA, Canavier CC. Phase response theory explains cluster formation in sparsely but strongly connected inhibitory neural networks and effects of jitter due to sparse connectivity. J Neurophysiol 2019; 121:1125-1142. [PMID: 30726155 DOI: 10.1152/jn.00728.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We show how to predict whether a neural network will exhibit global synchrony (a one-cluster state) or a two-cluster state based on the assumption of pulsatile coupling and critically dependent upon the phase response curve (PRC) generated by the appropriate perturbation from a partner cluster. Our results hold for a monotonically increasing (meaning longer delays as the phase increases) PRC, which likely characterizes inhibitory fast-spiking basket and cortical low-threshold-spiking interneurons in response to strong inhibition. Conduction delays stabilize synchrony for this PRC shape, whereas they destroy two-cluster states, the former by avoiding a destabilizing discontinuity and the latter by approaching it. With conduction delays, stronger coupling strength can promote a one-cluster state, so the weak coupling limit is not applicable here. We show how jitter can destabilize global synchrony but not a two-cluster state. Local stability of global synchrony in an all-to-all network does not guarantee that global synchrony can be observed in an appropriately scaled sparsely connected network; the basin of attraction can be inferred from the PRC and must be sufficiently large. Two-cluster synchrony is not obviously different from one-cluster synchrony in the presence of noise and may be the actual substrate for oscillations observed in the local field potential (LFP) and the electroencephalogram (EEG) in situations where global synchrony is not possible. Transitions between cluster states may change the frequency of the rhythms observed in the LFP or EEG. Transitions between cluster states within an inhibitory subnetwork may allow more effective recruitment of pyramidal neurons into the network rhythm. NEW & NOTEWORTHY We show that jitter induced by sparse connectivity can destabilize global synchrony but not a two-cluster state with two smaller clusters firing alternately. On the other hand, conduction delays stabilize synchrony and destroy two-cluster states. These results hold if each cluster exhibits a phase response curve similar to one that characterizes fast-spiking basket and cortical low-threshold-spiking cells for strong inhibition. Either a two-cluster or a one-cluster state might provide the oscillatory substrate for neural computations.
Collapse
Affiliation(s)
- Ruben A Tikidji-Hamburyan
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Conrad A Leonik
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
8
|
Köksal Ersöz E, Desroches M, Mirasso CR, Rodrigues S. Anticipation via canards in excitable systems. CHAOS (WOODBURY, N.Y.) 2019; 29:013111. [PMID: 30709107 DOI: 10.1063/1.5050018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Neurons can anticipate incoming signals by exploiting a physiological mechanism that is not well understood. This article offers a novel explanation on how a receiver neuron can predict the sender's dynamics in a unidirectionally-coupled configuration, in which both sender and receiver follow the evolution of a multi-scale excitable system. We present a novel theoretical viewpoint based on a mathematical object, called canard, to explain anticipation in excitable systems. We provide a numerical approach, which allows to determine the transient effects of canards. To demonstrate the general validity of canard-mediated anticipation in the context of excitable systems, we illustrate our framework in two examples, a multi-scale radio-wave circuit (the van der Pol model) that inspired a caricature neuronal model (the FitzHugh-Nagumo model) and a biophysical neuronal model (a 2-dimensional reduction of the Hodgkin-Huxley model), where canards act as messengers to the senders' prediction. We also propose an experimental paradigm that would enable experimental neuroscientists to validate our predictions. We conclude with an outlook to possible fascinating research avenues to further unfold the mechanisms underpinning anticipation. We envisage that our approach can be employed by a wider class of excitable systems with appropriate theoretical extensions.
Collapse
Affiliation(s)
- Elif Köksal Ersöz
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, 06902 Sophia Antipolis, France
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, 06902 Sophia Antipolis, France
| | - Claudio R Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Universitat de les Illes Baleares, Campus UIB, E-07122 Palma de Mallorca, Spain
| | - Serafim Rodrigues
- IKERBASQUE: The Basque Foundation for Science 48013 Bilbao, Basque Country, Spain
| |
Collapse
|
9
|
Canavier CC, Tikidji-Hamburyan RA. Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling. Phys Rev E 2017; 95:032215. [PMID: 28415236 PMCID: PMC5568753 DOI: 10.1103/physreve.95.032215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 11/07/2022]
Abstract
The synchronization tendencies of networks of oscillators have been studied intensely. We assume a network of all-to-all pulse-coupled oscillators in which the effect of a pulse is independent of the number of oscillators that simultaneously emit a pulse and the normalized delay (the phase resetting) is a monotonically increasing function of oscillator phase with the slope everywhere less than 1 and a value greater than 2φ-1, where φ is the normalized phase. Order switching cannot occur; the only possible solutions are globally attracting synchrony and cluster solutions with a fixed firing order. For small conduction delays, we prove the former stable and all other possible attractors nonexistent due to the destabilizing discontinuity of the phase resetting at a phase of 0.
Collapse
Affiliation(s)
- Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
10
|
Çakir Y. Modeling of synchronization behavior of bursting neurons at nonlinearly coupled dynamical networks. NETWORK (BRISTOL, ENGLAND) 2016; 27:289-305. [PMID: 27830974 DOI: 10.1080/0954898x.2016.1249981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synchronization behaviors of bursting neurons coupled through electrical and dynamic chemical synapses are investigated. The Izhikevich model is used with random and small world network of bursting neurons. Various currents which consist of diffusive electrical and time-delayed dynamic chemical synapses are used in the simulations to investigate the influences of synaptic currents and couplings on synchronization behavior of bursting neurons. The effects of parameters, such as time delay, inhibitory synaptic strengths, and decay time on synchronization behavior are investigated. It is observed that in random networks with no delay, bursting synchrony is established with the electrical synapse alone, single spiking synchrony is observed with hybrid coupling. In small world network with no delay, periodic bursting behavior with multiple spikes is observed when only chemical and only electrical synapse exist. Single-spike and multiple-spike bursting are established with hybrid couplings. A decrease in the synchronization measure is observed with zero time delay, as the decay time is increased in random network. For synaptic delays which are above active phase period, synchronization measure increases with an increase in synaptic strength and time delay in small world network. However, in random network, it increases with only an increase in synaptic strength.
Collapse
Affiliation(s)
- Yüksel Çakir
- a Department of Electronics and Communications , Faculty of Electrical and Electronics Engineering, Istanbul Technical University , Istanbul , Turkey
| |
Collapse
|
11
|
Esfahani ZG, Gollo LL, Valizadeh A. Stimulus-dependent synchronization in delayed-coupled neuronal networks. Sci Rep 2016; 6:23471. [PMID: 27001428 PMCID: PMC4802300 DOI: 10.1038/srep23471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/07/2016] [Indexed: 02/04/2023] Open
Abstract
Time delay is a general feature of all interactions. Although the effects of delayed interaction are often neglected when the intrinsic dynamics is much slower than the coupling delay, they can be crucial otherwise. We show that delayed coupled neuronal networks support transitions between synchronous and asynchronous states when the level of input to the network changes. The level of input determines the oscillation period of neurons and hence whether time-delayed connections are synchronizing or desynchronizing. We find that synchronizing connections lead to synchronous dynamics, whereas desynchronizing connections lead to out-of-phase oscillations in network motifs and to frustrated states with asynchronous dynamics in large networks. Since the impact of a neuronal network to downstream neurons increases when spikes are synchronous, networks with delayed connections can serve as gatekeeper layers mediating the firing transfer to other regions. This mechanism can regulate the opening and closing of communicating channels between cortical layers on demand.
Collapse
Affiliation(s)
- Zahra G Esfahani
- Department of physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| | - Leonardo L Gollo
- Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alireza Valizadeh
- Department of physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.,School of Cognitive Sciences, IPM, Niavaran, Tehran, Iran
| |
Collapse
|
12
|
Higgs MH, Wilson CJ. Unitary synaptic connections among substantia nigra pars reticulata neurons. J Neurophysiol 2016; 115:2814-29. [PMID: 26961101 DOI: 10.1152/jn.00094.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/09/2016] [Indexed: 11/22/2022] Open
Abstract
Neurons in substantia nigra pars reticulata (SNr) are synaptically coupled by local axon collaterals, providing a potential mechanism for local signal processing. Because SNr neurons fire spontaneously, these synapses are constantly active. To investigate their properties, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) from SNr neurons in brain slices, in which afferents from upstream nuclei are severed, and the cells fire rhythmically. The sIPSC trains contained a mixture of periodic and aperiodic events. Autocorrelation analysis of sIPSC trains showed that a majority of cells had one to four active unitary inputs. The properties of the unitary IPSCs (uIPSCs) were analyzed for cells with one unitary input, using a model of periodic presynaptic firing and stochastic synaptic transmission. The inferred presynaptic firing rates and coefficient of variation of interspike intervals (ISIs) corresponded well with direct measurements of spiking in SNr neurons. Methods were developed to estimate the success probability, amplitude distributions, and kinetics of the uIPSCs, while removing the contribution from aperiodic sIPSCs. The sIPSC amplitudes were not increased upon release from halorhodopsin silencing, suggesting that most synapses were not depressed at the spontaneous firing rate. Gramicidin perforated-patch recordings indicated that the average reversal potential of spontaneous inhibitory postsynaptic potentials was -64 mV. Because of the change in driving force across the ISI, the unitary inputs are predicted to have a larger postsynaptic impact when they arrive late in the ISI. Simulations of network activity suggest that this very sparse inhibitory coupling may act to desynchronize the activity of SNr neurons while having only a small effect on firing rate.
Collapse
Affiliation(s)
- Matthew H Higgs
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - Charles J Wilson
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
13
|
Thounaojam US, Cui J, Norman SE, Butera RJ, Canavier CC. Slow noise in the period of a biological oscillator underlies gradual trends and abrupt transitions in phasic relationships in hybrid neural networks. PLoS Comput Biol 2014; 10:e1003622. [PMID: 24830924 PMCID: PMC4022488 DOI: 10.1371/journal.pcbi.1003622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 03/28/2014] [Indexed: 11/19/2022] Open
Abstract
In order to study the ability of coupled neural oscillators to synchronize in the presence of intrinsic as opposed to synaptic noise, we constructed hybrid circuits consisting of one biological and one computational model neuron with reciprocal synaptic inhibition using the dynamic clamp. Uncoupled, both neurons fired periodic trains of action potentials. Most coupled circuits exhibited qualitative changes between one-to-one phase-locking with fairly constant phasic relationships and phase slipping with a constant progression in the phasic relationships across cycles. The phase resetting curve (PRC) and intrinsic periods were measured for both neurons, and used to construct a map of the firing intervals for both the coupled and externally forced (PRC measurement) conditions. For the coupled network, a stable fixed point of the map predicted phase locking, and its absence produced phase slipping. Repetitive application of the map was used to calibrate different noise models to simultaneously fit the noise level in the measurement of the PRC and the dynamics of the hybrid circuit experiments. Only a noise model that added history-dependent variability to the intrinsic period could fit both data sets with the same parameter values, as well as capture bifurcations in the fixed points of the map that cause switching between slipping and locking. We conclude that the biological neurons in our study have slowly-fluctuating stochastic dynamics that confer history dependence on the period. Theoretical results to date on the behavior of ensembles of noisy biological oscillators may require re-evaluation to account for transitions induced by slow noise dynamics.
Collapse
Affiliation(s)
- Umeshkanta S. Thounaojam
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center New Orleans, Louisiana, United States of America
| | - Jianxia Cui
- BioCircuits Institute, University of California, San Diego, La Jolla, California, United States of America
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Sharon E. Norman
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Robert J. Butera
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta Georgia, United States of America
| | - Carmen C. Canavier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center New Orleans, Louisiana, United States of America
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
14
|
Bauer JA, Lambert KM, White JA. The past, present, and future of real-time control in cellular electrophysiology. IEEE Trans Biomed Eng 2014; 61:1448-56. [PMID: 24710815 DOI: 10.1109/tbme.2014.2314619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For over 60 years, real-time control has been an important technique in the study of excitable cells. Two such control-based technologies are reviewed here. First, voltage-clamp methods revolutionized the study of excitable cells. In this family of techniques, membrane potential is controlled, allowing one to parameterize a powerful class of models that describe the voltage-current relationship of cell membranes simply, flexibly, and accurately. Second, dynamic-clamp methods allow the addition of new, "virtual" membrane mechanisms to living cells. Dynamic clamp allows researchers unprecedented ways of testing computationally based hypotheses in biological preparations. The review ends with predictions of how control-based technologies will be improved and adapted for new uses in the near future.
Collapse
|
15
|
Wang Y, Hori Y, Hara S, Doyle FJ. Intercellular delay regulates the collective period of repressively coupled gene regulatory oscillator networks. IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2014; 59:211-216. [PMID: 25346544 PMCID: PMC4207127 DOI: 10.1109/tac.2013.2270072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Most biological rhythms are generated by a population of cellular oscillators coupled through intercellular signaling. Recent experimental evidence shows that the collective period may differ significantly from the autonomous period in the presence of intercellular delays. The phenomenon has been investigated using delay-coupled phase oscillators, but the proposed phase model contains no direct biological mechanism, which may weaken the model's reliability in unraveling biophysical principles. Based on a published gene regulatory oscillator model, we analyze the collective period of delay-coupled biological oscillators using the multivariable harmonic balance technique. We prove that, in contradiction to the common intuition that the collective period increases linearly with the coupling delay, the collective period turns out to be a periodic function of the intercellular delay. More surprisingly, the collective period may even decrease with the intercellular delay when the delay resides in certain regions. The collective period is given in a closed-form in terms of biochemical reaction constants and thus provides biological insights as well as guidance in synthetic-biological-oscillator design. Simulation results are given based on a segmentation clock model to confirm the theoretical predictions.
Collapse
Affiliation(s)
- Yongqiang Wang
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080 USA.
| | - Yutaka Hori
- Department of Information Physics and Computing, The University of Tokyo, Tokyo 113-8656 Japan.
| | - Shinji Hara
- Department of Information Physics and Computing, The University of Tokyo, Tokyo 113-8656 Japan.
| | - Francis J Doyle
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080 USA.
| |
Collapse
|
16
|
Akcay Z, Bose A, Nadim F. Effects of synaptic plasticity on phase and period locking in a network of two oscillatory neurons. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2014; 4:8. [PMID: 24791223 PMCID: PMC4003516 DOI: 10.1186/2190-8567-4-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/25/2014] [Indexed: 05/20/2023]
Abstract
We study the effects of synaptic plasticity on the determination of firing period and relative phases in a network of two oscillatory neurons coupled with reciprocal inhibition. We combine the phase response curves of the neurons with the short-term synaptic plasticity properties of the synapses to define Poincaré maps for the activity of an oscillatory network. Fixed points of these maps correspond to the phase-locked modes of the network. These maps allow us to analyze the dependence of the resulting network activity on the properties of network components. Using a combination of analysis and simulations, we show how various parameters of the model affect the existence and stability of phase-locked solutions. We find conditions on the synaptic plasticity profiles and the phase response curves of the neurons for the network to be able to maintain a constant firing period, while varying the phase of locking between the neurons or vice versa. A generalization to cobwebbing for two-dimensional maps is also discussed.
Collapse
Affiliation(s)
- Zeynep Akcay
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Farzan Nadim
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ, 07102, USA
| |
Collapse
|
17
|
Canavier CC, Wang S, Chandrasekaran L. Effect of phase response curve skew on synchronization with and without conduction delays. Front Neural Circuits 2013; 7:194. [PMID: 24376399 PMCID: PMC3858834 DOI: 10.3389/fncir.2013.00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/23/2013] [Indexed: 11/13/2022] Open
Abstract
A central problem in cortical processing including sensory binding and attentional gating is how neurons can synchronize their responses with zero or near-zero time lag. For a spontaneously firing neuron, an input from another neuron can delay or advance the next spike by different amounts depending upon the timing of the input relative to the previous spike. This information constitutes the phase response curve (PRC). We present a simple graphical method for determining the effect of PRC shape on synchronization tendencies and illustrate it using type 1 PRCs, which consist entirely of advances (delays) in response to excitation (inhibition). We obtained the following generic solutions for type 1 PRCs, which include the pulse-coupled leaky integrate and fire model. For pairs with mutual excitation, exact synchrony can be stable for strong coupling because of the stabilizing effect of the causal limit region of the PRC in which an input triggers a spike immediately upon arrival. However, synchrony is unstable for short delays, because delayed inputs arrive during a refractory period and cannot trigger an immediate spike. Right skew destabilizes antiphase and enables modes with time lags that grow as the conduction delay is increased. Therefore, right skew favors near synchrony at short conduction delays and a gradual transition between synchrony and antiphase for pairs coupled by mutual excitation. For pairs with mutual inhibition, zero time lag synchrony is stable for conduction delays ranging from zero to a substantial fraction of the period for pairs. However, for right skew there is a preferred antiphase mode at short delays. In contrast to mutual excitation, left skew destabilizes antiphase for mutual inhibition so that synchrony dominates at short delays as well. These pairwise synchronization tendencies constrain the synchronization properties of neurons embedded in larger networks.
Collapse
Affiliation(s)
- Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Shuoguo Wang
- Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Lakshmi Chandrasekaran
- Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
18
|
Bolhasani E, Azizi Y, Valizadeh A. Direct connections assist neurons to detect correlation in small amplitude noises. Front Comput Neurosci 2013; 7:108. [PMID: 23966940 PMCID: PMC3743174 DOI: 10.3389/fncom.2013.00108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/24/2013] [Indexed: 11/13/2022] Open
Abstract
We address a question on the effect of common stochastic inputs on the correlation of the spike trains of two neurons when they are coupled through direct connections. We show that the change in the correlation of small amplitude stochastic inputs can be better detected when the neurons are connected by direct excitatory couplings. Depending on whether intrinsic firing rate of the neurons is identical or slightly different, symmetric or asymmetric connections can increase the sensitivity of the system to the input correlation by changing the mean slope of the correlation transfer function over a given range of input correlation. In either case, there is also an optimum value for synaptic strength which maximizes the sensitivity of the system to the changes in input correlation.
Collapse
Affiliation(s)
- E Bolhasani
- Department of Physics, Institute for Advanced Studies in Basic Sciences Zanjan, Iran
| | | | | |
Collapse
|
19
|
Sadeghi S, Valizadeh A. Synchronization of delayed coupled neurons in presence of inhomogeneity. J Comput Neurosci 2013; 36:55-66. [PMID: 23744009 DOI: 10.1007/s10827-013-0461-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/02/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
In principle, two directly coupled limit cycle oscillators can overcome mismatch in intrinsic rates and match their frequencies, but zero phase lag synchronization is just achievable in the limit of zero mismatch, i.e., with identical oscillators. Delay in communication, on the other hand, can exert phase shift in the activity of the coupled oscillators. In this study, we address the question of how phase locked, and in particular zero phase lag synchronization, can be achieved for a heterogeneous system of two delayed coupled neurons. We have analytically studied the possibility of inphase synchronization and near inphase synchronization when the neurons are not identical or the connections are not exactly symmetric. We have shown that while any single source of inhomogeneity can violate isochronous synchrony, multiple sources of inhomogeneity can compensate for each other and maintain synchrony. Numeric studies on biologically plausible models also support the analytic results.
Collapse
Affiliation(s)
- S Sadeghi
- Institute for Advanced Studies in Basic Sciences (IASBS), P. O. Box 45195-1159, Zanjan, Iran
| | | |
Collapse
|
20
|
Witt A, Palmigiano A, Neef A, El Hady A, Wolf F, Battaglia D. Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study. Front Neural Circuits 2013; 7:49. [PMID: 23616748 PMCID: PMC3627980 DOI: 10.3389/fncir.2013.00049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/07/2013] [Indexed: 11/24/2022] Open
Abstract
Dynamic oscillatory coherence is believed to play a central role in flexible communication between brain circuits. To test this communication-through-coherence hypothesis, experimental protocols that allow a reliable control of phase-relations between neuronal populations are needed. In this modeling study, we explore the potential of closed-loop optogenetic stimulation for the control of functional interactions mediated by oscillatory coherence. The theory of non-linear oscillators predicts that the efficacy of local stimulation will depend not only on the stimulation intensity but also on its timing relative to the ongoing oscillation in the target area. Induced phase-shifts are expected to be stronger when the stimulation is applied within specific narrow phase intervals. Conversely, stimulations with the same or even stronger intensity are less effective when timed randomly. Stimulation should thus be properly phased with respect to ongoing oscillations (in order to optimally perturb them) and the timing of the stimulation onset must be determined by a real-time phase analysis of simultaneously recorded local field potentials (LFPs). Here, we introduce an electrophysiologically calibrated model of Channelrhodopsin 2 (ChR2)-induced photocurrents, based on fits holding over two decades of light intensity. Through simulations of a neural population which undergoes coherent gamma oscillations—either spontaneously or as an effect of continuous optogenetic driving—we show that precisely-timed photostimulation pulses can be used to shift the phase of oscillation, even at transduction rates smaller than 25%. We consider then a canonic circuit with two inter-connected neural populations oscillating with gamma frequency in a phase-locked manner. We demonstrate that photostimulation pulses applied locally to a single population can induce, if precisely phased, a lasting reorganization of the phase-locking pattern and hence modify functional interactions between the two populations.
Collapse
Affiliation(s)
- Annette Witt
- Cognitive Neuroscience Department, German Primate Center, Bernstein Center for Computational Neuroscience, Max Planck Institute for Dynamics and Self-Organization Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Wang S, Musharoff MM, Canavier CC, Gasparini S. Hippocampal CA1 pyramidal neurons exhibit type 1 phase-response curves and type 1 excitability. J Neurophysiol 2013; 109:2757-66. [PMID: 23468392 DOI: 10.1152/jn.00721.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phase-resetting properties of neurons determine their functionality as integrators (type 1) vs. resonators (type 2), as well as their synchronization tendencies. We introduce a novel, bias-correction method to estimate the infinitesimal phase-resetting curve (iPRC) and confirm type 1 excitability in hippocampal pyramidal CA1 neurons in vitro by two independent methods. First, PRCs evoked using depolarizing pulses consisted only of advances, consistent with type 1. Second, the frequency/current (f/I) plots showed no minimum frequency, again consistent with type 1. Type 1 excitability was also confirmed by the absence of a resonant peak in the interspike interval histograms derived from the f/I data. The PRC bias correction assumed that the distribution of noisy phase resetting is truncated, because an input cannot advance a spike to a point in time before the input (the causal limit) and successfully removed the statistical bias for delays in the null PRC in response to zero-magnitude input by computing the phase resetting as the mean of the untruncated distribution. The PRC for depolarization peaked at late phases and decreased to zero by the end of the cycle, whereas delays observed in response to hyperpolarization increased monotonically. The bias correction did not affect this difference in shape, which was due instead to the causal limit obscuring the iPRC for depolarization but not hyperpolarization. Our results suggest that weak periodic hyperpolarizing drive can theoretically entrain CA1 pyramidal neurons at any phase but that strong excitation will preferentially phase-lock them with zero time lag.
Collapse
Affiliation(s)
- Shuoguo Wang
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
22
|
Viriyopase A, Bojak I, Zeitler M, Gielen S. When Long-Range Zero-Lag Synchronization is Feasible in Cortical Networks. Front Comput Neurosci 2012; 6:49. [PMID: 22866034 PMCID: PMC3406310 DOI: 10.3389/fncom.2012.00049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 06/27/2012] [Indexed: 11/13/2022] Open
Abstract
Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14–30 and 40–80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization may occur with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions. We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo–Strogatz neurons and type II Hodgkin–Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP) and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin–Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP.
Collapse
Affiliation(s)
- Atthaphon Viriyopase
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen (Medical Centre) Nijmegen, Netherlands
| | | | | | | |
Collapse
|
23
|
Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons. PLoS Comput Biol 2012; 8:e1002478. [PMID: 22511861 PMCID: PMC3325187 DOI: 10.1371/journal.pcbi.1002478] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies. Synchronization of neuronal spiking in the brain is related to cognitive functions, such as perception, attention, and memory. It is therefore important to determine which properties of neurons influence their collective behavior in a network and to understand how. A prominent feature of many cortical neurons is spike frequency adaptation, which is caused by slow transmembrane currents. We investigated how these adaptation currents affect the synchronization tendency of coupled model neurons. Using the efficient adaptive exponential integrate-and-fire (aEIF) model and a biophysically detailed neuron model for validation, we found that increased adaptation currents promote synchronization of coupled excitatory neurons at lower spike frequencies, as long as the conduction delays between the neurons are negligible. Inhibitory neurons on the other hand synchronize in presence of conduction delays, with or without adaptation currents. Our results emphasize the utility of the aEIF model for computational studies of neuronal network dynamics. We conclude that adaptation currents provide a mechanism to generate low frequency oscillations in local populations of excitatory neurons, while faster rhythms seem to be caused by inhibition rather than excitation.
Collapse
|