1
|
Muok AR, Kurniyati K, Cassidy CK, Olsthoorn FA, Ortega DR, Mabrouk AS, Li C, Briegel A. A new class of protein sensor links spirochete pleomorphism, persistence, and chemotaxis. mBio 2023; 14:e0159823. [PMID: 37607060 PMCID: PMC10653840 DOI: 10.1128/mbio.01598-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE A new class of bacterial protein sensors monitors intracellular levels of S-adenosylmethionine to modulate cell morphology, chemotaxis, and biofilm formation. Simultaneous regulation of these behaviors enables bacterial pathogens to survive within their niche. This sensor, exemplified by Treponema denticola CheWS, is anchored to the chemotaxis array and its sensor domain is located below the chemotaxis rings. This position may allow the sensor to directly interact with the chemotaxis histidine kinase CheA. Collectively, these data establish a critical role of CheWS in pathogenesis and further illustrate the impact of studying non-canonical chemotaxis proteins.
Collapse
Affiliation(s)
- A. R. Muok
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - K. Kurniyati
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute for Oral Health, Virginia Commonwealth University, Richmond, Virginia, USA
| | - C. K. Cassidy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - F. A. Olsthoorn
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - D. R. Ortega
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. Sidi Mabrouk
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - C. Li
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute for Oral Health, Virginia Commonwealth University, Richmond, Virginia, USA
| | - A. Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Vass LR, Bourret RB, Foster CA. Analysis of CheW-like domains provides insights into organization of prokaryotic chemotaxis systems. Proteins 2023; 91:315-329. [PMID: 36134607 PMCID: PMC9898116 DOI: 10.1002/prot.26430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/09/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023]
Abstract
The ability to control locomotion in a dynamic environment provides a competitive advantage for microorganisms, thus driving the evolution of sophisticated regulatory systems. In total, 19 known categories of chemotaxis systems control motility mediated by flagella or Type IV pili, plus other cellular functions. A key feature that distinguishes chemotaxis systems from generic two-component regulatory systems is separation of receptor and kinase functions into distinct proteins, linked by CheW scaffold proteins. This arrangement allows for formation of varied arrays with remarkable signaling properties. We recently analyzed sequences of CheW-like domains found in CheA kinases and CheW and CheV scaffold proteins. In total, 16 Architectures of CheA, CheW, and CheV proteins contain ~94% of all CheW-like domains and form six Classes with likely functional specializations. We surveyed chemotaxis system categories and proteins containing CheW-like domains in ~1900 prokaryotic species, the most comprehensive analysis to date, revealing new insights. Co-occurrence analyses suggested that many chemotaxis systems occur in non-random combinations within species, implying synergy or antagonism. Furthermore, many Architectures of proteins containing CheW-like domains occurred predominantly with specific categories of chemotaxis systems, suggesting specialized functional interactions. We propose Class 1 (~80%) and Class 6 (~20%) CheW proteins exhibit preferences for distinct chemoreceptor structures. Furthermore, rare (~1%) Class 2 CheW proteins frequently co-occurred with methyl-accepting coiled coil proteins, which contain both receptor and kinase functions and so do not require connection via a CheW scaffold but may benefit from arrays. Last, rare multidomain CheW proteins may interact with different receptors than single-domain CheW proteins.
Collapse
Affiliation(s)
- Luke R. Vass
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Robert B. Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Clay A. Foster
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
3
|
Muok AR, Briegel A, Crane BR. Regulation of the chemotaxis histidine kinase CheA: A structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183030. [PMID: 31374212 DOI: 10.1016/j.bbamem.2019.183030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Bacteria sense and respond to their environment through a highly conserved assembly of transmembrane chemoreceptors (MCPs), the histidine kinase CheA, and the coupling protein CheW, hereafter termed "the chemosensory array". In recent years, great strides have been made in understanding the architecture of the chemosensory array and how this assembly engenders sensitive and cooperative responses. Nonetheless, a central outstanding question surrounds how receptors modulate the activity of the CheA kinase, the enzymatic output of the sensory system. With a focus on recent advances, we summarize the current understanding of array structure and function to comment on the molecular mechanism by which CheA, receptors and CheW generate the high sensitivity, gain and dynamic range emblematic of bacterial chemotaxis. The complexity of the chemosensory arrays has motivated investigation with many different approaches. In particular, structural methods, genetics, cellular activity assays, nanodisc technology and cryo-electron tomography have provided advances that bridge length scales and connect molecular mechanism to cellular function. Given the high degree of component integration in the chemosensory arrays, we ultimately aim to understand how such networked molecular interactions generate a whole that is truly greater than the sum of its parts. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Alise R Muok
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Ariane Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States of America.
| |
Collapse
|
4
|
Duclert-Savatier N, Bouvier G, Nilges M, Malliavin TE. Conformational sampling of CpxA: Connecting HAMP motions to the histidine kinase function. PLoS One 2018; 13:e0207899. [PMID: 30496238 PMCID: PMC6264157 DOI: 10.1371/journal.pone.0207899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/06/2018] [Indexed: 11/29/2022] Open
Abstract
In the histidine kinase family, the HAMP and DHp domains are considered to play an important role into the transmission of signal arising from environmental conditions to the auto-phosphorylation site and to the binding site of response regulator. Several conformational motions inside HAMP have been proposed to transmit this signal: (i) the gearbox model, (ii) α helices rotations, pistons and scissoring, (iii) transition between ordered and disordered states. In the present work, we explore by temperature-accelerated molecular dynamics (TAMD), an enhanced sampling technique, the conformational space of the cytoplasmic region of histidine kinase CpxA. Several HAMP motions, corresponding to α helices rotations, pistoning and scissoring have been detected and correlated to the segmental motions of HAMP and DHp domains of CpxA.
Collapse
Affiliation(s)
- Nathalie Duclert-Savatier
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, Paris, France
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, Paris, France
| | - Guillaume Bouvier
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, Paris, France
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, Paris, France
| | - Michael Nilges
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, Paris, France
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, Paris, France
| | - Thérèse E. Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, Paris, France
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, Paris, France
- * E-mail:
| |
Collapse
|
5
|
Noncritical Signaling Role of a Kinase-Receptor Interaction Surface in the Escherichia coli Chemosensory Core Complex. J Mol Biol 2018; 430:1051-1064. [PMID: 29453948 DOI: 10.1016/j.jmb.2018.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/22/2022]
Abstract
In Escherichia coli chemosensory arrays, transmembrane receptors, a histidine autokinase CheA, and a scaffolding protein CheW interact to form an extended hexagonal lattice of signaling complexes. One interaction, previously assigned a crucial signaling role, occurs between chemoreceptors and the CheW-binding P5 domain of CheA. Structural studies showed a receptor helix fitting into a hydrophobic cleft at the boundary between P5 subdomains. Our work aimed to elucidate the in vivo roles of the receptor-P5 interface, employing as a model the interaction between E. coli CheA and Tsr, the serine chemoreceptor. Crosslinking assays confirmed P5 and Tsr contacts in vivo and their strict dependence on CheW. Moreover, the P5 domain only mediated CheA recruitment to polar receptor clusters if CheW was also present. Amino acid replacements at CheA.P5 cleft residues reduced CheA kinase activity, lowered serine response cooperativity, and partially impaired chemotaxis. Pseudoreversion studies identified suppressors of P5 cleft defects at other P5 groove residues or at surface-exposed residues in P5 subdomain 1, which interacts with CheW in signaling complexes. Our results indicate that a high-affinity P5-receptor binding interaction is not essential for core complex function. Rather, P5 groove residues are probably required for proper cleft structure and/or dynamic behavior, which likely impact conformational communication between P5 subdomains and the strong binding interaction with CheW that is necessary for kinase activation. We propose a model for signal transmission in chemotaxis signaling complexes in which the CheW-receptor interface plays the key role in conveying signaling-related conformational changes from receptors to the CheA kinase.
Collapse
|
6
|
Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:12809-12814. [PMID: 29133402 DOI: 10.1073/pnas.1708842114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In contrast to Escherichia coli, a model organism for chemotaxis that has 5 chemoreceptors and a single chemosensory pathway, Pseudomonas aeruginosa PAO1 has a much more complex chemosensory network, which consists of 26 chemoreceptors feeding into four chemosensory pathways. While several chemoreceptors were rigorously linked to specific pathways in a series of experimental studies, for most of them this information is not available. Thus, we addressed the problem computationally. Protein-protein interaction network prediction, coexpression data mining, and phylogenetic profiling all produced incomplete and uncertain assignments of chemoreceptors to pathways. However, comparative sequence analysis specifically targeting chemoreceptor regions involved in pathway interactions revealed conserved sequence patterns that enabled us to unambiguously link all 26 chemoreceptors to four pathways. Placing computational evidence in the context of experimental data allowed us to conclude that three chemosensory pathways in P. aeruginosa utilize one chemoreceptor per pathway, whereas the fourth pathway, which is the main system controlling chemotaxis, utilizes the other 23 chemoreceptors. Our results show that while only a very few amino acid positions in receptors, kinases, and adaptors determine their pathway specificity, assigning receptors to pathways computationally is possible. This requires substantial knowledge about interacting partners on a molecular level and focusing comparative sequence analysis on the pathway-specific regions. This general principle should be applicable to resolving many other receptor-pathway interactions.
Collapse
|
7
|
Alvarado A, Kjær A, Yang W, Mann P, Briegel A, Waldor MK, Ringgaard S. Coupling chemosensory array formation and localization. eLife 2017; 6:31058. [PMID: 29058677 PMCID: PMC5706961 DOI: 10.7554/elife.31058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/22/2017] [Indexed: 11/13/2022] Open
Abstract
Chemotaxis proteins organize into large, highly ordered, chemotactic signaling arrays, which in Vibrio species are found at the cell pole. Proper localization of signaling arrays is mediated by ParP, which tethers arrays to a cell pole anchor, ParC. Here we show that ParP’s C-terminus integrates into the core-unit of signaling arrays through interactions with MCP-proteins and CheA. Its intercalation within core-units stimulates array formation, whereas its N-terminal interaction domain enables polar recruitment of arrays and facilitates its own polar localization. Linkage of these domains within ParP couples array formation and localization and results in controlled array positioning at the cell pole. Notably, ParP’s integration into arrays modifies its own and ParC’s subcellular localization dynamics, promoting their polar retention. ParP serves as a critical nexus that regulates the localization dynamics of its network constituents and drives the localized assembly and stability of the chemotactic machinery, resulting in proper cell pole development. Many bacteria live in a liquid environment and explore their surroundings by swimming. When in search of food, bacteria are able to swim toward the highest concentration of food molecules in the environment by a process called chemotaxis. Proteins important for chemotaxis group together in large networks called chemotaxis arrays. In the bacterium Vibrio cholerae chemotaxis arrays are placed at opposite ends (at the “cell poles”) of the bacterium by a protein called ParP. This makes sure that when the bacterium divides, each new cell receives a chemotaxis array and can immediately search for food. In cells that lack ParP, the chemotaxis arrays are no longer placed correctly at the cell poles and the bacteria search for food much less effectively. To understand how ParP is able to direct chemotaxis arrays to the cell poles in V. cholerae Alvarado et al. searched for partner proteins that could help ParP position the arrays. The search revealed that ParP interacts with other proteins in the chemotaxis arrays. This enables ParP to integrate into the arrays and stimulate new arrays to form. Alvarado et al. also discovered that ParP consists of two separate parts that have different roles. One part directs ParP to the cell pole while the other part integrates ParP into the arrays. By performing both of these roles, ParP links the positioning of the arrays at the cell pole to their formation at this site. The findings presented by Alvarado et al. open many further questions. For instance, it is not understood how ParP affects how other chemotaxis proteins within the arrays interact with each other. As well as enabling many species of bacteria to spread through their environment, chemotaxis is also important for the disease-causing properties of many human pathogens – like V. cholerae. As a result, learning how chemotaxis is regulated could potentially identify new ways to stop the spread of infectious bacteria and prevent human infections.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Kjær
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Wen Yang
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Petra Mann
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Simon Ringgaard
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
8
|
Martinez M, Duclert-Savatier N, Betton JM, Alzari PM, Nilges M, Malliavin TE. Modification in hydrophobic packing of HAMP domain induces a destabilization of the auto-phosphorylation site in the histidine kinase CpxA. Biopolymers 2017; 105:670-82. [PMID: 27124288 DOI: 10.1002/bip.22864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
The histidine kinases belong to the family of two-component systems, which serves in bacteria to couple environmental stimuli to adaptive responses. Most of the histidine kinases are homodimers, in which the HAMP and DHp domains assemble into an elongated helical region flanked by two CA domains. Recently, X-ray crystallographic structures of the cytoplasmic region of the Escherichia coli histidine kinase CpxA were determined and a phosphotransferase-defective mutant, M228V, located in HAMP, was identified. In the present study, we recorded 1 μs molecular dynamics trajectories to compare the behavior of the WT and M228V protein dimers. The M228V modification locally induces the appearance of larger voids within HAMP as well as a perturbation of the number of voids within DHp, thus destabilizing the HAMP and DHp hydrophobic packing. In addition, a disruption of the stacking interaction between F403 located in the lid of the CA domain involved in the auto-phosphorylation and R296 located in the interacting DHp region, is more often observed in the presence of the M228V modification. Experimental modifications R296A and R296D of CpxA have been observed to reduce also the CpxA activity. These observations agree with the destabilization of the R296/F403 stacking, and could be the sign of the transmission of a conformational event taking place in HAMP to the auto-phosphorylation site of histidine kinase. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 670-682, 2016.
Collapse
Affiliation(s)
- Marlet Martinez
- Institut Pasteur and CNRS UMR 3528, Rue Du Dr Roux, Unité De Bioinformatique Structurale, Paris, 75015, France
| | - Nathalie Duclert-Savatier
- Institut Pasteur and CNRS UMR 3528, Rue Du Dr Roux, Unité De Bioinformatique Structurale, Paris, 75015, France
| | - Jean-Michel Betton
- Institut Pasteur and CNRS UMR 3528, Rue Du Dr Roux, Unité De Microbiologie Structurale, Paris, 75015, France
| | - Pedro M Alzari
- Institut Pasteur and CNRS UMR 3528, Rue Du Dr Roux, Unité De Microbiologie Structurale, Paris, 75015, France
| | - Michael Nilges
- Institut Pasteur and CNRS UMR 3528, Rue Du Dr Roux, Unité De Bioinformatique Structurale, Paris, 75015, France
| | - Thérèse E Malliavin
- Institut Pasteur and CNRS UMR 3528, Rue Du Dr Roux, Unité De Bioinformatique Structurale, Paris, 75015, France
| |
Collapse
|
9
|
Ortega DR, Zhulin IB. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex. PLoS Comput Biol 2016; 12:e1004723. [PMID: 26844549 PMCID: PMC4742279 DOI: 10.1371/journal.pcbi.1004723] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/29/2015] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. Due to the overwhelming complexity and diversity of biological systems, the functional roles of the majority of proteins encoded in sequenced genomes remain unknown or poorly understood. The multi-protein pathway controlling chemotaxis in bacteria and archaea is an example of such complexity and diversity. Chemotaxis pathway in E. coli is one of the best understood signal transduction networks in nature; however, this model organism lacks some of the system components, such as CheV, that are found in many other species. The biological role of CheV is still under avid debate. CheV is an auxiliary component of many chemotaxis systems and is present in important human pathogens, such as Salmonella and Helicobacter, where chemotaxis is being studied as an important virulence trait. Here we established the evolutionary history of the chemotaxis pathway in enterobacteria and combined a computational genomics approach with available structural information to propose a role for CheV. Our results show that CheV in enterics evolved as an adaptor for a specific type of chemoreceptors. Furthermore, we propose that some CheV-associated chemoreceptors might increase the kinase activity above the base level, and in these cases CheV acts as an attenuator.
Collapse
Affiliation(s)
- Davi R. Ortega
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Igor B. Zhulin
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
10
|
Cassidy CK, Himes BA, Alvarez FJ, Ma J, Zhao G, Perilla JR, Schulten K, Zhang P. CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling. eLife 2015; 4. [PMID: 26583751 PMCID: PMC6746300 DOI: 10.7554/elife.08419] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/18/2015] [Indexed: 11/13/2022] Open
Abstract
Chemotactic responses in bacteria require large, highly ordered arrays of sensory proteins to mediate the signal transduction that ultimately controls cell motility. A mechanistic understanding of the molecular events underlying signaling, however, has been hampered by the lack of a high-resolution structural description of the extended array. Here, we report a novel reconstitution of the array, involving the receptor signaling domain, histidine kinase CheA, and adaptor protein CheW, as well as a density map of the core-signaling unit at 11.3 Å resolution, obtained by cryo-electron tomography and sub-tomogram averaging. Extracting key structural constraints from our density map, we computationally construct and refine an atomic model of the core array structure, exposing novel interfaces between the component proteins. Using all-atom molecular dynamics simulations, we further reveal a distinctive conformational change in CheA. Mutagenesis and chemical cross-linking experiments confirm the importance of the conformational dynamics of CheA for chemotactic function.
Collapse
Affiliation(s)
- C Keith Cassidy
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Frances J Alvarez
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Jun Ma
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Juan R Perilla
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
11
|
Pedetta A, Parkinson JS, Studdert CA. Signalling-dependent interactions between the kinase-coupling protein CheW and chemoreceptors in living cells. Mol Microbiol 2014; 93:1144-55. [PMID: 25060668 DOI: 10.1111/mmi.12727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 12/19/2022]
Abstract
Chemical signals sensed on the periplasmic side of bacterial cells by transmembrane chemoreceptors are transmitted to the flagellar motors via the histidine kinase CheA, which controls the phosphorylation level of the effector protein CheY. Chemoreceptor arrays comprise remarkably stable supramolecular structures in which thousands of chemoreceptors are networked through interactions between their cytoplasmic tips, CheA, and the small coupling protein CheW. To explore the conformational changes that occur within this protein assembly during signalling, we used in vivo cross-linking methods to detect close interactions between the coupling protein CheW and the serine receptor Tsr in intact Escherichia coli cells. We identified two signal-sensitive contacts between CheW and the cytoplasmic tip of Tsr. Our results suggest that ligand binding triggers changes in the receptor that alter its signalling contacts with CheW (and/or CheA).
Collapse
Affiliation(s)
- Andrea Pedetta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | | | | |
Collapse
|