1
|
Wuyun Q, Chen Y, Shen Y, Cao Y, Hu G, Cui W, Gao J, Zheng W. Recent Progress of Protein Tertiary Structure Prediction. Molecules 2024; 29:832. [PMID: 38398585 PMCID: PMC10893003 DOI: 10.3390/molecules29040832] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The prediction of three-dimensional (3D) protein structure from amino acid sequences has stood as a significant challenge in computational and structural bioinformatics for decades. Recently, the widespread integration of artificial intelligence (AI) algorithms has substantially expedited advancements in protein structure prediction, yielding numerous significant milestones. In particular, the end-to-end deep learning method AlphaFold2 has facilitated the rise of structure prediction performance to new heights, regularly competitive with experimental structures in the 14th Critical Assessment of Protein Structure Prediction (CASP14). To provide a comprehensive understanding and guide future research in the field of protein structure prediction for researchers, this review describes various methodologies, assessments, and databases in protein structure prediction, including traditionally used protein structure prediction methods, such as template-based modeling (TBM) and template-free modeling (FM) approaches; recently developed deep learning-based methods, such as contact/distance-guided methods, end-to-end folding methods, and protein language model (PLM)-based methods; multi-domain protein structure prediction methods; the CASP experiments and related assessments; and the recently released AlphaFold Protein Structure Database (AlphaFold DB). We discuss their advantages, disadvantages, and application scopes, aiming to provide researchers with insights through which to understand the limitations, contexts, and effective selections of protein structure prediction methods in protein-related fields.
Collapse
Affiliation(s)
- Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yihan Chen
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China;
| | - Yifeng Shen
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0882, Kanagawa, Japan;
| | - Yang Cao
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Gang Hu
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China
| | - Wei Cui
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China;
| | - Jianzhao Gao
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China;
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Zheng W, Wuyun Q, Freddolino PL, Zhang Y. Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15. Proteins 2023; 91:1684-1703. [PMID: 37650367 PMCID: PMC10840719 DOI: 10.1002/prot.26585] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
We report the results of the "UM-TBM" and "Zheng" groups in CASP15 for protein monomer and complex structure prediction. These prediction sets were obtained using the D-I-TASSER and DMFold-Multimer algorithms, respectively. For monomer structure prediction, D-I-TASSER introduced four new features during CASP15: (i) a multiple sequence alignment (MSA) generation protocol that combines multi-source MSA searching and a structural modeling-based MSA ranker; (ii) attention-network based spatial restraints; (iii) a multi-domain module containing domain partition and arrangement for domain-level templates and spatial restraints; (iv) an optimized I-TASSER-based folding simulation system for full-length model creation guided by a combination of deep learning restraints, threading alignments, and knowledge-based potentials. For 47 free modeling targets in CASP15, the final models predicted by D-I-TASSER showed average TM-score 19% higher than the standard AlphaFold2 program. We thus showed that traditional Monte Carlo-based folding simulations, when appropriately coupled with deep learning algorithms, can generate models with improved accuracy over end-to-end deep learning methods alone. For protein complex structure prediction, DMFold-Multimer generated models by integrating a new MSA generation algorithm (DeepMSA2) with the end-to-end modeling module from AlphaFold2-Multimer. For the 38 complex targets, DMFold-Multimer generated models with an average TM-score of 0.83 and Interface Contact Score of 0.60, both significantly higher than those of competing complex prediction tools. Our analyses on complexes highlighted the critical role played by MSA generating, ranking, and pairing in protein complex structure prediction. We also discuss future room for improvement in the areas of viral protein modeling and complex model ranking.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Peter L Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Computer Science, School of Computing, National University of Singapore, 117417 Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore
| |
Collapse
|
3
|
Huang B, Kong L, Wang C, Ju F, Zhang Q, Zhu J, Gong T, Zhang H, Yu C, Zheng WM, Bu D. Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:913-925. [PMID: 37001856 PMCID: PMC10928435 DOI: 10.1016/j.gpb.2022.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 03/31/2023]
Abstract
Protein structure prediction is an interdisciplinary research topic that has attracted researchers from multiple fields, including biochemistry, medicine, physics, mathematics, and computer science. These researchers adopt various research paradigms to attack the same structure prediction problem: biochemists and physicists attempt to reveal the principles governing protein folding; mathematicians, especially statisticians, usually start from assuming a probability distribution of protein structures given a target sequence and then find the most likely structure, while computer scientists formulate protein structure prediction as an optimization problem - finding the structural conformation with the lowest energy or minimizing the difference between predicted structure and native structure. These research paradigms fall into the two statistical modeling cultures proposed by Leo Breiman, namely, data modeling and algorithmic modeling. Recently, we have also witnessed the great success of deep learning in protein structure prediction. In this review, we present a survey of the efforts for protein structure prediction. We compare the research paradigms adopted by researchers from different fields, with an emphasis on the shift of research paradigms in the era of deep learning. In short, the algorithmic modeling techniques, especially deep neural networks, have considerably improved the accuracy of protein structure prediction; however, theories interpreting the neural networks and knowledge on protein folding are still highly desired.
Collapse
Affiliation(s)
- Bin Huang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lupeng Kong
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; Changping Laboratory, Beijing 102206, China
| | - Chao Wang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Fusong Ju
- Microsoft Research AI4Science, Beijing 100080, China
| | - Qi Zhang
- Huawei Noah's Ark Lab, Wuhan 430206, China
| | - Jianwei Zhu
- Microsoft Research AI4Science, Beijing 100080, China
| | - Tiansu Gong
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haicang Zhang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongke Big Data Academy, Zhengzhou 450046, China.
| | - Chungong Yu
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongke Big Data Academy, Zhengzhou 450046, China.
| | - Wei-Mou Zheng
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dongbo Bu
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongke Big Data Academy, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Bhattacharya S, Roche R, Shuvo MH, Moussad B, Bhattacharya D. Contact-Assisted Threading in Low-Homology Protein Modeling. Methods Mol Biol 2023; 2627:41-59. [PMID: 36959441 DOI: 10.1007/978-1-0716-2974-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The ability to successfully predict the three-dimensional structure of a protein from its amino acid sequence has made considerable progress in the recent past. The progress is propelled by the improved accuracy of deep learning-based inter-residue contact map predictors coupled with the rising growth of protein sequence databases. Contact map encodes interatomic interaction information that can be exploited for highly accurate prediction of protein structures via contact map threading even for the query proteins that are not amenable to direct homology modeling. As such, contact-assisted threading has garnered considerable research effort. In this chapter, we provide an overview of existing contact-assisted threading methods while highlighting the recent advances and discussing some of the current limitations and future prospects in the application of contact-assisted threading for improving the accuracy of low-homology protein modeling.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
| | | | - Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Bernard Moussad
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
5
|
Nakshathram S, Duraisamy R. Protein remote homology recognition using local and global structural sequence alignment. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-213522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Protein Remote Homology and fold Recognition (PRHR) is the most crucial task to predict the protein patterns. To achieve this task, Sequence-Order Frequency Matrix-Sampling and Deep learning with Smith-Waterman (SOFM-SDSW) were designed using large-scale Protein Sequences (PSs), which take more time to determine the high-dimensional attributes. Also, it was ineffective since the SW was only applied for local alignment, which cannot find the most matches between the PSs. Hence, in this manuscript, a rapid semi-global alignment algorithm called SOFM-SD-GlobalSW (SOFM-SDGSW) is proposed that facilitates the affine-gap scoring and uses sequence similarity to align the PSs. The major aim of this paper is to enhance the alignment of SW algorithm in both locally and globally for PRHR. In this algorithm, the Maximal Exact Matches (MEMs) are initially obtained by the bit-level parallelism rather than to align the individual characters. After that, a subgroup of MEMs is obtained to determine the global Alignment Score (AS) using the new adaptive programming scheme. Also, the SW local alignment scheme is used to determine the local AS. Then, both local and global ASs are combined to produce a final AS. Further, this resultant AS is considered to train the Support Vector Machine (SVM) classifier to recognize the PRH and folds. Finally, the test results reveal the SOFM-SDGSW algorithm on SCOP 1.53, SCOP 1.67 and Superfamily databases attains an ROC of 0.97, 0.941 and 0.938, respectively, as well as, an ROC50 of 0.819, 0.846 and 0.86, respectively compared to the conventional PRHR algorithms.
Collapse
|
6
|
Lee SJ, Joo K, Sim S, Lee J, Lee IH, Lee J. CRFalign: A Sequence-Structure Alignment of Proteins Based on a Combination of HMM-HMM Comparison and Conditional Random Fields. Molecules 2022; 27:3711. [PMID: 35744836 PMCID: PMC9231382 DOI: 10.3390/molecules27123711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Sequence-structure alignment for protein sequences is an important task for the template-based modeling of 3D structures of proteins. Building a reliable sequence-structure alignment is a challenging problem, especially for remote homologue target proteins. We built a method of sequence-structure alignment called CRFalign, which improves upon a base alignment model based on HMM-HMM comparison by employing pairwise conditional random fields in combination with nonlinear scoring functions of structural and sequence features. Nonlinear scoring part is implemented by a set of gradient boosted regression trees. In addition to sequence profile features, various position-dependent structural features are employed including secondary structures and solvent accessibilities. Training is performed on reference alignments at superfamily levels or twilight zone chosen from the SABmark benchmark set. We found that CRFalign method produces relative improvement in terms of average alignment accuracies for validation sets of SABmark benchmark. We also tested CRFalign on 51 sequence-structure pairs involving 15 FM target domains of CASP14, where we could see that CRFalign leads to an improvement in average modeling accuracies in these hard targets (TM-CRFalign ≃42.94%) compared with that of HHalign (TM-HHalign ≃39.05%) and also that of MRFalign (TM-MRFalign ≃36.93%). CRFalign was incorporated to our template search framework called CRFpred and was tested for a random target set of 300 target proteins consisting of Easy, Medium and Hard sets which showed a reasonable template search performance.
Collapse
Affiliation(s)
- Sung Jong Lee
- Basic Science Institute, Changwon National University, Changwon 51140, Korea;
| | - Keehyoung Joo
- Center for Advanced Computation, Korea Institute for Advanced Study, Seoul 02455, Korea;
| | | | - Juyong Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea;
| | - In-Ho Lee
- Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea;
| | - Jooyoung Lee
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
7
|
Villegas-Morcillo A, Gomez AM, Sanchez V. An analysis of protein language model embeddings for fold prediction. Brief Bioinform 2022; 23:6571527. [PMID: 35443054 DOI: 10.1093/bib/bbac142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The identification of the protein fold class is a challenging problem in structural biology. Recent computational methods for fold prediction leverage deep learning techniques to extract protein fold-representative embeddings mainly using evolutionary information in the form of multiple sequence alignment (MSA) as input source. In contrast, protein language models (LM) have reshaped the field thanks to their ability to learn efficient protein representations (protein-LM embeddings) from purely sequential information in a self-supervised manner. In this paper, we analyze a framework for protein fold prediction using pre-trained protein-LM embeddings as input to several fine-tuning neural network models, which are supervisedly trained with fold labels. In particular, we compare the performance of six protein-LM embeddings: the long short-term memory-based UniRep and SeqVec, and the transformer-based ESM-1b, ESM-MSA, ProtBERT and ProtT5; as well as three neural networks: Multi-Layer Perceptron, ResCNN-BGRU (RBG) and Light-Attention (LAT). We separately evaluated the pairwise fold recognition (PFR) and direct fold classification (DFC) tasks on well-known benchmark datasets. The results indicate that the combination of transformer-based embeddings, particularly those obtained at amino acid level, with the RBG and LAT fine-tuning models performs remarkably well in both tasks. To further increase prediction accuracy, we propose several ensemble strategies for PFR and DFC, which provide a significant performance boost over the current state-of-the-art results. All this suggests that moving from traditional protein representations to protein-LM embeddings is a very promising approach to protein fold-related tasks.
Collapse
Affiliation(s)
- Amelia Villegas-Morcillo
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| | - Angel M Gomez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| | - Victoria Sanchez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Zheng W, Wuyun Q, Zhou X, Li Y, Freddolino PL, Zhang Y. LOMETS3: integrating deep learning and profile alignment for advanced protein template recognition and function annotation. Nucleic Acids Res 2022; 50:W454-W464. [PMID: 35420129 PMCID: PMC9252734 DOI: 10.1093/nar/gkac248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Deep learning techniques have significantly advanced the field of protein structure prediction. LOMETS3 (https://zhanglab.ccmb.med.umich.edu/LOMETS/) is a new generation meta-server approach to template-based protein structure prediction and function annotation, which integrates newly developed deep learning threading methods. For the first time, we have extended LOMETS3 to handle multi-domain proteins and to construct full-length models with gradient-based optimizations. Starting from a FASTA-formatted sequence, LOMETS3 performs four steps of domain boundary prediction, domain-level template identification, full-length template/model assembly and structure-based function prediction. The output of LOMETS3 contains (i) top-ranked templates from LOMETS3 and its component threading programs, (ii) up to 5 full-length structure models constructed by L-BFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm) optimization, (iii) the 10 closest Protein Data Bank (PDB) structures to the target, (iv) structure-based functional predictions, (v) domain partition and assembly results, and (vi) the domain-level threading results, including items (i)–(iii) for each identified domain. LOMETS3 was tested in large-scale benchmarks and the blind CASP14 (14th Critical Assessment of Structure Prediction) experiment, where the overall template recognition and function prediction accuracy is significantly beyond its predecessors and other state-of-the-art threading approaches, especially for hard targets without homologous templates in the PDB. Based on the improved developments, LOMETS3 should help significantly advance the capability of broader biomedical community for template-based protein structure and function modelling.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Enireddy V, Karthikeyan C, Babu DV. OneHotEncoding and LSTM-based deep learning models for protein secondary structure prediction. Soft comput 2022. [DOI: 10.1007/s00500-022-06783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Ju F, Zhu J, Zhang Q, Wei G, Sun S, Zheng WM, Bu D. Seq-SetNet: directly exploiting multiple sequence alignment for protein secondary structure prediction. Bioinformatics 2022; 38:990-996. [PMID: 34849579 DOI: 10.1093/bioinformatics/btab777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Accurate prediction of protein structure relies heavily on exploiting multiple sequence alignment (MSA) for residue mutations and correlations as this information specifies protein tertiary structure. The widely used prediction approaches usually transform MSA into inter-mediate models, say position-specific scoring matrix or profile hidden Markov model. These inter-mediate models, however, cannot fully represent residue mutations and correlations carried by MSA; hence, an effective way to directly exploit MSAs is highly desirable. RESULTS Here, we report a novel sequence set network (called Seq-SetNet) to directly and effectively exploit MSA for protein structure prediction. Seq-SetNet uses an 'encoding and aggregation' strategy that consists of two key elements: (i) an encoding module that takes a component homologue in MSA as input, and encodes residue mutations and correlations into context-specific features for each residue; and (ii) an aggregation module to aggregate the features extracted from all component homologues, which are further transformed into structural properties for residues of the query protein. As Seq-SetNet encodes each homologue protein individually, it could consider both insertions and deletions, as well as long-distance correlations among residues, thus representing more information than the inter-mediate models. Moreover, the encoding module automatically learns effective features and thus avoids manual feature engineering. Using symmetric aggregation functions, Seq-SetNet processes the homologue proteins as a sequence set, making its prediction results invariable to the order of these proteins. On popular benchmark sets, we demonstrated the successful application of Seq-SetNet to predict secondary structure and torsion angles of residues with improved accuracy and efficiency. AVAILABILITY AND IMPLEMENTATION The code and datasets are available through https://github.com/fusong-ju/Seq-SetNet. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fusong Ju
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Zhu
- Microsoft Research Asia, Beijing 100080, China
| | - Qi Zhang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozheng Wei
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Zhongke Big Data Academy, Zhengzhou 450046, Henan, China
| | - Wei-Mou Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongbo Bu
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Zhongke Big Data Academy, Zhengzhou 450046, Henan, China
| |
Collapse
|
11
|
Tran NH, Xu J, Li M. A tale of solving two computational challenges in protein science: neoantigen prediction and protein structure prediction. Brief Bioinform 2022; 23:bbab493. [PMID: 34891158 PMCID: PMC8769896 DOI: 10.1093/bib/bbab493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
In this article, we review two challenging computational questions in protein science: neoantigen prediction and protein structure prediction. Both topics have seen significant leaps forward by deep learning within the past five years, which immediately unlocked new developments of drugs and immunotherapies. We show that deep learning models offer unique advantages, such as representation learning and multi-layer architecture, which make them an ideal choice to leverage a huge amount of protein sequence and structure data to address those two problems. We also discuss the impact and future possibilities enabled by those two applications, especially how the data-driven approach by deep learning shall accelerate the progress towards personalized biomedicine.
Collapse
Affiliation(s)
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, USA
| | - Ming Li
- University of Waterloo, Canada
| |
Collapse
|
12
|
Zheng W, Li Y, Zhang C, Zhou X, Pearce R, Bell EW, Huang X, Zhang Y. Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14. Proteins 2021; 89:1734-1751. [PMID: 34331351 PMCID: PMC8616857 DOI: 10.1002/prot.26193] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 11/10/2022]
Abstract
In this article, we report 3D structure prediction results by two of our best server groups ("Zhang-Server" and "QUARK") in CASP14. These two servers were built based on the D-I-TASSER and D-QUARK algorithms, which integrated four newly developed components into the classical protein folding pipelines, I-TASSER and QUARK, respectively. The new components include: (a) a new multiple sequence alignment (MSA) collection tool, DeepMSA2, which is extended from the DeepMSA program; (b) a contact-based domain boundary prediction algorithm, FUpred, to detect protein domain boundaries; (c) a residual convolutional neural network-based method, DeepPotential, to predict multiple spatial restraints by co-evolutionary features derived from the MSA; and (d) optimized spatial restraint energy potentials to guide the structure assembly simulations. For 37 FM targets, the average TM-scores of the first models produced by D-I-TASSER and D-QUARK were 96% and 112% higher than those constructed by I-TASSER and QUARK, respectively. The data analysis indicates noticeable improvements produced by each of the four new components, especially for the newly added spatial restraints from DeepPotential and the well-tuned force field that combines spatial restraints, threading templates, and generic knowledge-based potentials. However, challenges still exist in the current pipelines. These include difficulties in modeling multi-domain proteins due to low accuracy in inter-domain distance prediction and modeling protein domains from oligomer complexes, as the co-evolutionary analysis cannot distinguish inter-chain and intra-chain distances. Specifically tuning the deep learning-based predictors for multi-domain targets and protein complexes may be helpful to address these issues.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eric W. Bell
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoqiang Huang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
13
|
Villegas-Morcillo A, Gomez AM, Morales-Cordovilla JA, Sanchez V. Protein Fold Recognition From Sequences Using Convolutional and Recurrent Neural Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2848-2854. [PMID: 32750896 DOI: 10.1109/tcbb.2020.3012732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The identification of a protein fold type from its amino acid sequence provides important insights about the protein 3D structure. In this paper, we propose a deep learning architecture that can process protein residue-level features to address the protein fold recognition task. Our neural network model combines 1D-convolutional layers with gated recurrent unit (GRU) layers. The GRU cells, as recurrent layers, cope with the processing issues associated to the highly variable protein sequence lengths and so extract a fold-related embedding of fixed size for each protein domain. These embeddings are then used to perform the pairwise fold recognition task, which is based on transferring the fold type of the most similar template structure. We compare our model with several template-based and deep learning-based methods from the state-of-the-art. The evaluation results over the well-known LINDAHL and SCOP_TEST sets, along with a proposed LINDAHL test set updated to SCOP 1.75, show that our embeddings perform significantly better than these methods, specially at the fold level. Supplementary material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TCBB.2020.3012732, source code and trained models are available at http://sigmat.ugr.es/~amelia/CNN-GRU-RF+/.
Collapse
|
14
|
Villegas-Morcillo A, Sanchez V, Gomez AM. FoldHSphere: deep hyperspherical embeddings for protein fold recognition. BMC Bioinformatics 2021; 22:490. [PMID: 34641786 PMCID: PMC8507389 DOI: 10.1186/s12859-021-04419-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/29/2021] [Indexed: 12/01/2022] Open
Abstract
Background Current state-of-the-art deep learning approaches for protein fold recognition learn protein embeddings that improve prediction performance at the fold level. However, there still exists aperformance gap at the fold level and the (relatively easier) family level, suggesting that it might be possible to learn an embedding space that better represents the protein folds. Results In this paper, we propose the FoldHSphere method to learn a better fold embedding space through a two-stage training procedure. We first obtain prototype vectors for each fold class that are maximally separated in hyperspherical space. We then train a neural network by minimizing the angular large margin cosine loss to learn protein embeddings clustered around the corresponding hyperspherical fold prototypes. Our network architectures, ResCNN-GRU and ResCNN-BGRU, process the input protein sequences by applying several residual-convolutional blocks followed by a gated recurrent unit-based recurrent layer. Evaluation results on the LINDAHL dataset indicate that the use of our hyperspherical embeddings effectively bridges the performance gap at the family and fold levels. Furthermore, our FoldHSpherePro ensemble method yields an accuracy of 81.3% at the fold level, outperforming all the state-of-the-art methods. Conclusions Our methodology is efficient in learning discriminative and fold-representative embeddings for the protein domains. The proposed hyperspherical embeddings are effective at identifying the protein fold class by pairwise comparison, even when amino acid sequence similarities are low. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04419-7.
Collapse
Affiliation(s)
- Amelia Villegas-Morcillo
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071, Granada, Spain.
| | - Victoria Sanchez
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071, Granada, Spain
| | - Angel M Gomez
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071, Granada, Spain
| |
Collapse
|
15
|
Jones DAB, Moolhuijzen PM, Hane JK. Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi. Microb Genom 2021; 7. [PMID: 34468307 PMCID: PMC8715435 DOI: 10.1099/mgen.0.000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by fungal pathogens are typically initiated by molecular interactions between 'effector' molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - Paula M Moolhuijzen
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia.,Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
16
|
Talibart H, Coste F. PPalign: optimal alignment of Potts models representing proteins with direct coupling information. BMC Bioinformatics 2021; 22:317. [PMID: 34112081 PMCID: PMC8191105 DOI: 10.1186/s12859-021-04222-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/25/2021] [Indexed: 11/29/2022] Open
Abstract
Background To assign structural and functional annotations to the ever increasing amount of sequenced proteins, the main approach relies on sequence-based homology search methods, e.g. BLAST or the current state-of-the-art methods based on profile Hidden Markov Models, which rely on significant alignments of query sequences to annotated proteins or protein families. While powerful, these approaches do not take coevolution between residues into account. Taking advantage of recent advances in the field of contact prediction, we propose here to represent proteins by Potts models, which model direct couplings between positions in addition to positional composition, and to compare proteins by aligning these models. Due to non-local dependencies, the problem of aligning Potts models is hard and remains the main computational bottleneck for their use. Methods We introduce here an Integer Linear Programming formulation of the problem and PPalign, a program based on this formulation, to compute the optimal pairwise alignment of Potts models representing proteins in tractable time. The approach is assessed with respect to a non-redundant set of reference pairwise sequence alignments from SISYPHUS benchmark which have lowest sequence identity (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3\%$$\end{document}3% and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$20\%$$\end{document}20%) and enable to build reliable Potts models for each sequence to be aligned. This experimentation confirms that Potts models can be aligned in reasonable time (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1'37''$$\end{document}1′37′′ in average on these alignments). The contribution of couplings is evaluated in comparison with HHalign and independent-site PPalign. Although Potts models were not fully optimized for alignment purposes and simple gap scores were used, PPalign yields a better mean \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_1$$\end{document}F1 score and finds significantly better alignments than HHalign and PPalign without couplings in some cases. Conclusions These results show that pairwise couplings from protein Potts models can be used to improve the alignment of remotely related protein sequences in tractable time. Our experimentation suggests yet that new research on the inference of Potts models is now needed to make them more comparable and suitable for homology search. We think that PPalign’s guaranteed optimality will be a powerful asset to perform unbiased investigations in this direction.
Collapse
|
17
|
Bhattacharya S, Roche R, Shuvo MH, Bhattacharya D. Recent Advances in Protein Homology Detection Propelled by Inter-Residue Interaction Map Threading. Front Mol Biosci 2021; 8:643752. [PMID: 34046429 PMCID: PMC8148041 DOI: 10.3389/fmolb.2021.643752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Sequence-based protein homology detection has emerged as one of the most sensitive and accurate approaches to protein structure prediction. Despite the success, homology detection remains very challenging for weakly homologous proteins with divergent evolutionary profile. Very recently, deep neural network architectures have shown promising progress in mining the coevolutionary signal encoded in multiple sequence alignments, leading to reasonably accurate estimation of inter-residue interaction maps, which serve as a rich source of additional information for improved homology detection. Here, we summarize the latest developments in protein homology detection driven by inter-residue interaction map threading. We highlight the emerging trends in distant-homology protein threading through the alignment of predicted interaction maps at various granularities ranging from binary contact maps to finer-grained distance and orientation maps as well as their combination. We also discuss some of the current limitations and possible future avenues to further enhance the sensitivity of protein homology detection.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Rahmatullah Roche
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Md Hossain Shuvo
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Debswapna Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
18
|
Wu F, Xu J. Deep template-based protein structure prediction. PLoS Comput Biol 2021; 17:e1008954. [PMID: 33939695 PMCID: PMC8118551 DOI: 10.1371/journal.pcbi.1008954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/13/2021] [Accepted: 04/11/2021] [Indexed: 11/19/2022] Open
Abstract
MOTIVATION Protein structure prediction has been greatly improved by deep learning, but most efforts are devoted to template-free modeling. But very few deep learning methods are developed for TBM (template-based modeling), a popular technique for protein structure prediction. TBM has been studied extensively in the past, but its accuracy is not satisfactory when highly similar templates are not available. RESULTS This paper presents a new method NDThreader (New Deep-learning Threader) to address the challenges of TBM. NDThreader first employs DRNF (deep convolutional residual neural fields), which is an integration of deep ResNet (convolutional residue neural networks) and CRF (conditional random fields), to align a query protein to templates without using any distance information. Then NDThreader uses ADMM (alternating direction method of multipliers) and DRNF to further improve sequence-template alignments by making use of predicted distance potential. Finally, NDThreader builds 3D models from a sequence-template alignment by feeding it and sequence coevolution information into a deep ResNet to predict inter-atom distance distribution, which is then fed into PyRosetta for 3D model construction. Our experimental results show that NDThreader greatly outperforms existing methods such as CNFpred, HHpred, DeepThreader and CEthreader. NDThreader was blindly tested in CASP14 as a part of RaptorX server, which obtained the best average GDT score among all CASP14 servers on the 58 TBM targets.
Collapse
Affiliation(s)
- Fandi Wu
- Toyota Technological Institute at Chicago, Chicago, IL, United States of America
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, United States of America
| |
Collapse
|
19
|
Janaki C, Gowri VS, Srinivasan N. Master Blaster: an approach to sensitive identification of remotely related proteins. Sci Rep 2021; 11:8746. [PMID: 33888741 PMCID: PMC8062480 DOI: 10.1038/s41598-021-87833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/06/2021] [Indexed: 11/11/2022] Open
Abstract
Genome sequencing projects unearth sequences of all the protein sequences encoded in a genome. As the first step, homology detection is employed to obtain clues to structure and function of these proteins. However, high evolutionary divergence between homologous proteins challenges our ability to detect distant relationships. In the past, an approach involving multiple Position Specific Scoring Matrices (PSSMs) was found to be more effective than traditional single PSSMs. Cascaded search is another successful approach where hits of a search are queried to detect more homologues. We propose a protocol, ‘Master Blaster’, which combines the principles adopted in these two approaches to enhance our ability to detect remote homologues even further. Assessment of the approach was performed using known relationships available in the SCOP70 database, and the results were compared against that of PSI-BLAST and HHblits, a hidden Markov model-based method. Compared to PSI-BLAST, Master Blaster resulted in 10% improvement with respect to detection of cross superfamily connections, nearly 35% improvement in cross family and more than 80% improvement in intra family connections. From the results it was observed that HHblits is more sensitive in detecting remote homologues compared to Master Blaster. However, there are true hits from 46-folds for which Master Blaster reported homologs that are not reported by HHblits even using the optimal parameters indicating that for detecting remote homologues, use of multiple methods employing a combination of different approaches can be more effective in detecting remote homologs. Master Blaster stand-alone code is available for download in the supplementary archive.
Collapse
Affiliation(s)
- Chintalapati Janaki
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.,Centre for Development of Advanced Computing, Knowledge Park, Byappanahalli, Bangalore, 560038, India
| | - Venkatraman S Gowri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.,Department of Chemistry, Auxilium College, Gandhinagar, Vellore, 632006, India
| | | |
Collapse
|
20
|
Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M, Zitnick CL, Ma J, Fergus R. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci U S A 2021. [PMID: 33876751 DOI: 10.1101/622803] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In the field of artificial intelligence, a combination of scale in data and model capacity enabled by unsupervised learning has led to major advances in representation learning and statistical generation. In the life sciences, the anticipated growth of sequencing promises unprecedented data on natural sequence diversity. Protein language modeling at the scale of evolution is a logical step toward predictive and generative artificial intelligence for biology. To this end, we use unsupervised learning to train a deep contextual language model on 86 billion amino acids across 250 million protein sequences spanning evolutionary diversity. The resulting model contains information about biological properties in its representations. The representations are learned from sequence data alone. The learned representation space has a multiscale organization reflecting structure from the level of biochemical properties of amino acids to remote homology of proteins. Information about secondary and tertiary structure is encoded in the representations and can be identified by linear projections. Representation learning produces features that generalize across a range of applications, enabling state-of-the-art supervised prediction of mutational effect and secondary structure and improving state-of-the-art features for long-range contact prediction.
Collapse
Affiliation(s)
- Alexander Rives
- Facebook AI Research, New York, NY 10003;
- Department of Computer Science, New York University, New York, NY 10012
| | | | - Tom Sercu
- Facebook AI Research, New York, NY 10003
| | | | - Zeming Lin
- Department of Computer Science, New York University, New York, NY 10012
| | - Jason Liu
- Facebook AI Research, New York, NY 10003
| | - Demi Guo
- Harvard University, Cambridge, MA 02138
| | - Myle Ott
- Facebook AI Research, New York, NY 10003
| | | | - Jerry Ma
- Booth School of Business, University of Chicago, Chicago, IL 60637
- Yale Law School, New Haven, CT 06511
| | - Rob Fergus
- Department of Computer Science, New York University, New York, NY 10012
| |
Collapse
|
21
|
Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M, Zitnick CL, Ma J, Fergus R. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci U S A 2021; 118:e2016239118. [PMID: 33876751 PMCID: PMC8053943 DOI: 10.1073/pnas.2016239118] [Citation(s) in RCA: 1079] [Impact Index Per Article: 269.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the field of artificial intelligence, a combination of scale in data and model capacity enabled by unsupervised learning has led to major advances in representation learning and statistical generation. In the life sciences, the anticipated growth of sequencing promises unprecedented data on natural sequence diversity. Protein language modeling at the scale of evolution is a logical step toward predictive and generative artificial intelligence for biology. To this end, we use unsupervised learning to train a deep contextual language model on 86 billion amino acids across 250 million protein sequences spanning evolutionary diversity. The resulting model contains information about biological properties in its representations. The representations are learned from sequence data alone. The learned representation space has a multiscale organization reflecting structure from the level of biochemical properties of amino acids to remote homology of proteins. Information about secondary and tertiary structure is encoded in the representations and can be identified by linear projections. Representation learning produces features that generalize across a range of applications, enabling state-of-the-art supervised prediction of mutational effect and secondary structure and improving state-of-the-art features for long-range contact prediction.
Collapse
Affiliation(s)
- Alexander Rives
- Facebook AI Research, New York, NY 10003;
- Department of Computer Science, New York University, New York, NY 10012
| | | | - Tom Sercu
- Facebook AI Research, New York, NY 10003
| | | | - Zeming Lin
- Department of Computer Science, New York University, New York, NY 10012
| | - Jason Liu
- Facebook AI Research, New York, NY 10003
| | - Demi Guo
- Harvard University, Cambridge, MA 02138
| | - Myle Ott
- Facebook AI Research, New York, NY 10003
| | | | - Jerry Ma
- Booth School of Business, University of Chicago, Chicago, IL 60637
- Yale Law School, New Haven, CT 06511
| | - Rob Fergus
- Department of Computer Science, New York University, New York, NY 10012
| |
Collapse
|
22
|
Bhattacharya S, Bhattacharya D. Evaluating the significance of contact maps in low-homology protein modeling using contact-assisted threading. Sci Rep 2020; 10:2908. [PMID: 32076047 PMCID: PMC7031282 DOI: 10.1038/s41598-020-59834-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/02/2022] Open
Abstract
The development of improved threading algorithms for remote homology modeling is a critical step forward in template-based protein structure prediction. We have recently demonstrated the utility of contact information to boost protein threading by developing a new contact-assisted threading method. However, the nature and extent to which the quality of a predicted contact map impacts the performance of contact-assisted threading remains elusive. Here, we systematically analyze and explore this interdependence by employing our newly-developed contact-assisted threading method over a large-scale benchmark dataset using predicted contact maps from four complementary methods including direct coupling analysis (mfDCA), sparse inverse covariance estimation (PSICOV), classical neural network-based meta approach (MetaPSICOV), and state-of-the-art ultra-deep learning model (RaptorX). Experimental results demonstrate that contact-assisted threading using high-quality contacts having the Matthews Correlation Coefficient (MCC) ≥ 0.5 improves threading performance in nearly 30% cases, while low-quality contacts with MCC <0.35 degrades the performance for 50% cases. This holds true even in CASP13 dataset, where threading using high-quality contacts (MCC ≥ 0.5) significantly improves the performance of 22 instances out of 29. Collectively, our study uncovers the mutual association between the quality of predicted contacts and its possible utility in boosting threading performance for improving low-homology protein modeling.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Debswapna Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, 36849, USA.
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
23
|
Li CC, Liu B. MotifCNN-fold: protein fold recognition based on fold-specific features extracted by motif-based convolutional neural networks. Brief Bioinform 2019; 21:2133-2141. [PMID: 31774907 DOI: 10.1093/bib/bbz133] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Protein fold recognition is one of the most critical tasks to explore the structures and functions of the proteins based on their primary sequence information. The existing protein fold recognition approaches rely on features reflecting the characteristics of protein folds. However, the feature extraction methods are still the bottleneck of the performance improvement of these methods. In this paper, we proposed two new feature extraction methods called MotifCNN and MotifDCNN to extract more discriminative fold-specific features based on structural motif kernels to construct the motif-based convolutional neural networks (CNNs). The pairwise sequence similarity scores calculated based on fold-specific features are then fed into support vector machines to construct the predictor for fold recognition, and a predictor called MotifCNN-fold has been proposed. Experimental results on the benchmark dataset showed that MotifCNN-fold obviously outperformed all the other competing methods. In particular, the fold-specific features extracted by MotifCNN and MotifDCNN are more discriminative than the fold-specific features extracted by other deep learning techniques, indicating that incorporating the structural motifs into the CNN is able to capture the characteristics of protein folds.
Collapse
Affiliation(s)
- Chen-Chen Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.,School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
24
|
Zhang H, Zhang Q, Ju F, Zhu J, Gao Y, Xie Z, Deng M, Sun S, Zheng WM, Bu D. Predicting protein inter-residue contacts using composite likelihood maximization and deep learning. BMC Bioinformatics 2019; 20:537. [PMID: 31664895 PMCID: PMC6821021 DOI: 10.1186/s12859-019-3051-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate prediction of inter-residue contacts of a protein is important to calculating its tertiary structure. Analysis of co-evolutionary events among residues has been proved effective in inferring inter-residue contacts. The Markov random field (MRF) technique, although being widely used for contact prediction, suffers from the following dilemma: the actual likelihood function of MRF is accurate but time-consuming to calculate; in contrast, approximations to the actual likelihood, say pseudo-likelihood, are efficient to calculate but inaccurate. Thus, how to achieve both accuracy and efficiency simultaneously remains a challenge. RESULTS In this study, we present such an approach (called clmDCA) for contact prediction. Unlike plmDCA using pseudo-likelihood, i.e., the product of conditional probability of individual residues, our approach uses composite-likelihood, i.e., the product of conditional probability of all residue pairs. Composite likelihood has been theoretically proved as a better approximation to the actual likelihood function than pseudo-likelihood. Meanwhile, composite likelihood is still efficient to maximize, thus ensuring the efficiency of clmDCA. We present comprehensive experiments on popular benchmark datasets, including PSICOV dataset and CASP-11 dataset, to show that: i) clmDCA alone outperforms the existing MRF-based approaches in prediction accuracy. ii) When equipped with deep learning technique for refinement, the prediction accuracy of clmDCA was further significantly improved, suggesting the suitability of clmDCA for subsequent refinement procedure. We further present a successful application of the predicted contacts to accurately build tertiary structures for proteins in the PSICOV dataset. CONCLUSIONS Composite likelihood maximization algorithm can efficiently estimate the parameters of Markov Random Fields and can improve the prediction accuracy of protein inter-residue contacts.
Collapse
Affiliation(s)
- Haicang Zhang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fusong Ju
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianwei Zhu
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujuan Gao
- Center for Quantitative Biology, School of Mathematical Sciences, Center for Statistical Sciences, Peking University, Beijing, China
| | - Ziwei Xie
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Minghua Deng
- Center for Quantitative Biology, School of Mathematical Sciences, Center for Statistical Sciences, Peking University, Beijing, China
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - Wei-Mou Zheng
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China.
| | - Dongbo Bu
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Liu B, Li CC, Yan K. DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks. Brief Bioinform 2019; 21:1733-1741. [DOI: 10.1093/bib/bbz098] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 07/06/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract
Protein fold recognition is critical for studying the structures and functions of proteins. The existing protein fold recognition approaches failed to efficiently calculate the pairwise sequence similarity scores of the proteins in the same fold sharing low sequence similarities. Furthermore, the existing feature vectorization strategies are not able to measure the global relationships among proteins from different protein folds. In this article, we proposed a new computational predictor called DeepSVM-fold for protein fold recognition by introducing a new feature vector based on the pairwise sequence similarity scores calculated from the fold-specific features extracted by deep learning networks. The feature vectors are then fed into a support vector machine to construct the predictor. Experimental results on the benchmark dataset (LE) show that DeepSVM-fold obviously outperforms all the other competing methods.
Collapse
Affiliation(s)
- Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Chen-Chen Li
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Ke Yan
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
26
|
Xu J, Wang S. Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins 2019; 87:1069-1081. [PMID: 31471916 DOI: 10.1002/prot.25810] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
This paper reports the CASP13 results of distance-based contact prediction, threading, and folding methods implemented in three RaptorX servers, which are built upon the powerful deep convolutional residual neural network (ResNet) method initiated by us for contact prediction in CASP12. On the 32 CASP13 FM (free-modeling) targets with a median multiple sequence alignment (MSA) depth of 36, RaptorX yielded the best contact prediction among 46 groups and almost the best 3D structure modeling among all server groups without time-consuming conformation sampling. In particular, RaptorX achieved top L/5, L/2, and L long-range contact precision of 70%, 58%, and 45%, respectively, and predicted correct folds (TMscore > 0.5) for 18 of 32 targets. Further, RaptorX predicted correct folds for all FM targets with >300 residues (T0950-D1, T0969-D1, and T1000-D2) and generated the best 3D models for T0950-D1 and T0969-D1 among all groups. This CASP13 test confirms our previous findings: (a) predicted distance is more useful than contacts for both template-based and free modeling; and (b) structure modeling may be improved by integrating template and coevolutionary information via deep learning. This paper will discuss progress we have made since CASP12, the strength and weakness of our methods, and why deep learning performed much better in CASP13.
Collapse
Affiliation(s)
- Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, Illinois
| | - Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Abstract
Motivation Template-based modeling, including homology modeling and protein threading, is a popular method for protein 3D structure prediction. However, alignment generation and template selection for protein sequences without close templates remain very challenging. Results We present a new method called DeepThreader to improve protein threading, including both alignment generation and template selection, by making use of deep learning (DL) and residue co-variation information. Our method first employs DL to predict inter-residue distance distribution from residue co-variation and sequential information (e.g. sequence profile and predicted secondary structure), and then builds sequence-template alignment by integrating predicted distance information and sequential features through an ADMM algorithm. Experimental results suggest that predicted inter-residue distance is helpful to both protein alignment and template selection especially for protein sequences without very close templates, and that our method outperforms currently popular homology modeling method HHpred and threading method CNFpred by a large margin and greatly outperforms the latest contact-assisted protein threading method EigenTHREADER. Availability and implementation http://raptorx.uchicago.edu/ Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jianwei Zhu
- Toyota Technological Institute, Chicago, IL, USA.,Key Lab of Intelligent Information Process, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Wang
- Toyota Technological Institute, Chicago, IL, USA
| | - Dongbo Bu
- Key Lab of Intelligent Information Process, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinbo Xu
- Toyota Technological Institute, Chicago, IL, USA
| |
Collapse
|
28
|
Hou J, Adhikari B, Cheng J. DeepSF: deep convolutional neural network for mapping protein sequences to folds. Bioinformatics 2019; 34:1295-1303. [PMID: 29228193 PMCID: PMC5905591 DOI: 10.1093/bioinformatics/btx780] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 12/07/2017] [Indexed: 11/30/2022] Open
Abstract
Motivation Protein fold recognition is an important problem in structural bioinformatics. Almost all traditional fold recognition methods use sequence (homology) comparison to indirectly predict the fold of a target protein based on the fold of a template protein with known structure, which cannot explain the relationship between sequence and fold. Only a few methods had been developed to classify protein sequences into a small number of folds due to methodological limitations, which are not generally useful in practice. Results We develop a deep 1D-convolution neural network (DeepSF) to directly classify any protein sequence into one of 1195 known folds, which is useful for both fold recognition and the study of sequence–structure relationship. Different from traditional sequence alignment (comparison) based methods, our method automatically extracts fold-related features from a protein sequence of any length and maps it to the fold space. We train and test our method on the datasets curated from SCOP1.75, yielding an average classification accuracy of 75.3%. On the independent testing dataset curated from SCOP2.06, the classification accuracy is 73.0%. We compare our method with a top profile–profile alignment method—HHSearch on hard template-based and template-free modeling targets of CASP9-12 in terms of fold recognition accuracy. The accuracy of our method is 12.63–26.32% higher than HHSearch on template-free modeling targets and 3.39–17.09% higher on hard template-based modeling targets for top 1, 5 and 10 predicted folds. The hidden features extracted from sequence by our method is robust against sequence mutation, insertion, deletion and truncation, and can be used for other protein pattern recognition problems such as protein clustering, comparison and ranking. Availability and implementation The DeepSF server is publicly available at: http://iris.rnet.missouri.edu/DeepSF/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Badri Adhikari
- Department of Mathematics and Computer Science, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA.,Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
29
|
Wang C, Wei Y, Zhang H, Kong L, Sun S, Zheng WM, Bu D. Constructing effective energy functions for protein structure prediction through broadening attraction-basin and reverse Monte Carlo sampling. BMC Bioinformatics 2019; 20:135. [PMID: 30925867 PMCID: PMC6439974 DOI: 10.1186/s12859-019-2652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ab initio approaches to protein structure prediction usually employ the Monte Carlo technique to search the structural conformation that has the lowest energy. However, the widely-used energy functions are usually ineffective for conformation search. How to construct an effective energy function remains a challenging task. RESULTS Here, we present a framework to construct effective energy functions for protein structure prediction. Unlike existing energy functions only requiring the native structure to be the lowest one, we attempt to maximize the attraction-basin where the native structure lies in the energy landscape. The underlying rationale is that each energy function determines a specific energy landscape together with a native attraction-basin, and the larger the attraction-basin is, the more likely for the Monte Carlo search procedure to find the native structure. Following this rationale, we constructed effective energy functions as follows: i) To explore the native attraction-basin determined by a certain energy function, we performed reverse Monte Carlo sampling starting from the native structure, identifying the structural conformations on the edge of attraction-basin. ii) To broaden the native attraction-basin, we smoothened the edge points of attraction-basin through tuning weights of energy terms, thus acquiring an improved energy function. Our framework alternates the broadening attraction-basin and reverse sampling steps (thus called BARS) until the native attraction-basin is sufficiently large. We present extensive experimental results to show that using the BARS framework, the constructed energy functions could greatly facilitate protein structure prediction in improving the quality of predicted structures and speeding up conformation search. CONCLUSION Using the BARS framework, we constructed effective energy functions for protein structure prediction, which could improve the quality of predicted structures and speed up conformation search as well.
Collapse
Affiliation(s)
- Chao Wang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 6, Kexueyuan South Road, Zhongguancun, Beijing, 100190 China
- University of Chinese Academy of Sciences, 19-1, Yuquan Road, Shijingshan, Beijing, 100049 China
| | - Yi Wei
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 6, Kexueyuan South Road, Zhongguancun, Beijing, 100190 China
- University of Chinese Academy of Sciences, 19-1, Yuquan Road, Shijingshan, Beijing, 100049 China
| | - Haicang Zhang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 6, Kexueyuan South Road, Zhongguancun, Beijing, 100190 China
- University of Chinese Academy of Sciences, 19-1, Yuquan Road, Shijingshan, Beijing, 100049 China
| | - Lupeng Kong
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 6, Kexueyuan South Road, Zhongguancun, Beijing, 100190 China
- University of Chinese Academy of Sciences, 19-1, Yuquan Road, Shijingshan, Beijing, 100049 China
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 6, Kexueyuan South Road, Zhongguancun, Beijing, 100190 China
- University of Chinese Academy of Sciences, 19-1, Yuquan Road, Shijingshan, Beijing, 100049 China
| | - Wei-Mou Zheng
- University of Chinese Academy of Sciences, 19-1, Yuquan Road, Shijingshan, Beijing, 100049 China
- Institute of Theoretical Physics, Chinese Academy of Sciences, 55, Zhongguancun East Road, Beijing, 100190 China
| | - Dongbo Bu
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 6, Kexueyuan South Road, Zhongguancun, Beijing, 100190 China
- University of Chinese Academy of Sciences, 19-1, Yuquan Road, Shijingshan, Beijing, 100049 China
| |
Collapse
|
30
|
Bhattacharya S, Bhattacharya D. Does inclusion of residue-residue contact information boost protein threading? Proteins 2019; 87:596-606. [PMID: 30882932 DOI: 10.1002/prot.25684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/20/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Abstract
Template-based modeling is considered as one of the most successful approaches for protein structure prediction. However, reliably and accurately selecting optimal template proteins from a library of known protein structures having similar folds as the target protein and making correct alignments between the target sequence and the template structures, a template-based modeling technique known as threading, remains challenging, particularly for non- or distantly-homologous protein targets. With the recent advancement in protein residue-residue contact map prediction powered by sequence co-evolution and machine learning, here we systematically analyze the effect of inclusion of residue-residue contact information in improving the accuracy and reliability of protein threading. We develop a new threading algorithm by incorporating various sequential and structural features, and subsequently integrate residue-residue contact information as an additional scoring term for threading template selection. We show that the inclusion of contact information attains statistically significantly better threading performance compared to a baseline threading algorithm that does not utilize contact information when everything else remains the same. Experimental results demonstrate that our contact based threading approach outperforms popular threading method MUSTER, contact-assisted ab initio folding method CONFOLD2, and recent state-of-the-art contact-assisted protein threading methods EigenTHREADER and map_align on several benchmarks. Our study illustrates that the inclusion of contact maps is a promising avenue in protein threading to ultimately help to improve the accuracy of protein structure prediction.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama
| | - Debswapna Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama
| |
Collapse
|
31
|
Iyer MS, Bhargava K, Pavalam M, Sowdhamini R. GenDiS database update with improved approach and features to recognize homologous sequences of protein domain superfamilies. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5426807. [PMID: 30943284 PMCID: PMC6446967 DOI: 10.1093/database/baz042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 11/24/2022]
Abstract
Since proteins evolve by divergent evolution, proteins with distant homology to each other may or may not bear similar functions. Improved computational approaches are required to recognize distant homologues that are functionally similar. One of the methods of assigning function to sequences is to use profiles derived from sequences of known structure. We describe an update of the Genomic Distribution of protein structural domain Superfamilies (GenDiS) database, namely GenDiS+, which provides a projection of SCOP superfamily members on the sequence space (NR database, NCBI). The sequences are validated using structure-based sequence alignment profiles and domain and full-length sequence alignments. GenDiS+ is a `tour de force’ for detecting homologues within around 160 000 taxonomic identifiers, starting from nearly 11 000 domains of known structure. Features, like full-sequence alignment and phylogeny, domain sequence alignment and phylogeny, list of associated structural and sequence domains with strength of interactions, links to databases like Pfam, UniProt and ModBase and list of sequences with a PDB structure, are provided.
Collapse
Affiliation(s)
- Meenakshi S Iyer
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Gandhi Krishi, Vignana Kendra Campus, Bellary Road, Bangalore, Karnataka, India
| | - Kartik Bhargava
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Gandhi Krishi, Vignana Kendra Campus, Bellary Road, Bangalore, Karnataka, India.,Birla Institute of Technology and Science, Pilani, VidyaVihar Campus, Pilani, Rajasthan, India
| | - Murugavel Pavalam
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Gandhi Krishi, Vignana Kendra Campus, Bellary Road, Bangalore, Karnataka, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Gandhi Krishi, Vignana Kendra Campus, Bellary Road, Bangalore, Karnataka, India
| |
Collapse
|
32
|
Morales-Cordovilla JA, Sanchez V, Ratajczak M. Protein alignment based on higher order conditional random fields for template-based modeling. PLoS One 2018; 13:e0197912. [PMID: 29856860 PMCID: PMC5983487 DOI: 10.1371/journal.pone.0197912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/10/2018] [Indexed: 11/19/2022] Open
Abstract
The query-template alignment of proteins is one of the most critical steps of template-based modeling methods used to predict the 3D structure of a query protein. This alignment can be interpreted as a temporal classification or structured prediction task and first order Conditional Random Fields have been proposed for protein alignment and proven to be rather successful. Some other popular structured prediction problems, such as speech or image classification, have gained from the use of higher order Conditional Random Fields due to the well known higher order correlations that exist between their labels and features. In this paper, we propose and describe the use of higher order Conditional Random Fields for query-template protein alignment. The experiments carried out on different public datasets validate our proposal, especially on distantly-related protein pairs which are the most difficult to align.
Collapse
Affiliation(s)
| | - Victoria Sanchez
- Dept. of Teoría de la Señal Telemática y Comunicaciones, Universidad de Granada, Granada, Spain
| | - Martin Ratajczak
- Graz University of Technology, Signal Processing and Speech Communication Laboratory, Graz, Austria
| |
Collapse
|
33
|
Yamada KD. Derivative-free neural network for optimizing the scoring functions associated with dynamic programming of pairwise-profile alignment. Algorithms Mol Biol 2018; 13:5. [PMID: 29467815 PMCID: PMC5815186 DOI: 10.1186/s13015-018-0123-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A profile-comparison method with position-specific scoring matrix (PSSM) is among the most accurate alignment methods. Currently, cosine similarity and correlation coefficients are used as scoring functions of dynamic programming to calculate similarity between PSSMs. However, it is unclear whether these functions are optimal for profile alignment methods. By definition, these functions cannot capture nonlinear relationships between profiles. Therefore, we attempted to discover a novel scoring function, which was more suitable for the profile-comparison method than existing functions, using neural networks. RESULTS Although neural networks required derivative-of-cost functions, the problem being addressed in this study lacked them. Therefore, we implemented a novel derivative-free neural network by combining a conventional neural network with an evolutionary strategy optimization method used as a solver. Using this novel neural network system, we optimized the scoring function to align remote sequence pairs. Our results showed that the pairwise-profile aligner using the novel scoring function significantly improved both alignment sensitivity and precision relative to aligners using existing functions. CONCLUSIONS We developed and implemented a novel derivative-free neural network and aligner (Nepal) for optimizing sequence alignments. Nepal improved alignment quality by adapting to remote sequence alignments and increasing the expressiveness of similarity scores. Additionally, this novel scoring function can be realized using a simple matrix operation and easily incorporated into other aligners. Moreover our scoring function could potentially improve the performance of homology detection and/or multiple-sequence alignment of remote homologous sequences. The goal of the study was to provide a novel scoring function for profile alignment method and develop a novel learning system capable of addressing derivative-free problems. Our system is capable of optimizing the performance of other sophisticated methods and solving problems without derivative-of-cost functions, which do not always exist in practical problems. Our results demonstrated the usefulness of this optimization method for derivative-free problems.
Collapse
|
34
|
Kinjo AR. Cooperative "folding transition" in the sequence space facilitates function-driven evolution of protein families. J Theor Biol 2018; 443:18-27. [PMID: 29355538 DOI: 10.1016/j.jtbi.2018.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/23/2022]
Abstract
In the protein sequence space, natural proteins form clusters of families which are characterized by their unique native folds whereas the great majority of random polypeptides are neither clustered nor foldable to unique structures. Since a given polypeptide can be either foldable or unfoldable, a kind of "folding transition" is expected at the boundary of a protein family in the sequence space. By Monte Carlo simulations of a statistical mechanical model of protein sequence alignment that coherently incorporates both short-range and long-range interactions as well as variable-length insertions to reproduce the statistics of the multiple sequence alignment of a given protein family, we demonstrate the existence of such transition between natural-like sequences and random sequences in the sequence subspaces for 15 domain families of various folds. The transition was found to be highly cooperative and two-state-like. Furthermore, enforcing or suppressing consensus residues on a few of the well-conserved sites enhanced or diminished, respectively, the natural-like pattern formation over the entire sequence. In most families, the key sites included ligand binding sites. These results suggest some selective pressure on the key residues, such as ligand binding activity, may cooperatively facilitate the emergence of a protein family during evolution. From a more practical aspect, the present results highlight an essential role of long-range effects in precisely defining protein families, which are absent in conventional sequence models.
Collapse
Affiliation(s)
- Akira R Kinjo
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
35
|
Buchan DWA, Jones DT. Improved protein contact predictions with the MetaPSICOV2 server in CASP12. Proteins 2017; 86 Suppl 1:78-83. [PMID: 28901583 PMCID: PMC5836854 DOI: 10.1002/prot.25379] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/18/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022]
Abstract
In this paper, we present the results for the MetaPSICOV2 contact prediction server in the CASP12 community experiment (http://predictioncenter.org). Over the 35 assessed Free Modelling target domains the MetaPSICOV2 server achieved a mean precision of 43.27%, a substantial increase relative to the server's performance in the CASP11 experiment. In the following paper, we discuss improvements to the MetaPSICOV2 server, covering both changes to the neural network and attempts to integrate contact predictions on a domain basis into the prediction pipeline. We also discuss some limitations in the CASP12 assessment which may have overestimated the performance of our method.
Collapse
Affiliation(s)
- Daniel W A Buchan
- Department of Computer Science, University College London, London, UK
| | - David T Jones
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
36
|
Buchan DWA, Jones DT. EigenTHREADER: analogous protein fold recognition by efficient contact map threading. Bioinformatics 2017; 33:2684-2690. [PMID: 28419258 PMCID: PMC5860056 DOI: 10.1093/bioinformatics/btx217] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Protein fold recognition when appropriate, evolutionarily-related, structural templates can be identified is often trivial and may even be viewed as a solved problem. However in cases where no homologous structural templates can be detected, fold recognition is a notoriously difficult problem ( Moult et al., 2014 ). Here we present EigenTHREADER, a novel fold recognition method capable of identifying folds where no homologous structures can be identified. EigenTHREADER takes a query amino acid sequence, generates a map of intra-residue contacts, and then searches a library of contact maps of known structures. To allow the contact maps to be compared, we use eigenvector decomposition to resolve the principal eigenvectors these can then be aligned using standard dynamic programming algorithms. The approach is similar to the Al-Eigen approach of Di Lena et al. (2010) , but with improvements made both to speed and accuracy. With this search strategy, EigenTHREADER does not depend directly on sequence homology between the target protein and entries in the fold library to generate models. This in turn enables EigenTHREADER to correctly identify analogous folds where little or no sequence homology information is. RESULTS EigenTHREADER outperforms well-established fold recognition methods such as pGenTHREADER and HHSearch in terms of True Positive Rate in the difficult task of analogous fold recognition. This should allow template-based modelling to be extended to many new protein families that were previously intractable to homology based fold recognition methods. AVAILABILITY AND IMPLEMENTATION All code used to generate these results and the computational protocol can be downloaded from https://github.com/DanBuchan/eigen_scripts . EigenTHREADER, the benchmark code and the data this paper is based on can be downloaded from: http://bioinfadmin.cs.ucl.ac.uk/downloads/eigenTHREADER/ . CONTACT d.t.jones@ucl.ac.uk.
Collapse
Affiliation(s)
- Daniel W A Buchan
- Department of Computer Science, University College London, Gower Street, London, UK
| | - David T Jones
- Department of Computer Science, University College London, Gower Street, London, UK
| |
Collapse
|
37
|
Zhu J, Zhang H, Li SC, Wang C, Kong L, Sun S, Zheng WM, Bu D. Improving protein fold recognition by extracting fold-specific features from predicted residue–residue contacts. Bioinformatics 2017; 33:3749-3757. [DOI: 10.1093/bioinformatics/btx514] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/09/2017] [Indexed: 01/05/2023] Open
Affiliation(s)
- Jianwei Zhu
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haicang Zhang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Chao Wang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lupeng Kong
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Mou Zheng
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Dongbo Bu
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Lam SD, Das S, Sillitoe I, Orengo C. An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences. Acta Crystallogr D Struct Biol 2017; 73:628-640. [PMID: 28777078 PMCID: PMC5571743 DOI: 10.1107/s2059798317008920] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/14/2017] [Indexed: 12/02/2022] Open
Abstract
Computational modelling of proteins has been a major catalyst in structural biology. Bioinformatics groups have exploited the repositories of known structures to predict high-quality structural models with high efficiency at low cost. This article provides an overview of comparative modelling, reviews recent developments and describes resources dedicated to large-scale comparative modelling of genome sequences. The value of subclustering protein domain superfamilies to guide the template-selection process is investigated. Some recent cases in which structural modelling has aided experimental work to determine very large macromolecular complexes are also cited.
Collapse
Affiliation(s)
- Su Datt Lam
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
- School of Biosciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Sayoni Das
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
| | - Ian Sillitoe
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
| | - Christine Orengo
- Institute of Structural and Molecular Biology, UCL, Darwin Building, Gower Street, London WC1E 6BT, England
| |
Collapse
|
39
|
Wang S, Ma J, Xu J. AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields. Bioinformatics 2017; 32:i672-i679. [PMID: 27587688 DOI: 10.1093/bioinformatics/btw446] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MOTIVATION Protein intrinsically disordered regions (IDRs) play an important role in many biological processes. Two key properties of IDRs are (i) the occurrence is proteome-wide and (ii) the ratio of disordered residues is about 6%, which makes it challenging to accurately predict IDRs. Most IDR prediction methods use sequence profile to improve accuracy, which prevents its application to proteome-wide prediction since it is time-consuming to generate sequence profiles. On the other hand, the methods without using sequence profile fare much worse than using sequence profile. METHOD This article formulates IDR prediction as a sequence labeling problem and employs a new machine learning method called Deep Convolutional Neural Fields (DeepCNF) to solve it. DeepCNF is an integration of deep convolutional neural networks (DCNN) and conditional random fields (CRF); it can model not only complex sequence-structure relationship in a hierarchical manner, but also correlation among adjacent residues. To deal with highly imbalanced order/disorder ratio, instead of training DeepCNF by widely used maximum-likelihood, we develop a novel approach to train it by maximizing area under the ROC curve (AUC), which is an unbiased measure for class-imbalanced data. RESULTS Our experimental results show that our IDR prediction method AUCpreD outperforms existing popular disorder predictors. More importantly, AUCpreD works very well even without sequence profile, comparing favorably to or even outperforming many methods using sequence profile. Therefore, our method works for proteome-wide disorder prediction while yielding similar or better accuracy than the others. AVAILABILITY AND IMPLEMENTATION http://raptorx2.uchicago.edu/StructurePropertyPred/predict/ CONTACT wangsheng@uchicago.edu, jinboxu@gmail.com SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, IL, USA Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Jianzhu Ma
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| |
Collapse
|
40
|
Ovchinnikov S, Park H, Varghese N, Huang PS, Pavlopoulos GA, Kim DE, Kamisetty H, Kyrpides NC, Baker D. Protein structure determination using metagenome sequence data. Science 2017; 355:294-298. [PMID: 28104891 PMCID: PMC5493203 DOI: 10.1126/science.aah4043] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/22/2016] [Indexed: 01/30/2023]
Abstract
Despite decades of work by structural biologists, there are still ~5200 protein families with unknown structure outside the range of comparative modeling. We show that Rosetta structure prediction guided by residue-residue contacts inferred from evolutionary information can accurately model proteins that belong to large families and that metagenome sequence data more than triple the number of protein families with sufficient sequences for accurate modeling. We then integrate metagenome data, contact-based structure matching, and Rosetta structure calculations to generate models for 614 protein families with currently unknown structures; 206 are membrane proteins and 137 have folds not represented in the Protein Data Bank. This approach provides the representative models for large protein families originally envisioned as the goal of the Protein Structure Initiative at a fraction of the cost.
Collapse
Affiliation(s)
- Sergey Ovchinnikov
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Hahnbeom Park
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | | | - Po-Ssu Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | | | - David E Kim
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Box 357370, Seattle, WA 98105, USA
| | | | - Nikos C Kyrpides
- Joint Genome Institute, Walnut Creek, CA 94598, USA
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA.
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Box 357370, Seattle, WA 98105, USA
| |
Collapse
|
41
|
Cui X, Lu Z, Wang S, Jing-Yan Wang J, Gao X. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction. Bioinformatics 2016; 32:i332-i340. [PMID: 27307635 PMCID: PMC4908355 DOI: 10.1093/bioinformatics/btw271] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
MOTIVATION Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. METHOD We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence-structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. RESULTS We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM-HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. AVAILABILITY AND IMPLEMENTATION Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx CONTACT : xin.gao@kaust.edu.sa SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xuefeng Cui
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Zhiwu Lu
- Beijing Key Laboratory of Big Data Management and Analysis Methods, School of Information, Renmin University of China, Beijing 100872, China
| | - Sheng Wang
- Toyota Technological Institute at Chicago, 6045 Kenwood Avenue, Chicago, IL 60637, USA Department of Human Genetics, University of Chicago, E. 58th St, Chicago, IL 60637, USA
| | - Jim Jing-Yan Wang
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
42
|
Wang S, Li W, Liu S, Xu J. RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Res 2016; 44:W430-5. [PMID: 27112573 PMCID: PMC4987890 DOI: 10.1093/nar/gkw306] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/12/2016] [Indexed: 11/14/2022] Open
Abstract
RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence–structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction.
Collapse
Affiliation(s)
- Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, IL, USA Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Wei Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Shiwang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| |
Collapse
|
43
|
Zhang H, Gao Y, Deng M, Wang C, Zhu J, Li SC, Zheng WM, Bu D. Improving residue-residue contact prediction via low-rank and sparse decomposition of residue correlation matrix. Biochem Biophys Res Commun 2016; 472:217-22. [PMID: 26920058 DOI: 10.1016/j.bbrc.2016.01.188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/30/2016] [Indexed: 10/22/2022]
Abstract
Strategies for correlation analysis in protein contact prediction often encounter two challenges, namely, the indirect coupling among residues, and the background correlations mainly caused by phylogenetic biases. While various studies have been conducted on how to disentangle indirect coupling, the removal of background correlations still remains unresolved. Here, we present an approach for removing background correlations via low-rank and sparse decomposition (LRS) of a residue correlation matrix. The correlation matrix can be constructed using either local inference strategies (e.g., mutual information, or MI) or global inference strategies (e.g., direct coupling analysis, or DCA). In our approach, a correlation matrix was decomposed into two components, i.e., a low-rank component representing background correlations, and a sparse component representing true correlations. Finally the residue contacts were inferred from the sparse component of correlation matrix. We trained our LRS-based method on the PSICOV dataset, and tested it on both GREMLIN and CASP11 datasets. Our experimental results suggested that LRS significantly improves the contact prediction precision. For example, when equipped with the LRS technique, the prediction precision of MI and mfDCA increased from 0.25 to 0.67 and from 0.58 to 0.70, respectively (Top L/10 predicted contacts, sequence separation: 5 AA, dataset: GREMLIN). In addition, our LRS technique also consistently outperforms the popular denoising technique APC (average product correction), on both local (MI_LRS: 0.67 vs MI_APC: 0.34) and global measures (mfDCA_LRS: 0.70 vs mfDCA_APC: 0.67). Interestingly, we found out that when equipped with our LRS technique, local inference strategies performed in a comparable manner to that of global inference strategies, implying that the application of LRS technique narrowed down the performance gap between local and global inference strategies. Overall, our LRS technique greatly facilitates protein contact prediction by removing background correlations. An implementation of the approach called COLORS (improving COntact prediction using LOw-Rank and Sparse matrix decomposition) is available from http://protein.ict.ac.cn/COLORS/.
Collapse
Affiliation(s)
- Haicang Zhang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Bejing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yujuan Gao
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Minghua Deng
- Center for Quantitative Biology, Peking University, Beijing, China; School of Mathematical Sciences, Peking University, Beijing, China; Center for Statistical Sciences, Peking University, Beijing, China
| | - Chao Wang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Bejing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianwei Zhu
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Bejing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Wei-Mou Zheng
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China.
| | - Dongbo Bu
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Bejing, China.
| |
Collapse
|
44
|
Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields. Sci Rep 2016; 6:18962. [PMID: 26752681 PMCID: PMC4707437 DOI: 10.1038/srep18962] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022] Open
Abstract
Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.
Collapse
|
45
|
Fan M, Zheng B, Li L. A novel Multi-Agent Ada-Boost algorithm for predicting protein structural class with the information of protein secondary structure. J Bioinform Comput Biol 2015; 13:1550022. [DOI: 10.1142/s0219720015500225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Knowledge of the structural class of a given protein is important for understanding its folding patterns. Although a lot of efforts have been made, it still remains a challenging problem for prediction of protein structural class solely from protein sequences. The feature extraction and classification of proteins are the main problems in prediction. In this research, we extended our earlier work regarding these two aspects. In protein feature extraction, we proposed a scheme by calculating the word frequency and word position from sequences of amino acid, reduced amino acid, and secondary structure. For an accurate classification of the structural class of protein, we developed a novel Multi-Agent Ada-Boost (MA-Ada) method by integrating the features of Multi-Agent system into Ada-Boost algorithm. Extensive experiments were taken to test and compare the proposed method using four benchmark datasets in low homology. The results showed classification accuracies of 88.5%, 96.0%, 88.4%, and 85.5%, respectively, which are much better compared with the existing methods. The source code and dataset are available on request.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Bin Zheng
- Hunan Mechanical and Electrical Polytechnic, Chang Sha 410151, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
46
|
Ma J, Wang S, Wang Z, Xu J. Protein contact prediction by integrating joint evolutionary coupling analysis and supervised learning. Bioinformatics 2015; 31:3506-13. [PMID: 26275894 DOI: 10.1093/bioinformatics/btv472] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 08/08/2015] [Indexed: 02/07/2023] Open
Abstract
MOTIVATION Protein contact prediction is important for protein structure and functional study. Both evolutionary coupling (EC) analysis and supervised machine learning methods have been developed, making use of different information sources. However, contact prediction is still challenging especially for proteins without a large number of sequence homologs. RESULTS This article presents a group graphical lasso (GGL) method for contact prediction that integrates joint multi-family EC analysis and supervised learning to improve accuracy on proteins without many sequence homologs. Different from existing single-family EC analysis that uses residue coevolution information in only the target protein family, our joint EC analysis uses residue coevolution in both the target family and its related families, which may have divergent sequences but similar folds. To implement this, we model a set of related protein families using Gaussian graphical models and then coestimate their parameters by maximum-likelihood, subject to the constraint that these parameters shall be similar to some degree. Our GGL method can also integrate supervised learning methods to further improve accuracy. Experiments show that our method outperforms existing methods on proteins without thousands of sequence homologs, and that our method performs better on both conserved and family-specific contacts. AVAILABILITY AND IMPLEMENTATION See http://raptorx.uchicago.edu/ContactMap/ for a web server implementing the method. CONTACT j3xu@ttic.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jianzhu Ma
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave. Chicago, Illinois 60637 USA
| | - Sheng Wang
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave. Chicago, Illinois 60637 USA
| | - Zhiyong Wang
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave. Chicago, Illinois 60637 USA
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, 6045 S. Kenwood Ave. Chicago, Illinois 60637 USA
| |
Collapse
|
47
|
AcconPred: Predicting Solvent Accessibility and Contact Number Simultaneously by a Multitask Learning Framework under the Conditional Neural Fields Model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:678764. [PMID: 26339631 PMCID: PMC4538422 DOI: 10.1155/2015/678764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
Motivation. The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of protein residues limits the possibilities of protein conformations. The de novo prediction of these properties from protein sequence is important for the study of protein structure and function. Although these two properties are certainly related with each other, it is challenging to exploit this dependency for the prediction. Method. We present a method AcconPred for predicting solvent accessibility and contact number simultaneously, which is based on a shared weight multitask learning framework under the CNF (conditional neural fields) model. The multitask learning framework on a collection of related tasks provides more accurate prediction than the framework trained only on a single task. The CNF method not only models the complex relationship between the input features and the predicted labels, but also exploits the interdependency among adjacent labels. Results. Trained on 5729 monomeric soluble globular protein datasets, AcconPred could reach 0.68 three-state accuracy for solvent accessibility and 0.75 correlation for contact number. Tested on the 105 CASP11 domain datasets for solvent accessibility, AcconPred could reach 0.64 accuracy, which outperforms existing methods.
Collapse
|
48
|
DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields. Int J Mol Sci 2015; 16:17315-30. [PMID: 26230689 PMCID: PMC4581195 DOI: 10.3390/ijms160817315] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins or protein regions are involved in key biological processes including regulation of transcription, signal transduction, and alternative splicing. Accurately predicting order/disorder regions ab initio from the protein sequence is a prerequisite step for further analysis of functions and mechanisms for these disordered regions. This work presents a learning method, weighted DeepCNF (Deep Convolutional Neural Fields), to improve the accuracy of order/disorder prediction by exploiting the long-range sequential information and the interdependency between adjacent order/disorder labels and by assigning different weights for each label during training and prediction to solve the label imbalance issue. Evaluated by the CASP9 and CASP10 targets, our method obtains 0.855 and 0.898 AUC values, which are higher than the state-of-the-art single ab initio predictors.
Collapse
|
49
|
Birlutiu A, d'Alché-Buc F, Heskes T. A Bayesian Framework for Combining Protein and Network Topology Information for Predicting Protein-Protein Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:538-550. [PMID: 26357265 DOI: 10.1109/tcbb.2014.2359441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Computational methods for predicting protein-protein interactions are important tools that can complement high-throughput technologies and guide biologists in designing new laboratory experiments. The proteins and the interactions between them can be described by a network which is characterized by several topological properties. Information about proteins and interactions between them, in combination with knowledge about topological properties of the network, can be used for developing computational methods that can accurately predict unknown protein-protein interactions. This paper presents a supervised learning framework based on Bayesian inference for combining two types of information: i) network topology information, and ii) information related to proteins and the interactions between them. The motivation of our model is that by combining these two types of information one can achieve a better accuracy in predicting protein-protein interactions, than by using models constructed from these two types of information independently.
Collapse
|
50
|
Lhota J, Hauptman R, Hart T, Ng C, Xie L. A new method to improve network topological similarity search: applied to fold recognition. Bioinformatics 2015; 31:2106-14. [PMID: 25717198 DOI: 10.1093/bioinformatics/btv125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/21/2015] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Similarity search is the foundation of bioinformatics. It plays a key role in establishing structural, functional and evolutionary relationships between biological sequences. Although the power of the similarity search has increased steadily in recent years, a high percentage of sequences remain uncharacterized in the protein universe. Thus, new similarity search strategies are needed to efficiently and reliably infer the structure and function of new sequences. The existing paradigm for studying protein sequence, structure, function and evolution has been established based on the assumption that the protein universe is discrete and hierarchical. Cumulative evidence suggests that the protein universe is continuous. As a result, conventional sequence homology search methods may be not able to detect novel structural, functional and evolutionary relationships between proteins from weak and noisy sequence signals. To overcome the limitations in existing similarity search methods, we propose a new algorithmic framework-Enrichment of Network Topological Similarity (ENTS)-to improve the performance of large scale similarity searches in bioinformatics. RESULTS We apply ENTS to a challenging unsolved problem: protein fold recognition. Our rigorous benchmark studies demonstrate that ENTS considerably outperforms state-of-the-art methods. As the concept of ENTS can be applied to any similarity metric, it may provide a general framework for similarity search on any set of biological entities, given their representation as a network. AVAILABILITY AND IMPLEMENTATION Source code freely available upon request CONTACT : lxie@iscb.org.
Collapse
Affiliation(s)
- John Lhota
- Hunter College High School, New York, NY 10128, U.S.A., Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, U.S.A., Department of Biological Sciences, Hunter College, The City University of New York New York, NY 10065, U.S.A. and The Graduate Center, The City University of New York, New York, NY 10016, U.S.A
| | - Ruth Hauptman
- Hunter College High School, New York, NY 10128, U.S.A., Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, U.S.A., Department of Biological Sciences, Hunter College, The City University of New York New York, NY 10065, U.S.A. and The Graduate Center, The City University of New York, New York, NY 10016, U.S.A
| | - Thomas Hart
- Hunter College High School, New York, NY 10128, U.S.A., Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, U.S.A., Department of Biological Sciences, Hunter College, The City University of New York New York, NY 10065, U.S.A. and The Graduate Center, The City University of New York, New York, NY 10016, U.S.A
| | - Clara Ng
- Hunter College High School, New York, NY 10128, U.S.A., Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, U.S.A., Department of Biological Sciences, Hunter College, The City University of New York New York, NY 10065, U.S.A. and The Graduate Center, The City University of New York, New York, NY 10016, U.S.A
| | - Lei Xie
- Hunter College High School, New York, NY 10128, U.S.A., Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, U.S.A., Department of Biological Sciences, Hunter College, The City University of New York New York, NY 10065, U.S.A. and The Graduate Center, The City University of New York, New York, NY 10016, U.S.A. Hunter College High School, New York, NY 10128, U.S.A., Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, U.S.A., Department of Biological Sciences, Hunter College, The City University of New York New York, NY 10065, U.S.A. and The Graduate Center, The City University of New York, New York, NY 10016, U.S.A
| |
Collapse
|