1
|
Effendi WI, Nagano T. Epigenetics Approaches toward Precision Medicine for Idiopathic Pulmonary Fibrosis: Focus on DNA Methylation. Biomedicines 2023; 11:biomedicines11041047. [PMID: 37189665 DOI: 10.3390/biomedicines11041047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Genetic information is not transmitted solely by DNA but by the epigenetics process. Epigenetics describes molecular missing link pathways that could bridge the gap between the genetic background and environmental risk factors that contribute to the pathogenesis of pulmonary fibrosis. Specific epigenetic patterns, especially DNA methylation, histone modifications, long non-coding, and microRNA (miRNAs), affect the endophenotypes underlying the development of idiopathic pulmonary fibrosis (IPF). Among all the epigenetic marks, DNA methylation modifications have been the most widely studied in IPF. This review summarizes the current knowledge concerning DNA methylation changes in pulmonary fibrosis and demonstrates a promising novel epigenetics-based precision medicine.
Collapse
|
2
|
Kyriakopoulos C, Nordström K, Kramer PL, Gottfreund JY, Salhab A, Arand J, Müller F, von Meyenn F, Ficz G, Reik W, Wolf V, Walter J, Giehr P. A comprehensive approach for genome-wide efficiency profiling of DNA modifying enzymes. CELL REPORTS METHODS 2022; 2:100187. [PMID: 35475220 PMCID: PMC9017147 DOI: 10.1016/j.crmeth.2022.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 10/25/2022]
Abstract
A precise understanding of DNA methylation dynamics is of great importance for a variety of biological processes including cellular reprogramming and differentiation. To date, complex integration of multiple and distinct genome-wide datasets is required to realize this task. We present GwEEP (genome-wide epigenetic efficiency profiling) a versatile approach to infer dynamic efficiencies of DNA modifying enzymes. GwEEP relies on genome-wide hairpin datasets, which are translated by a hidden Markov model into quantitative enzyme efficiencies with reported confidence around the estimates. GwEEP predicts de novo and maintenance methylation efficiencies of Dnmts and furthermore the hydroxylation efficiency of Tets. Its design also allows capturing further oxidation processes given available data. We show that GwEEP predicts accurately the epigenetic changes of ESCs following a Serum-to-2i shift and applied to Tet TKO cells confirms the hypothesized mutual interference between Dnmts and Tets.
Collapse
Affiliation(s)
| | - Karl Nordström
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Paula Linh Kramer
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Germany
| | - Judith Yumiko Gottfreund
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Abdulrahman Salhab
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Julia Arand
- Division of Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Fabian Müller
- Department of Integrative Cellular Biology and Bioinformatics, Campus A2.4, 66123 Saarbrücken, Germany
| | - Ferdinand von Meyenn
- Department of Health Sciences and Technology, ETH Zürich, Schorenstrasse 16, Schwerzenbach, 8603 Zürich, Switzerland
| | - Gabriella Ficz
- Haemato-Oncology, Queen Mary University of London, London EC1M 6BQ, UK
| | - Wolf Reik
- Epigenetics Department, Babraham Institute, Cambridge CB22 3AT, UK
| | - Verena Wolf
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
| | - Pascal Giehr
- Department of Genetics and Epigenetics, Saarland University, Campus A2.4, 66123 Saarbrücken, Germany
- Department of Health Sciences and Technology, ETH Zürich, Schorenstrasse 16, Schwerzenbach, 8603 Zürich, Switzerland
| |
Collapse
|
3
|
Direct and Base Excision Repair-Mediated Regulation of a GC-Rich cis-Element in Response to 5-Formylcytosine and 5-Carboxycytosine. Int J Mol Sci 2021; 22:ijms222011025. [PMID: 34681690 PMCID: PMC8539351 DOI: 10.3390/ijms222011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Stepwise oxidation of the epigenetic mark 5-methylcytosine and base excision repair (BER) of the resulting 5-formylcytosine (5-fC) and 5-carboxycytosine (5-caC) may provide a mechanism for reactivation of epigenetically silenced genes; however, the functions of 5-fC and 5-caC at defined gene elements are scarcely explored. We analyzed the expression of reporter constructs containing either 2′-deoxy-(5-fC/5-caC) or their BER-resistant 2′-fluorinated analogs, asymmetrically incorporated into CG-dinucleotide of the GC box cis-element (5′-TGGGCGGAGC) upstream from the RNA polymerase II core promoter. In the absence of BER, 5-caC caused a strong inhibition of the promoter activity, whereas 5-fC had almost no effect, similar to 5-methylcytosine or 5-hydroxymethylcytosine. BER of 5-caC caused a transient but significant promoter reactivation, succeeded by silencing during the following hours. Both responses strictly required thymine DNA glycosylase (TDG); however, the silencing phase additionally demanded a 5′-endonuclease (likely APE1) activity and was also induced by 5-fC or an apurinic/apyrimidinic site. We propose that 5-caC may act as a repressory mark to prevent premature activation of promoters undergoing the final stages of DNA demethylation, when the symmetric CpG methylation has already been lost. Remarkably, the downstream promoter activation or repression responses are regulated by two separate BER steps, where TDG and APE1 act as potential switches.
Collapse
|
4
|
Hairpin-Bisulfite PCR. Methods Mol Biol 2021; 2198:287-299. [PMID: 32822039 DOI: 10.1007/978-1-0716-0876-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ligation of a hairpin oligonucleotide to genomic DNA prior to bisulfite conversion and PCR amplification physically links the two complementary DNA strands. This additional step in the conversion procedure overcomes the limitations of conventional bisulfite sequencing where information of the cytosine methylation status is only obtained from one of the two strands of an individual DNA molecule. Sequences derived from hairpin bisulfite PCR products reveal the dynamics of this epigenetic memory system on both strands of individual DNA molecules. The chapter describes a reliable step-by-step procedure to generate hairpin-linked DNA. It also provides a guide for efficient bisulfite conversion that is suitable for both conventional and hairpin bisulfite sequencing approaches.
Collapse
|
5
|
Luck A, Giehr P, Nordstrom K, Walter J, Wolf V. Hidden Markov Modelling Reveals Neighborhood Dependence of Dnmt3a and 3b Activity. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1598-1609. [PMID: 31027045 DOI: 10.1109/tcbb.2019.2910814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA methylation is an epigenetic mark whose important role in development has been widely recognized. This epigenetic modification results in heritable information not encoded by the DNA sequence. The underlying mechanisms controlling DNA methylation are only partly understood. Several mechanistic models of enzyme activities responsible for DNA methylation have been proposed. Here, we extend existing Hidden Markov Models (HMMs) for DNA methylation by describing the occurrence of spatial methylation patterns over time and propose several models with different neighborhood dependences. Furthermore, we investigate correlations between the neighborhood dependence and other genomic information. We perform numerical analysis of the HMMs applied to comprehensive hairpin and non-hairpin bisulfite sequencing measurements and accurately predict wild-type data. We find evidence that the activities of Dnmt3a and Dnmt3b responsible for de novo methylation depend on 5' (left) but not on 3' (right) neighboring CpGs in a sequencing string.
Collapse
|
6
|
Giehr P, Kyriakopoulos C, Lepikhov K, Wallner S, Wolf V, Walter J. Two are better than one: HPoxBS - hairpin oxidative bisulfite sequencing. Nucleic Acids Res 2019; 46:e88. [PMID: 29912476 PMCID: PMC6125676 DOI: 10.1093/nar/gky422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
The controlled and stepwise oxidation of 5mC to 5hmC, 5fC and 5caC by Tet enzymes is influencing the chemical and biological properties of cytosine. Besides direct effects on gene regulation, oxidised forms influence the dynamics of demethylation and re-methylation processes. So far, no combined methods exist which allow to precisely determine the strand specific localisation of cytosine modifications along with their CpG symmetric distribution. Here we describe a comprehensive protocol combining conventional hairpin bisulfite with oxidative bisulfite sequencing (HPoxBS) to determine the strand specific distribution of 5mC and 5hmC at base resolution. We apply this method to analyse the contribution of local oxidative effects on DNA demethylation in mouse ES cells. Our method includes the HPoxBS workflow and subsequent data analysis using our developed software tools. Besides a precise estimation and display of strand specific 5mC and 5hmC levels at base resolution we apply the data to predict region specific activities of Dnmt and Tet enzymes. Our experimental and computational workflow provides a precise double strand display of 5mC and 5hmC modifications at single base resolution. Based on our data we predict region specific Tet and Dnmt enzyme efficiencies shaping the distinct locus levels and patterns of 5hmC and 5mC.
Collapse
Affiliation(s)
- Pascal Giehr
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| | | | - Konstantin Lepikhov
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| | - Stefan Wallner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Bayern, Germany
| | - Verena Wolf
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Saarland, Germany
| | - Jörn Walter
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| |
Collapse
|
7
|
|
8
|
Carell T, Kurz MQ, Müller M, Rossa M, Spada F. Non-canonical Bases in the Genome: The Regulatory Information Layer in DNA. Angew Chem Int Ed Engl 2018; 57:4296-4312. [DOI: 10.1002/anie.201708228] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Thomas Carell
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Matthias Q. Kurz
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Markus Müller
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Martin Rossa
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| | - Fabio Spada
- Center for Integrated Protein Science; Department of Chemistry; Ludwig-Maximilians-Universität München; Butenandtstrasse 5-13 81377 Munich Germany
| |
Collapse
|
9
|
Kelsey G, Stegle O, Reik W. Single-cell epigenomics: Recording the past and predicting the future. Science 2018; 358:69-75. [PMID: 28983045 DOI: 10.1126/science.aan6826] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-cell multi-omics has recently emerged as a powerful technology by which different layers of genomic output-and hence cell identity and function-can be recorded simultaneously. Integrating various components of the epigenome into multi-omics measurements allows for studying cellular heterogeneity at different time scales and for discovering new layers of molecular connectivity between the genome and its functional output. Measurements that are increasingly available range from those that identify transcription factor occupancy and initiation of transcription to long-lasting and heritable epigenetic marks such as DNA methylation. Together with techniques in which cell lineage is recorded, this multilayered information will provide insights into a cell's past history and its future potential. This will allow new levels of understanding of cell fate decisions, identity, and function in normal development, physiology, and disease.
Collapse
Affiliation(s)
- Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK. .,European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.,Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
10
|
Giehr P, Walter J. Hairpin Bisulfite Sequencing: Synchronous Methylation Analysis on Complementary DNA Strands of Individual Chromosomes. Methods Mol Biol 2018; 1708:573-586. [PMID: 29224164 DOI: 10.1007/978-1-4939-7481-8_29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The accurate and quantitative detection of 5-methylcytosine is of great importance in the field of epigenetics. The method of choice is usually bisulfite sequencing because of the high resolution and the possibility to combine it with next generation sequencing. Nevertheless, also this method has its limitations. Following the bisulfite treatment DNA strands are no longer complementary such that in a subsequent PCR amplification the DNA methylation patterns information of only one of the two DNA strand is preserved. Several years ago Hairpin Bisulfite sequencing was developed as a method to obtain the pattern information on complementary DNA strands. The method requires fragmentation (usually by enzymatic cleavage) of genomic DNA followed by a covalent linking of both DNA strands through ligation of a short DNA hairpin oligonucleotide to both strands. The ligated covalently linked dsDNA products are then subjected to a conventional bisulfite treatment during which all unmodified cytosines are converted to uracils. During the treatment the DNA is denatured forming noncomplementary ssDNA circles. These circles serve as a template for a locus specific PCR to amplify chromosomal patterns of the region of interest. As a result one ends up with a linearized product, which contains the methylation information of both complementary DNA strands.
Collapse
Affiliation(s)
- Pascal Giehr
- Department of Biological Sciences, Genetics/Epigenetics, Saarland University, Saarbrücken, Saarland, Germany
| | - Jörn Walter
- Department of Biological Sciences, Genetics/Epigenetics, Saarland University, Saarbrücken, Saarland, Germany.
| |
Collapse
|
11
|
Lan J, Lepikhov K, Giehr P, Walter J. Histone and DNA methylation control by H3 serine 10/threonine 11 phosphorylation in the mouse zygote. Epigenetics Chromatin 2017; 10:5. [PMID: 28228845 PMCID: PMC5307733 DOI: 10.1186/s13072-017-0112-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/23/2017] [Indexed: 11/22/2022] Open
Abstract
Background
In the mammalian zygote, epigenetic reprogramming is a tightly controlled process of coordinated alterations of histone and DNA modifications. The parental genomes of the zygote show distinct patterns of histone H3 variants and distinct patterns of DNA and histone modifications. The molecular mechanisms linking histone variant-specific modifications and DNA methylation reprogramming during the first cell cycle remain to be clarified. Results Here, we show that the degree and distribution of H3K9me2 and of DNA modifications (5mC/5hmC) are influenced by the phosphorylation status of H3S10 and H3T11. The overexpression of the mutated histone variants H3.1 and 3.2 at either serine 10 or threonine 11 causes a decrease in H3K9me2 and 5mC and a concomitant increase in 5hmC in the maternal genome. Bisulphite sequencing results indicate an increase in hemimethylated CpG positions following H3.1T10A overexpression suggesting an impact of H3S10 and H3T11 phosphorylation on DNA methylation maintenance. Conclusions Our data suggest a crosstalk between the cell-cycle-dependent control of S10 and T11 phosphorylation of histone variants H3.1 and H3.2 and the maintenance of the heterochromatic mark H3K9me2. This histone H3 “phospho-methylation switch” also influences the oxidative control of DNA methylation in the mouse zygote. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0112-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Lan
- FR 8.3, Biological Sciences, Genetics/Epigenetics, University of Saarland, Campus A2.4, 66123 Saarbrücken, Germany.,Faculty of Medicine, Free University of Brussels, C.P. 614, Building GE, 5th floor, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Konstantin Lepikhov
- FR 8.3, Biological Sciences, Genetics/Epigenetics, University of Saarland, Campus A2.4, 66123 Saarbrücken, Germany
| | - Pascal Giehr
- FR 8.3, Biological Sciences, Genetics/Epigenetics, University of Saarland, Campus A2.4, 66123 Saarbrücken, Germany
| | - Joern Walter
- FR 8.3, Biological Sciences, Genetics/Epigenetics, University of Saarland, Campus A2.4, 66123 Saarbrücken, Germany
| |
Collapse
|
12
|
Ponnaluri VKC, Ehrlich KC, Zhang G, Lacey M, Johnston D, Pradhan S, Ehrlich M. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression. Epigenetics 2017; 12:123-138. [PMID: 27911668 PMCID: PMC5330441 DOI: 10.1080/15592294.2016.1265713] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study-owing to their myogenic DMRs-overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage.
Collapse
Affiliation(s)
| | - Kenneth C. Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | | - Michelle Lacey
- Department of Mathematics, Tulane Health Sciences Center and Tulane University, New Orleans, LA, USA
| | - Douglas Johnston
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA, USA
| | | | - Melanie Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA, USA
- Hayward Genetics Center and Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|