1
|
Moeckel C, Mareboina M, Konnaris MA, Chan CS, Mouratidis I, Montgomery A, Chantzi N, Pavlopoulos GA, Georgakopoulos-Soares I. A survey of k-mer methods and applications in bioinformatics. Comput Struct Biotechnol J 2024; 23:2289-2303. [PMID: 38840832 PMCID: PMC11152613 DOI: 10.1016/j.csbj.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
The rapid progression of genomics and proteomics has been driven by the advent of advanced sequencing technologies, large, diverse, and readily available omics datasets, and the evolution of computational data processing capabilities. The vast amount of data generated by these advancements necessitates efficient algorithms to extract meaningful information. K-mers serve as a valuable tool when working with large sequencing datasets, offering several advantages in computational speed and memory efficiency and carrying the potential for intrinsic biological functionality. This review provides an overview of the methods, applications, and significance of k-mers in genomic and proteomic data analyses, as well as the utility of absent sequences, including nullomers and nullpeptides, in disease detection, vaccine development, therapeutics, and forensic science. Therefore, the review highlights the pivotal role of k-mers in addressing current genomic and proteomic problems and underscores their potential for future breakthroughs in research.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Maxwell A. Konnaris
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Candace S.Y. Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Austin Montgomery
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Shi G, Dai Y, Zhou D, Chen M, Zhang J, Bi Y, Liu S, Wu Q. An alignment- and reference-free strategy using k-mer present pattern for population genomic analyses. Mycology 2024; 16:309-323. [PMID: 40083414 PMCID: PMC11899203 DOI: 10.1080/21501203.2024.2358868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/17/2024] [Indexed: 03/16/2025] Open
Abstract
Pangenomes are replacing single reference genomes to capture all variants within a species or clade, but their analysis predominantly leverages graph-based methods that require multiple high-quality genomes and computationally intensive multiple-genome alignments. K-mer decomposition is an alternative to graph-based pangenomes. However, how to directly use k-mers for the population genetic analyses is unknown. Here, we developed a novel strategy that uses the variants of k-mer count in the genome for population analyses. To test the effectivity of this method, we compared it directly to the SNP-based method on the analysis of population structure and genetic diversity of 267 Saccharomyces cerevisiae strains within two simulated datasets and a real sequence dataset. The population structure identified with k-mers recapitulates that obtained using SNPs, indicating the effectiveness of k-mer-based approach, and higher genetic diversity within real dataset supported k-mers contained more genetic variants. Based on k-mer frequency, we found not only SNP but also some insertion/deletion and horizontal gene transfer (HGT) fragments related to the adaptive evolution of S. cerevisiae. Our study creates a framework for the alignment- and reference-free (ARF) method in population genetic analyses, which will be more pronounced in the species with no complete genome or highly diverged species.
Collapse
Affiliation(s)
- Guohui Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yi Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Mengmeng Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Yilong Bi
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Shuai Liu
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Tang R, Yu Z, Li J. KINN: An alignment-free accurate phylogeny reconstruction method based on inner distance distributions of k-mer pairs in biological sequences. Mol Phylogenet Evol 2023; 179:107662. [PMID: 36375789 DOI: 10.1016/j.ympev.2022.107662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Alignment-based methods have faced disadvantages in sequence comparison and phylogeny reconstruction due to their high computational complexity. Alignment-free methods for sequence comparison and phylogeny inference have attracted a great deal of attention in recent years. Here, we explore an alignment-free approach that uses inner distance distributions of k-mer pairs in biological sequences for phylogeny inference. For every sequence in a dataset, our method transforms the sequence into a numeric feature vector consisting of features each representing a specific k-mer pair's contribution to the characterization of the sequentiality uniqueness of the sequence. This newly defined k-mer pair's contribution is an integration of the reverse Kullback-Leibler divergence, pseudo mode and the classic entropy of an inner distance distribution of the k-mer pair in the sequence. Our method has been tested on datasets of complete genome sequences, complete protein sequences, and gene sequences of rRNA of various lengths. Our method achieves the best performance in comparison with state-of-the-art alignment-free methods as measured by the Robinson-Foulds distance between the reference and the constructed phylogeny trees.
Collapse
Affiliation(s)
- Runbin Tang
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan 411105, China; School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zuguo Yu
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan 411105, China.
| | - Jinyan Li
- Data Science Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
4
|
Frolov EN, Lebedinsky AV, Elcheninov AG, Kublanov IV. Taxonomic proposal for a deep branching bacterial phylogenetic lineage: transfer of the family Thermodesulfobiaceae to Thermodesulfobiales ord. nov., Thermodesulfobiia classis nov. and Thermodesulfobiota phyl. nov. Syst Appl Microbiol 2023; 46:126388. [PMID: 36493506 DOI: 10.1016/j.syapm.2022.126388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The family Thermodesulfobiaceae, comprising one genus Thermodesulfobium with two validly published species, is currently assigned to order Thermoanaerobacterales within the class Clostridia of the phylum Bacillota. At the same time, the very first 16S rRNA gene sequence-based phylogenetic studies of representatives of the genus pointed out great differences between Thermodesulfobium and other members of the phylum Bacillota. Subsequent studies of new Thermodesulfobium representatives supported deep phylogenetic branching of this lineage within bacterial tree, implying that it represents a novel phylum. The results of the phylogenomic analysis performed in the frames of the present work confirm previous findings and suggest that Thermodesulfobium represents a distinct phylum-level lineage. Thus, we propose the transfer of the family Thermodesulfobiaceae to the new order Thermodesulfobiales within the new class Thermodesulfobiia and the new phylum Thermodesulfobiota.
Collapse
Affiliation(s)
- Evgenii N Frolov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, 119071 Moscow, Russia.
| | - Alexander V Lebedinsky
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, 119071 Moscow, Russia
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, 119071 Moscow, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, 119071 Moscow, Russia
| |
Collapse
|
5
|
Sun N, Yau SST. In-depth investigation of the point mutation pattern of HIV-1. Front Cell Infect Microbiol 2022; 12:1033481. [PMID: 36457853 PMCID: PMC9705751 DOI: 10.3389/fcimb.2022.1033481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 04/29/2024] Open
Abstract
Mutations may produce highly transmissible and damaging HIV variants, which increase the genetic diversity, and pose a challenge to develop vaccines. Therefore, it is of great significance to understand how mutations drive the virulence of HIV. Based on the 11897 reliable genomes of HIV-1 retrieved from HIV sequence Database, we analyze the 12 types of point mutation (A>C, A>G, A>T, C>A, C>G, C>T, G>A, G>C, G>T, T>A, T>C, T>G) from multiple statistical perspectives for the first time. The global/geographical location/subtype/k-mer analysis results report that A>G, G>A, C>T and T>C account for nearly 64% among all SNPs, which suggest that APOBEC-editing and ADAR-editing may play an important role in HIV-1 infectivity. Time analysis shows that most genomes with abnormal mutation numbers comes from African countries. Finally, we use natural vector method to check the k-mer distribution changing patterns in the genome, and find that there is an important substitution pattern between nucleotides A and G, and 2-mer CG may have a significant impact on viral infectivity. This paper provides an insight into the single mutation of HIV-1 by using the latest data in the HIV sequence Database.
Collapse
Affiliation(s)
- Nan Sun
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
| | - Stephen S.-T. Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing, China
| |
Collapse
|
6
|
Swain MT, Vickers M. Interpreting alignment-free sequence comparison: what makes a score a good score? NAR Genom Bioinform 2022; 4:lqac062. [PMID: 36071721 PMCID: PMC9442500 DOI: 10.1093/nargab/lqac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Alignment-free methods are alternatives to alignment-based methods when searching sequence data sets. The output from an alignment-free sequence comparison is a similarity score, the interpretation of which is not straightforward. We propose objective functions to interpret and calibrate outputs from alignment-free searches, noting that different objective functions are necessary for different biological contexts. This leads to advantages: visualising and comparing score distributions, including those from true positives, may be a relatively simple method to gain insight into the performance of different metrics. Using an empirical approach with both DNA and protein sequences, we characterise different similarity score distributions generated under different parameters. In particular, we demonstrate how sequence length can affect the scores. We show that scores of true positive sequence pairs may correlate significantly with their mean length; and even if the correlation is weak, the relative difference in length of the sequence pair may significantly reduce the effectiveness of alignment-free metrics. Importantly, we show how objective functions can be used with test data to accurately estimate the probability of true positives. This can significantly increase the utility of alignment-free approaches. Finally, we have developed a general-purpose software tool called KAST for use in high-throughput workflows on Linux clusters.
Collapse
Affiliation(s)
- Martin T Swain
- Department of Life Sciences, Aberystwyth University , Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Martin Vickers
- The John Innes Centre, Norwich Research Park , Norwich NR4 7UH, UK
| |
Collapse
|
7
|
High-Throughput Genotyping Technologies in Plant Taxonomy. Methods Mol Biol 2021; 2222:149-166. [PMID: 33301093 DOI: 10.1007/978-1-0716-0997-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Molecular markers provide researchers with a powerful tool for variation analysis between plant genomes. They are heritable and widely distributed across the genome and for this reason have many applications in plant taxonomy and genotyping. Over the last decade, molecular marker technology has developed rapidly and is now a crucial component for genetic linkage analysis, trait mapping, diversity analysis, and association studies. This chapter focuses on molecular marker discovery, its application, and future perspectives for plant genotyping through pangenome assemblies. Included are descriptions of automated methods for genome and sequence distance estimation, genome contaminant analysis in sequence reads, genome structural variation, and SNP discovery methods.
Collapse
|
8
|
Dencker T, Leimeister CA, Gerth M, Bleidorn C, Snir S, Morgenstern B. 'Multi-SpaM': a maximum-likelihood approach to phylogeny reconstruction using multiple spaced-word matches and quartet trees. NAR Genom Bioinform 2020; 2:lqz013. [PMID: 33575565 PMCID: PMC7671388 DOI: 10.1093/nargab/lqz013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/31/2019] [Accepted: 10/13/2019] [Indexed: 02/03/2023] Open
Abstract
Word-based or 'alignment-free' methods for phylogeny inference have become popular in recent years. These methods are much faster than traditional, alignment-based approaches, but they are generally less accurate. Most alignment-free methods calculate 'pairwise' distances between nucleic-acid or protein sequences; these distance values can then be used as input for tree-reconstruction programs such as neighbor-joining. In this paper, we propose the first word-based phylogeny approach that is based on 'multiple' sequence comparison and 'maximum likelihood'. Our algorithm first samples small, gap-free alignments involving four taxa each. For each of these alignments, it then calculates a quartet tree and, finally, the program 'Quartet MaxCut' is used to infer a super tree for the full set of input taxa from the calculated quartet trees. Experimental results show that trees produced with our approach are of high quality.
Collapse
Affiliation(s)
- Thomas Dencker
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Chris-André Leimeister
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Michael Gerth
- Institute for Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, L69 7ZB Liverpool, UK
| | - Christoph Bleidorn
- Department of Animal Evolution and Biodiversity, Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Sagi Snir
- Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, Israel
| | - Burkhard Morgenstern
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
- Göttingen Center of Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Röhling S, Linne A, Schellhorn J, Hosseini M, Dencker T, Morgenstern B. The number of k-mer matches between two DNA sequences as a function of k and applications to estimate phylogenetic distances. PLoS One 2020; 15:e0228070. [PMID: 32040534 PMCID: PMC7010260 DOI: 10.1371/journal.pone.0228070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
We study the number Nk of length-k word matches between pairs of evolutionarily related DNA sequences, as a function of k. We show that the Jukes-Cantor distance between two genome sequences-i.e. the number of substitutions per site that occurred since they evolved from their last common ancestor-can be estimated from the slope of a function F that depends on Nk and that is affine-linear within a certain range of k. Integers kmin and kmax can be calculated depending on the length of the input sequences, such that the slope of F in the relevant range can be estimated from the values F(kmin) and F(kmax). This approach can be generalized to so-called Spaced-word Matches (SpaM), where mismatches are allowed at positions specified by a user-defined binary pattern. Based on these theoretical results, we implemented a prototype software program for alignment-free sequence comparison called Slope-SpaM. Test runs on real and simulated sequence data show that Slope-SpaM can accurately estimate phylogenetic distances for distances up to around 0.5 substitutions per position. The statistical stability of our results is improved if spaced words are used instead of contiguous words. Unlike previous alignment-free methods that are based on the number of (spaced) word matches, Slope-SpaM produces accurate results, even if sequences share only local homologies.
Collapse
Affiliation(s)
- Sophie Röhling
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | - Alexander Linne
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | - Jendrik Schellhorn
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | | | - Thomas Dencker
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | - Burkhard Morgenstern
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
- Göttingen Center of Molecular Biosciences (GZMB), Göttingen, Germany
| |
Collapse
|
10
|
Gonzalez-Alba JM, Baquero F, Cantón R, Galán JC. Stratified reconstruction of ancestral Escherichia coli diversification. BMC Genomics 2019; 20:936. [PMID: 31805853 PMCID: PMC6896753 DOI: 10.1186/s12864-019-6346-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
Background Phylogenetic analyses of the bacterial genomes based on the simple classification in core- genes and accessory genes pools could offer an incomplete view of the evolutionary processes, of which some are still unresolved. A combined strategy based on stratified phylogeny and ancient molecular polymorphisms is proposed to infer detailed evolutionary reconstructions by using a large number of whole genomes. This strategy, based on the highest number of genomes available in public databases, was evaluated for improving knowledge of the ancient diversification of E. coli. This staggered evolutionary scenario was also used to investigate whether the diversification of the ancient E. coli lineages could be associated with particular lifestyles and adaptive strategies. Results Phylogenetic reconstructions, exploiting 6220 available genomes in Genbank, established the E. coli core genome in 1023 genes, representing about 20% of the complete genome. The combined strategy using stratified phylogeny plus molecular polymorphisms inferred three ancient lineages (D, EB1A and FGB2). Lineage D was the closest to E. coli root. A staggered diversification could also be proposed in EB1A and FGB2 lineages and the phylogroups into these lineages. Several molecular markers suggest that each lineage had different adaptive trajectories. The analysis of gained and lost genes in the main lineages showed that functions of carbohydrates utilization (uptake of and metabolism) were gained principally in EB1A lineage, whereas loss of environmental-adaptive functions in FGB2 lineage were observed, but this lineage showed higher accumulated mutations and ancient recombination events. The population structure of E. coli was re-evaluated including up to 7561 new sequenced genomes, showing a more complex population structure of E. coli, as a new phylogroup, phylogroup I, was proposed. Conclusions A staggered reconstruction of E. coli phylogeny is proposed, indicating evolution from three ancestral lineages to reach all main known phylogroups. New phylogroups were confirmed, suggesting an increasingly complex population structure of E. coli. However these new phylogroups represent < 1% of the global E. coli population. A few key evolutionary forces have driven the diversification of the two main E. coli lineages, metabolic flexibility in one of them and colonization-virulence in the other.
Collapse
Affiliation(s)
- José Maria Gonzalez-Alba
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. .,Unidad de Resistencia a Antibióticos y Virulencia Bacteriana, Madrid, Spain.
| |
Collapse
|
11
|
Bernard G, Chan CX, Chan YB, Chua XY, Cong Y, Hogan JM, Maetschke SR, Ragan MA. Alignment-free inference of hierarchical and reticulate phylogenomic relationships. Brief Bioinform 2019; 20:426-435. [PMID: 28673025 PMCID: PMC6433738 DOI: 10.1093/bib/bbx067] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/04/2017] [Indexed: 11/22/2022] Open
Abstract
We are amidst an ongoing flood of sequence data arising from the application of high-throughput technologies, and a concomitant fundamental revision in our understanding of how genomes evolve individually and within the biosphere. Workflows for phylogenomic inference must accommodate data that are not only much larger than before, but often more error prone and perhaps misassembled, or not assembled in the first place. Moreover, genomes of microbes, viruses and plasmids evolve not only by tree-like descent with modification but also by incorporating stretches of exogenous DNA. Thus, next-generation phylogenomics must address computational scalability while rethinking the nature of orthogroups, the alignment of multiple sequences and the inference and comparison of trees. New phylogenomic workflows have begun to take shape based on so-called alignment-free (AF) approaches. Here, we review the conceptual foundations of AF phylogenetics for the hierarchical (vertical) and reticulate (lateral) components of genome evolution, focusing on methods based on k-mers. We reflect on what seems to be successful, and on where further development is needed.
Collapse
|
12
|
Huang GD, Liu XM, Huang TL, Xia LC. The statistical power of k-mer based aggregative statistics for alignment-free detection of horizontal gene transfer. Synth Syst Biotechnol 2019; 4:150-156. [PMID: 31508512 PMCID: PMC6723412 DOI: 10.1016/j.synbio.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/14/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Alignment-based database search and sequence comparison are commonly used to detect horizontal gene transfer (HGT). However, with the rapid increase of sequencing depth, hundreds of thousands of contigs are routinely assembled from metagenomics studies, which challenges alignment-based HGT analysis by overwhelming the known reference sequences. Detecting HGT by k-mer statistics thus becomes an attractive alternative. These alignment-free statistics have been demonstrated in high performance and efficiency in whole-genome and transcriptome comparisons. To adapt k-mer statistics for HGT detection, we developed two aggregative statistics TsumS and Tsum*, which subsample metagenome contigs by their representative regions, and summarize the regional D2S and D2* metrics by their upper bounds. We systematically studied the aggregative statistics’ power at different k-mer size using simulations. Our analysis showed that, in general, the power of TsumS and Tsum* increases with sequencing coverage, and reaches a maximum power >80% at k = 6, with 5% Type-I error and the coverage ratio >0.2x. The statistical power of TsumS and Tsum* was evaluated with realistic simulations of HGT mechanism, sequencing depth, read length, and base error. We expect these statistics to be useful distance metrics for identifying HGT in metagenomic studies.
Collapse
Affiliation(s)
- Guan-Da Huang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Xue-Mei Liu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Tian-Lai Huang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Li-C Xia
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
13
|
Mendler K, Chen H, Parks DH, Lobb B, Hug LA, Doxey AC. AnnoTree: visualization and exploration of a functionally annotated microbial tree of life. Nucleic Acids Res 2019; 47:4442-4448. [PMID: 31081040 PMCID: PMC6511854 DOI: 10.1093/nar/gkz246] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 11/14/2022] Open
Abstract
Bacterial genomics has revolutionized our understanding of the microbial tree of life; however, mapping and visualizing the distribution of functional traits across bacteria remains a challenge. Here, we introduce AnnoTree-an interactive, functionally annotated bacterial tree of life that integrates taxonomic, phylogenetic and functional annotation data from over 27 000 bacterial and 1500 archaeal genomes. AnnoTree enables visualization of millions of precomputed genome annotations across the bacterial and archaeal phylogenies, thereby allowing users to explore gene distributions as well as patterns of gene gain and loss in prokaryotes. Using AnnoTree, we examined the phylogenomic distributions of 28 311 gene/protein families, and measured their phylogenetic conservation, patchiness, and lineage-specificity within bacteria. Our analyses revealed widespread phylogenetic patchiness among bacterial gene families, reflecting the dynamic evolution of prokaryotic genomes. Genes involved in phage infection/defense, mobile elements, and antibiotic resistance dominated the list of most patchy traits, as well as numerous intriguing metabolic enzymes that appear to have undergone frequent horizontal transfer. We anticipate that AnnoTree will be a valuable resource for exploring prokaryotic gene histories, and will act as a catalyst for biological and evolutionary hypothesis generation. AnnoTree is freely available at http://annotree.uwaterloo.ca.
Collapse
Affiliation(s)
- Kerrin Mendler
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Han Chen
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Queensland, Australia
| | - Briallen Lobb
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
14
|
Saw AK, Raj G, Das M, Talukdar NC, Tripathy BC, Nandi S. Alignment-free method for DNA sequence clustering using Fuzzy integral similarity. Sci Rep 2019; 9:3753. [PMID: 30842590 PMCID: PMC6403383 DOI: 10.1038/s41598-019-40452-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/28/2019] [Indexed: 12/28/2022] Open
Abstract
A larger amount of sequence data in private and public databases produced by next-generation sequencing put new challenges due to limitation associated with the alignment-based method for sequence comparison. So, there is a high need for faster sequence analysis algorithms. In this study, we developed an alignment-free algorithm for faster sequence analysis. The novelty of our approach is the inclusion of fuzzy integral with Markov chain for sequence analysis in the alignment-free model. The method estimate the parameters of a Markov chain by considering the frequencies of occurrence of all possible nucleotide pairs from each DNA sequence. These estimated Markov chain parameters were used to calculate similarity among all pairwise combinations of DNA sequences based on a fuzzy integral algorithm. This matrix is used as an input for the neighbor program in the PHYLIP package for phylogenetic tree construction. Our method was tested on eight benchmark datasets and on in-house generated datasets (18 s rDNA sequences from 11 arbuscular mycorrhizal fungi (AMF) and 16 s rDNA sequences of 40 bacterial isolates from plant interior). The results indicate that the fuzzy integral algorithm is an efficient and feasible alignment-free method for sequence analysis on the genomic scale.
Collapse
Affiliation(s)
- Ajay Kumar Saw
- Institute of Advanced Study in Science and Technology, Mathematical Sciences Division, Guwahati, 781035, India
| | - Garima Raj
- Institute of Advanced Study in Science and Technology, Life Science Division, Guwahati, 781035, India
| | - Manashi Das
- Institute of Advanced Study in Science and Technology, Life Science Division, Guwahati, 781035, India
| | - Narayan Chandra Talukdar
- Institute of Advanced Study in Science and Technology, Life Science Division, Guwahati, 781035, India
| | | | - Soumyadeep Nandi
- Institute of Advanced Study in Science and Technology, Life Science Division, Guwahati, 781035, India.
| |
Collapse
|
15
|
Prabha R, Singh DP. Cyanobacterial phylogenetic analysis based on phylogenomics approaches render evolutionary diversification and adaptation: an overview of representative orders. 3 Biotech 2019; 9:87. [PMID: 30800598 DOI: 10.1007/s13205-019-1635-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Phylogenetic studies based on a definite set of marker genes usually reconstruct evolutionary relationships among the prokaryotic species. Based on specific target sequences, such studies represent variations and allow identification of similarities or dissimilarities in organisms. With the advent of completely sequenced genomes and accumulation of information on whole prokaryotic genomes, phylogenetic reconstructions should be considered more reliable if they are ideally based on entire genomes to resolve phylogenetic interest. We applied phylogenomics approaches taking into account completely sequenced cyanobacterial genomes to reconstruct underlying species that represented major taxonomic classes and belonged to distinctly different habitats (freshwater, marine, soils, and rocks). We did not rely on describing phylogeny of all representative class of cyanobacterial species on the basis of only ribosomal gene, 16S rDNA gene. In contrast, we analyzed combined molecular marker and phylogenomics approaches (genome alignment, gene content and gene order, composition vector and protein domain content) for accurately inferring phylogenetic relationship of species. We have shown that this approach reflects the impact of evolution on the organisms and considers connects with the ecological adaptation in cyanobacteria in different habitats. Analysis revealed that the members from marine habitat occupy different profile than those from freshwater. Impact of GC content and genomic repetitiveness over the diversification of cyanobacterial species and their possible role in adaptation was also reflected. Members occupying similar habitats cover more evolutionary distance together and also evolve various strategies for adaptation and survival either through genomic repetitiveness or preferences for genes of particular functions or modified GC content. Genomes undergo different changes for their adaptation in diverse habitats.
Collapse
Affiliation(s)
- Ratna Prabha
- 1ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275101 India
- 2Department of Biotechnology, Mewar University, Gangrar, Chittorgarh, Rajasthan India
| | - Dhananjaya P Singh
- 1ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275101 India
| |
Collapse
|
16
|
Guo Y, Cooper MM, Bromberg R, Marletta MA. A Dual-H-NOX Signaling System in Saccharophagus degradans. Biochemistry 2018; 57:6570-6580. [PMID: 30398342 DOI: 10.1021/acs.biochem.8b01058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is a critical signaling molecule involved in the regulation of a wide variety of physiological processes across every domain of life. In most aerobic and facultative anaerobic bacteria, heme-nitric oxide/oxygen binding (H-NOX) proteins selectively sense NO and inhibit the activity of a histidine kinase (HK) located on the same operon. This NO-dependent inhibition of the cognate HK alters the phosphorylation of the downstream response regulators. In the marine bacterium Saccharophagus degradans ( Sde), in addition to a typical H-NOX ( Sde 3804)/HK ( Sde 3803) pair, an orphan H-NOX ( Sde 3557) with no associated signaling protein has been identified distant from the H-NOX/HK pair in the genome. The characterization reported here elucidates the function of both H-NOX proteins. Sde 3557 exhibits a weaker binding affinity with the kinase, yet both Sde 3804 and Sde 3557 are functional H-NOXs with proper gas binding properties and kinase inhibition activity. Additionally, Sde 3557 has an NO dissociation rate that is significantly slower than that of Sde 3804, which may confer prolonged kinase inhibition in vivo. While it is still unclear whether Sde 3557 has another signaling partner or shares the histidine kinase with Sde 3804, Sde 3557 is the only orphan H-NOX characterized to date. S. degradans is likely using a dual-H-NOX system to fine-tune the downstream response of NO signaling.
Collapse
Affiliation(s)
- Yirui Guo
- California Institute for Quantitative Biosciences , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Matthew M Cooper
- Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Raquel Bromberg
- Department of Biophysics , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Michael A Marletta
- California Institute for Quantitative Biosciences , University of California, Berkeley , Berkeley , California 94720 , United States.,Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , California 94720 , United States.,Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
17
|
Lin J, Wei J, Adjeroh D, Jiang BH, Jiang Y. SSAW: A new sequence similarity analysis method based on the stationary discrete wavelet transform. BMC Bioinformatics 2018; 19:165. [PMID: 29720081 PMCID: PMC5930706 DOI: 10.1186/s12859-018-2155-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alignment-free sequence similarity analysis methods often lead to significant savings in computational time over alignment-based counterparts. RESULTS A new alignment-free sequence similarity analysis method, called SSAW is proposed. SSAW stands for Sequence Similarity Analysis using the Stationary Discrete Wavelet Transform (SDWT). It extracts k-mers from a sequence, then maps each k-mer to a complex number field. Then, the series of complex numbers formed are transformed into feature vectors using the stationary discrete wavelet transform. After these steps, the original sequence is turned into a feature vector with numeric values, which can then be used for clustering and/or classification. CONCLUSIONS Using two different types of applications, namely, clustering and classification, we compared SSAW against the the-state-of-the-art alignment free sequence analysis methods. SSAW demonstrates competitive or superior performance in terms of standard indicators, such as accuracy, F-score, precision, and recall. The running time was significantly better in most cases. These make SSAW a suitable method for sequence analysis, especially, given the rapidly increasing volumes of sequence data required by most modern applications.
Collapse
Affiliation(s)
- Jie Lin
- College of Mathematics and Informatics, Fujian Normal University, Fuzhou, 350108, People's Republic of China
| | - Jing Wei
- College of Mathematics and Informatics, Fujian Normal University, Fuzhou, 350108, People's Republic of China
| | - Donald Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, 26506, WV, USA
| | - Bing-Hua Jiang
- Department of Pathology, University of Iowa, Iowa city, 52242, Iowa, USA
| | - Yue Jiang
- College of Mathematics and Informatics, Fujian Normal University, Fuzhou, 350108, People's Republic of China.
| |
Collapse
|
18
|
Pavan ME, Pavan EE, Glaeser SP, Etchebehere C, Kämpfer P, Pettinari MJ, López NI. Proposal for a new classification of a deep branching bacterial phylogenetic lineage: transfer of Coprothermobacter proteolyticus and Coprothermobacter platensis to Coprothermobacteraceae fam. nov., within Coprothermobacterales ord. nov., Coprothermobacteria classis nov. and Coprothermobacterota phyl. nov. and emended description of the family Thermodesulfobiaceae. Int J Syst Evol Microbiol 2018; 68:1627-1632. [PMID: 29595416 DOI: 10.1099/ijsem.0.002720] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The genus Coprothermobacter (initially named Thermobacteroides) is currently placed within the phylum Firmicutes. Early 16S rRNA gene based phylogenetic studies pointed out the great differences between Coprothermobacter and other members of the Firmicutes, revealing that it constitutes a new deep branching lineage. Over the years, several studies based on 16S rRNA gene and whole genome sequences have indicated that Coprothermobacter is very distant phylogenetically to all other bacteria, supporting its placement in a distinct deeply rooted novel phylum. In view of this, we propose its allocation to the new family Coprothermobacteraceae within the novel order Coprothermobacterales, the new class Coprothermobacteria, and the new phylum Coprothermobacterota, and an emended description of the family Thermodesulfobiaceae.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esteban E Pavan
- Biomedical Technologies Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Stefanie P Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Biochemistry and Microbial Genetics, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - María Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy I López
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Zielezinski A, Vinga S, Almeida J, Karlowski WM. Alignment-free sequence comparison: benefits, applications, and tools. Genome Biol 2017; 18:186. [PMID: 28974235 PMCID: PMC5627421 DOI: 10.1186/s13059-017-1319-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Alignment-free sequence analyses have been applied to problems ranging from whole-genome phylogeny to the classification of protein families, identification of horizontally transferred genes, and detection of recombined sequences. The strength of these methods makes them particularly useful for next-generation sequencing data processing and analysis. However, many researchers are unclear about how these methods work, how they compare to alignment-based methods, and what their potential is for use for their research. We address these questions and provide a guide to the currently available alignment-free sequence analysis tools.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland
| | - Susana Vinga
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Jonas Almeida
- Stony Brook University (SUNY), 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Wojciech M Karlowski
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
20
|
Tripp EA, Zhang N, Schneider H, Huang Y, Mueller GM, Hu Z, Häggblom M, Bhattacharya D. Reshaping Darwin's Tree: Impact of the Symbiome. Trends Ecol Evol 2017; 32:552-555. [PMID: 28601483 DOI: 10.1016/j.tree.2017.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/10/2017] [Accepted: 05/06/2017] [Indexed: 12/30/2022]
Abstract
Much of the undescribed biodiversity on Earth is microbial, often in mutualistic or pathogenic associations. Physically associated and coevolving life forms comprise a symbiome. We propose that systematics research can accelerate progress in science by introducing a new framework for phylogenetic analysis of symbiomes, here termed SYMPHY (symbiome phylogenetics).
Collapse
Affiliation(s)
- Erin A Tripp
- Department of Ecology and Evolutionary Biology and Museum of Natural History, University of Colorado, Boulder, Colorado, USA
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA; Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Harald Schneider
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China; Department of Life Sciences, Natural History Museum, London, UK
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Zhihong Hu
- State Key Laboratory for Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Max Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
21
|
Leimeister CA, Sohrabi-Jahromi S, Morgenstern B. Fast and accurate phylogeny reconstruction using filtered spaced-word matches. Bioinformatics 2017; 33:971-979. [PMID: 28073754 PMCID: PMC5409309 DOI: 10.1093/bioinformatics/btw776] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/02/2016] [Indexed: 11/13/2022] Open
Abstract
Motivation Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. Results We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don’t-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. Availability and Implementation The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/ Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chris-André Leimeister
- Department of Bioinformatics, University of Göttingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, 37077?Göttingen, Germany
| | - Salma Sohrabi-Jahromi
- Department of Bioinformatics, University of Göttingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, 37077?Göttingen, Germany
| | - Burkhard Morgenstern
- Department of Bioinformatics, University of Göttingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, 37077 Göttingen, Germany.,University of Göttingen, Center for Computational Sciences, Goldschmidtstr. 1, 37077 Göttingen, Germany
| |
Collapse
|