1
|
Paunova R, Kandilarova S, Simeonova D, Najar D, Latypova A, Stoyanov D, Kherif F. Multivariate linear approach to fMRI data in stroop task performance in depression. THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS 2025. [DOI: 10.1140/epjs/s11734-025-01594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/14/2025] [Indexed: 05/03/2025]
Abstract
Abstract
The study aimed to assess the discriminative capacity of a machine learning algorithm in distinguishing between individuals with Major Depressive Disorder and healthy controls based on a dataset collected during the performance of a Stroop Color and Word Test combined with an n-back component in functional magnetic resonance imaging. A total of 50 participants were recruited, including 24 patients with depression and 26 healthy controls. The analysis employed a multivariate linear model, which identified two principal components characterized by their eigenvalues. The key finding of our study highlights the distinct contribution of eigenvalues, as represented in the principal components, to brain signatures with a strong capacity to differentiate between the two diagnostic groups examined for depression and healthy controls. Moreover, the results present a fresh network-level perspective, emphasizing the intricate interactions among different brain networks in major depression disorder. These findings support prior research indicating disruptions in sensory processing, cognitive control, and emotional regulation in Major Depressive Disorder. The results provide a novel, network-level perspective on these alterations, emphasizing the intricate interplay between sensory, cognitive, and emotional processes. Understanding these network dynamics may offer valuable insights into the neural mechanisms of Major Depressive Disorder and inform targeted interventions aimed at restoring functional connectivity and improving symptom management.
Collapse
|
2
|
Luppi AI, Singleton SP, Hansen JY, Jamison KW, Bzdok D, Kuceyeski A, Betzel RF, Misic B. Contributions of network structure, chemoarchitecture and diagnostic categories to transitions between cognitive topographies. Nat Biomed Eng 2024; 8:1142-1161. [PMID: 39103509 PMCID: PMC11410673 DOI: 10.1038/s41551-024-01242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
The mechanisms linking the brain's network structure to cognitively relevant activation patterns remain largely unknown. Here, by leveraging principles of network control, we show how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic database. Specifically, we systematically integrated large-scale multimodal neuroimaging data from functional magnetic resonance imaging, diffusion tractography, cortical morphometry and positron emission tomography to simulate how anatomically guided transitions between cognitive states can be reshaped by neurotransmitter engagement or by changes in cortical thickness. Our model incorporates neurotransmitter-receptor density maps (18 receptors and transporters) and maps of cortical thickness pertaining to a wide range of mental health, neurodegenerative, psychiatric and neurodevelopmental diagnostic categories (17,000 patients and 22,000 controls). The results provide a comprehensive look-up table charting how brain network organization and chemoarchitecture interact to manifest different cognitive topographies, and establish a principled foundation for the systematic identification of ways to promote selective transitions between cognitive topographies.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - S Parker Singleton
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Keith W Jamison
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Danilo Bzdok
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- MILA, Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard F Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Zabihi M, Kia SM, Wolfers T, de Boer S, Fraza C, Dinga R, Arenas AL, Bzdok D, Beckmann CF, Marquand A. Nonlinear latent representations of high-dimensional task-fMRI data: Unveiling cognitive and behavioral insights in heterogeneous spatial maps. PLoS One 2024; 19:e0308329. [PMID: 39116147 PMCID: PMC11309387 DOI: 10.1371/journal.pone.0308329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Finding an interpretable and compact representation of complex neuroimaging data is extremely useful for understanding brain behavioral mapping and hence for explaining the biological underpinnings of mental disorders. However, hand-crafted representations, as well as linear transformations, may inadequately capture the considerable variability across individuals. Here, we implemented a data-driven approach using a three-dimensional autoencoder on two large-scale datasets. This approach provides a latent representation of high-dimensional task-fMRI data which can account for demographic characteristics whilst also being readily interpretable both in the latent space learned by the autoencoder and in the original voxel space. This was achieved by addressing a joint optimization problem that simultaneously reconstructs the data and predicts clinical or demographic variables. We then applied normative modeling to the latent variables to define summary statistics ('latent indices') and establish a multivariate mapping to non-imaging measures. Our model, trained with multi-task fMRI data from the Human Connectome Project (HCP) and UK biobank task-fMRI data, demonstrated high performance in age and sex predictions and successfully captured complex behavioral characteristics while preserving individual variability through a latent representation. Our model also performed competitively with respect to various baseline models including several variants of principal components analysis, independent components analysis and classical regions of interest, both in terms of reconstruction accuracy and strength of association with behavioral variables.
Collapse
Affiliation(s)
- Mariam Zabihi
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- MRC Unit for Lifelong Health & Ageing, University College London (UCL), London, United Kingdom
| | - Seyed Mostafa Kia
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas Wolfers
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Stijn de Boer
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Charlotte Fraza
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Richard Dinga
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Alberto Llera Arenas
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Danilo Bzdok
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Mila ‐ Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Andre Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Bhavna K, Akhter A, Banerjee R, Roy D. Explainable deep-learning framework: decoding brain states and prediction of individual performance in false-belief task at early childhood stage. Front Neuroinform 2024; 18:1392661. [PMID: 39006894 PMCID: PMC11239353 DOI: 10.3389/fninf.2024.1392661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Decoding of cognitive states aims to identify individuals' brain states and brain fingerprints to predict behavior. Deep learning provides an important platform for analyzing brain signals at different developmental stages to understand brain dynamics. Due to their internal architecture and feature extraction techniques, existing machine-learning and deep-learning approaches are suffering from low classification performance and explainability issues that must be improved. In the current study, we hypothesized that even at the early childhood stage (as early as 3-years), connectivity between brain regions could decode brain states and predict behavioral performance in false-belief tasks. To this end, we proposed an explainable deep learning framework to decode brain states (Theory of Mind and Pain states) and predict individual performance on ToM-related false-belief tasks in a developmental dataset. We proposed an explainable spatiotemporal connectivity-based Graph Convolutional Neural Network (Ex-stGCNN) model for decoding brain states. Here, we consider a developmental dataset, N = 155 (122 children; 3-12 yrs and 33 adults; 18-39 yrs), in which participants watched a short, soundless animated movie, shown to activate Theory-of-Mind (ToM) and pain networs. After scanning, the participants underwent a ToM-related false-belief task, leading to categorization into the pass, fail, and inconsistent groups based on performance. We trained our proposed model using Functional Connectivity (FC) and Inter-Subject Functional Correlations (ISFC) matrices separately. We observed that the stimulus-driven feature set (ISFC) could capture ToM and Pain brain states more accurately with an average accuracy of 94%, whereas it achieved 85% accuracy using FC matrices. We also validated our results using five-fold cross-validation and achieved an average accuracy of 92%. Besides this study, we applied the SHapley Additive exPlanations (SHAP) approach to identify brain fingerprints that contributed the most to predictions. We hypothesized that ToM network brain connectivity could predict individual performance on false-belief tasks. We proposed an Explainable Convolutional Variational Auto-Encoder (Ex-Convolutional VAE) model to predict individual performance on false-belief tasks and trained the model using FC and ISFC matrices separately. ISFC matrices again outperformed the FC matrices in prediction of individual performance. We achieved 93.5% accuracy with an F1-score of 0.94 using ISFC matrices and achieved 90% accuracy with an F1-score of 0.91 using FC matrices.
Collapse
Affiliation(s)
- Km Bhavna
- Department of Computer Science and Engineering, IIT Jodhpur, Karwar, Rajasthan, India
| | - Azman Akhter
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Gurugram, India
| | - Romi Banerjee
- Department of Computer Science and Engineering, IIT Jodhpur, Karwar, Rajasthan, India
| | - Dipanjan Roy
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Gurugram, India
- School of AIDE, Center for Brain Science and Applications, Indian Institute of Technology (IIT), Jodhpur, India
| |
Collapse
|
5
|
Hartwigsen G, Lim JS, Bae HJ, Yu KH, Kuijf HJ, Weaver NA, Biesbroek JM, Kopal J, Bzdok D. Bayesian modelling disentangles language versus executive control disruption in stroke. Brain Commun 2024; 6:fcae129. [PMID: 38707712 PMCID: PMC11069117 DOI: 10.1093/braincomms/fcae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Stroke is the leading cause of long-term disability worldwide. Incurred brain damage can disrupt cognition, often with persisting deficits in language and executive capacities. Yet, despite their clinical relevance, the commonalities and differences between language versus executive control impairments remain under-specified. To fill this gap, we tailored a Bayesian hierarchical modelling solution in a largest-of-its-kind cohort (1080 patients with stroke) to deconvolve language and executive control with respect to the stroke topology. Cognitive function was assessed with a rich neuropsychological test battery including global cognitive function (tested with the Mini-Mental State Exam), language (assessed with a picture naming task), executive speech function (tested with verbal fluency tasks), executive control functions (Trail Making Test and Digit Symbol Coding Task), visuospatial functioning (Rey Complex Figure), as well as verbal learning and memory function (Soul Verbal Learning). Bayesian modelling predicted interindividual differences in eight cognitive outcome scores three months after stroke based on specific tissue lesion topologies. A multivariate factor analysis extracted four distinct cognitive factors that distinguish left- and right-hemispheric contributions to ischaemic tissue lesions. These factors were labelled according to the neuropsychological tests that had the strongest factor loadings: One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized mental flexibility, task switching and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two distinct factors that were labelled as executive speech functions and verbal memory. Impairments on both factors were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Wilhelm Wundt Institute for Psychology, Leipzig University, 04109 Leipzig, Germany
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, 13620, South Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, 14068, Republic of Korea
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nick A Weaver
- Department of Neurology and Neurosurgery, Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - J Matthijs Biesbroek
- Department of Neurology and Neurosurgery, Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Neurology, Diakonessenhuis Hospital, 3582 KE Utrecht, The Netherlands
| | - Jakub Kopal
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2BA, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec H2S 3H1, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2BA, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec H2S 3H1, Canada
| |
Collapse
|
6
|
Hartwigsen G, Lim JS, Bae HJ, Yu KH, Kuijf HJ, Weaver NA, Biesbroek JM, Kopal J, Bzdok D. Bayesian modeling disentangles language versus executive control disruption in stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552147. [PMID: 37609325 PMCID: PMC10441359 DOI: 10.1101/2023.08.06.552147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Stroke is the leading cause of long-term disability worldwide. Incurred brain damage disrupts cognition, often with persisting deficits in language and executive capacities. Despite their clinical relevance, the commonalities, and differences of language versus executive control impairments remain under-specified. We tailored a Bayesian hierarchical modeling solution in a largest-of-its-kind cohort (1080 stroke patients) to deconvolve language and executive control in the brain substrates of stroke insults. Four cognitive factors distinguished left- and right-hemispheric contributions to ischemic tissue lesion. One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized control and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two factors: executive speech functions and verbal memory. Impairments on both were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke.
Collapse
|
7
|
Yao S, Zhu Q, Zhang Q, Cai Y, Liu S, Pang L, Jing Y, Yin X, Cheng H. Managing Cancer and Living Meaningfully (CALM) alleviates chemotherapy related cognitive impairment (CRCI) in breast cancer survivors: A pilot study based on resting-state fMRI. Cancer Med 2023; 12:16231-16242. [PMID: 37409628 PMCID: PMC10469649 DOI: 10.1002/cam4.6285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Chemotherapy related cognitive impairment (CRCI) is a type of memory and cognitive impairment induced by chemotherapy and has become a growing clinical problem. Breast cancer survivors (BCs) refer to patients from the moment of breast cancer diagnosis to the end of their lives. Managing Cancer and Living Meaningfully (CALM) is a convenient and easy-to-apply psychological intervention that has been proven to improve quality of life and alleviate CRCI in BCs. However, the underlying neurobiological mechanisms remain unclear. Resting-state functional magnetic resonance imaging (rs-fMRI) has become an effective method for understanding the neurobiological mechanisms of brain networks in CRCI. The fractional amplitude of low-frequency fluctuations (fALFF) and ALFF have often been used in analyzing the power and intensity of spontaneous regional resting state neural activity. METHODS The recruited BCs were randomly divided into the CALM group and the care as usual (CAU) group. All BCs were evaluated by the Functional Assessment of Cancer Therapy Cognitive Function (FACT-Cog) before and after CALM or CAU. The rs-fMRI imaging was acquired before and after CALM intervention in CALM group BCs. The BCs were defined as before CALM intervention (BCI) group and after CALM intervention (ACI) group. RESULTS There were 32 BCs in CALM group and 35 BCs in CAU group completed the overall study. There were significant differences between the BCI group and the ACI group in the FACT-Cog-PCI scores. Compared with the BCI group, the ACI group showed lower fALFF signal in the left medial frontal gyrus and right sub-gyral and higher fALFF in the left occipital_sup and middle occipital gyrus. There was a significant positive correlation between hippocampal ALFF value and FACT-Cog-PCI scores. CONCLUSIONS CALM intervention may have an effective function in alleviating CRCI of BCs. The altered local synchronization and regional brain activity may be correlated with the improved cognitive function of BCs who received the CALM intervention. The ALFF value of hippocampus seems to be an important factor in reflect cognitive function in BCs with CRCI and the neural network mechanism of CALM intervention deserves further exploration to promote its application.
Collapse
Affiliation(s)
- Senbang Yao
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Qinqin Zhu
- Department of RadiologyQuzhou People's HospitalQuzhouChina
| | - Qianqian Zhang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Yinlian Cai
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Shaochun Liu
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Lulian Pang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Yanyan Jing
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Xiangxiang Yin
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Huaidong Cheng
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Shenzhen Clinical Medical School of Southern Medical UniversityShenzhenChina
- Department of OncologyShenzhen Hospital of Southern Medical UniversityShenzhenChina
| |
Collapse
|
8
|
Sasse L, Larabi DI, Omidvarnia A, Jung K, Hoffstaedter F, Jocham G, Eickhoff SB, Patil KR. Intermediately synchronised brain states optimise trade-off between subject specificity and predictive capacity. Commun Biol 2023; 6:705. [PMID: 37429937 PMCID: PMC10333234 DOI: 10.1038/s42003-023-05073-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Functional connectivity (FC) refers to the statistical dependencies between activity of distinct brain areas. To study temporal fluctuations in FC within the duration of a functional magnetic resonance imaging (fMRI) scanning session, researchers have proposed the computation of an edge time series (ETS) and their derivatives. Evidence suggests that FC is driven by a few time points of high-amplitude co-fluctuation (HACF) in the ETS, which may also contribute disproportionately to interindividual differences. However, it remains unclear to what degree different time points actually contribute to brain-behaviour associations. Here, we systematically evaluate this question by assessing the predictive utility of FC estimates at different levels of co-fluctuation using machine learning (ML) approaches. We demonstrate that time points of lower and intermediate co-fluctuation levels provide overall highest subject specificity as well as highest predictive capacity of individual-level phenotypes.
Collapse
Affiliation(s)
- Leonard Sasse
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany
| | - Daouia I Larabi
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Amir Omidvarnia
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gerhard Jocham
- Institute for Experimental Psychology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
9
|
Frank LE, Zeithamova D. Evaluating methods for measuring background connectivity in slow event-related functional magnetic resonance imaging designs. Brain Behav 2023; 13:e3015. [PMID: 37062880 PMCID: PMC10275534 DOI: 10.1002/brb3.3015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
INTRODUCTION Resting-state functional magnetic resonance imaging (fMRI) is widely used for measuring functional interactions between brain regions, significantly contributing to our understanding of large-scale brain networks and brain-behavior relationships. Furthermore, idiosyncratic patterns of resting-state connections can be leveraged to identify individuals and predict individual differences in clinical symptoms, cognitive abilities, and other individual factors. Idiosyncratic connectivity patterns are thought to persist across task states, suggesting task-based fMRI can be similarly leveraged for individual differences analyses. METHOD Here, we tested the degree to which functional interactions occurring in the background of a task during slow event-related fMRI parallel or differ from those captured during resting-state fMRI. We compared two approaches for removing task-evoked activity from task-based fMRI: (1) applying a low-pass filter to remove task-related frequencies in the signal, or (2) extracting residuals from a general linear model (GLM) that accounts for task-evoked responses. RESULT We found that the organization of large-scale cortical networks and individual's idiosyncratic connectivity patterns are preserved during task-based fMRI. In contrast, individual differences in connection strength can vary more substantially between rest and task. Compared to low-pass filtering, background connectivity obtained from GLM residuals produced idiosyncratic connectivity patterns and individual differences in connection strength that more resembled rest. However, all background connectivity measures were highly similar when derived from the low-pass-filtered signal or GLM residuals, indicating that both methods are suitable for measuring background connectivity. CONCLUSION Together, our results highlight new avenues for the analysis of task-based fMRI datasets and the utility of each background connectivity method.
Collapse
Affiliation(s)
- Lea E. Frank
- Department of PsychologyUniversity of OregonEugeneOregonUSA
| | | |
Collapse
|
10
|
Luppi AI, Singleton SP, Hansen JY, Bzdok D, Kuceyeski A, Betzel RF, Misic B. Transitions between cognitive topographies: contributions of network structure, neuromodulation, and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532981. [PMID: 36993597 PMCID: PMC10055141 DOI: 10.1101/2023.03.16.532981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Patterns of neural activity underlie human cognition. Transitions between these patterns are orchestrated by the brain's network architecture. What are the mechanisms linking network structure to cognitively relevant activation patterns? Here we implement principles of network control to investigate how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic engine. We also systematically incorporate neurotransmitter receptor density maps (18 receptors and transporters) and disease-related cortical abnormality maps (11 neurodegenerative, psychiatric and neurodevelopmental diseases; N = 17 000 patients, N = 22 000 controls). Integrating large-scale multimodal neuroimaging data from functional MRI, diffusion tractography, cortical morphometry, and positron emission tomography, we simulate how anatomically-guided transitions between cognitive states can be reshaped by pharmacological or pathological perturbation. Our results provide a comprehensive look-up table charting how brain network organisation and chemoarchitecture interact to manifest different cognitive topographies. This computational framework establishes a principled foundation for systematically identifying novel ways to promote selective transitions between desired cognitive topographies.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- MILA, Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, U.S.A
| | - Richard F. Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, U.S.A
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
11
|
Das S, Anand DV, Chung MK. Topological data analysis of human brain networks through order statistics. PLoS One 2023; 18:e0276419. [PMID: 36913351 PMCID: PMC10010566 DOI: 10.1371/journal.pone.0276419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/21/2022] [Indexed: 03/14/2023] Open
Abstract
Understanding the common topological characteristics of the human brain network across a population is central to understanding brain functions. The abstraction of human connectome as a graph has been pivotal in gaining insights on the topological properties of the brain network. The development of group-level statistical inference procedures in brain graphs while accounting for the heterogeneity and randomness still remains a difficult task. In this study, we develop a robust statistical framework based on persistent homology using the order statistics for analyzing brain networks. The use of order statistics greatly simplifies the computation of the persistent barcodes. We validate the proposed methods using comprehensive simulation studies and subsequently apply to the resting-state functional magnetic resonance images. We found a statistically significant topological difference between the male and female brain networks.
Collapse
Affiliation(s)
- Soumya Das
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - D. Vijay Anand
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Moo K. Chung
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
12
|
Abdallah M, Iovene V, Zanitti G, Wassermann D. Meta-analysis of the functional neuroimaging literature with probabilistic logic programming. Sci Rep 2022; 12:19431. [PMID: 36371447 PMCID: PMC9653422 DOI: 10.1038/s41598-022-21801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Inferring reliable brain-behavior associations requires synthesizing evidence from thousands of functional neuroimaging studies through meta-analysis. However, existing meta-analysis tools are limited to investigating simple neuroscience concepts and expressing a restricted range of questions. Here, we expand the scope of neuroimaging meta-analysis by designing NeuroLang: a domain-specific language to express and test hypotheses using probabilistic first-order logic programming. By leveraging formalisms found at the crossroads of artificial intelligence and knowledge representation, NeuroLang provides the expressivity to address a larger repertoire of hypotheses in a meta-analysis, while seamlessly modeling the uncertainty inherent to neuroimaging data. We demonstrate the language's capabilities in conducting comprehensive neuroimaging meta-analysis through use-case examples that address questions of structure-function associations. Specifically, we infer the specific functional roles of three canonical brain networks, support the role of the visual word-form area in visuospatial attention, and investigate the heterogeneous organization of the frontoparietal control network.
Collapse
Affiliation(s)
- Majd Abdallah
- Inria, CEA, Neurospin, MIND Team, Université Paris Saclay, 91120, Palaiseau, France
| | - Valentin Iovene
- Inria, CEA, Neurospin, MIND Team, Université Paris Saclay, 91120, Palaiseau, France
| | - Gaston Zanitti
- Inria, CEA, Neurospin, MIND Team, Université Paris Saclay, 91120, Palaiseau, France
| | - Demian Wassermann
- Inria, CEA, Neurospin, MIND Team, Université Paris Saclay, 91120, Palaiseau, France.
| |
Collapse
|
13
|
Abdallah M, Zanitti GE, Iovene V, Wassermann D. Functional gradients in the human lateral prefrontal cortex revealed by a comprehensive coordinate-based meta-analysis. eLife 2022; 11:e76926. [PMID: 36169404 PMCID: PMC9578708 DOI: 10.7554/elife.76926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The lateral prefrontal cortex (LPFC) of humans enables flexible goal-directed behavior. However, its functional organization remains actively debated after decades of research. Moreover, recent efforts aiming to map the LPFC through meta-analysis are limited, either in scope or in the inferred specificity of structure-function associations. These limitations are in part due to the limited expressiveness of commonly-used data analysis tools, which restricts the breadth and complexity of questions that can be expressed in a meta-analysis. Here, we adopt NeuroLang, a novel approach to more expressive meta-analysis based on probabilistic first-order logic programming, to infer the organizing principles of the LPFC from 14,371 neuroimaging studies. Our findings reveal a rostrocaudal and a dorsoventral gradient, respectively explaining the most and second most variance in meta-analytic connectivity across the LPFC. Moreover, we identify a unimodal-to-transmodal spectrum of coactivation patterns along with a concrete-to-abstract axis of structure-function associations extending from caudal to rostral regions of the LPFC. Finally, we infer inter-hemispheric asymmetries along the principal rostrocaudal gradient, identifying hemisphere-specific associations with topics of language, memory, response inhibition, and sensory processing. Overall, this study provides a comprehensive meta-analytic mapping of the LPFC, grounding future hypothesis generation on a quantitative overview of past findings.
Collapse
Affiliation(s)
- Majd Abdallah
- MIND team, Inria, CEA, Université Paris-SaclayPalaiseauFrance
- NeuroSpin, CEA, Université Paris-SaclayGif-sur-YvetteFrance
| | - Gaston E Zanitti
- MIND team, Inria, CEA, Université Paris-SaclayPalaiseauFrance
- NeuroSpin, CEA, Université Paris-SaclayGif-sur-YvetteFrance
| | - Valentin Iovene
- MIND team, Inria, CEA, Université Paris-SaclayPalaiseauFrance
- NeuroSpin, CEA, Université Paris-SaclayGif-sur-YvetteFrance
| | - Demian Wassermann
- MIND team, Inria, CEA, Université Paris-SaclayPalaiseauFrance
- NeuroSpin, CEA, Université Paris-SaclayGif-sur-YvetteFrance
| |
Collapse
|
14
|
Wu Q, Huang Q, Liu C, Wu H. Oxytocin modulates social brain network correlations in resting and task state. Cereb Cortex 2022; 33:3607-3620. [PMID: 36005833 DOI: 10.1093/cercor/bhac295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of oxytocin (OT) on the social brain can be tracked upon assessing the neural activity in resting and task states, and developing a system-level framework for characterizing the state-based functional relationships of its distinct effect. Here, we contribute to this framework by examining how OT modulates social brain network correlations during resting and task states, using fMRI. First, we investigated network activation, followed by an analysis of the relationships between networks and individual differences. Subsequently, we evaluated the functional connectivity in both states. Finally, the relationship between networks across states was represented by the predictive power of networks in the resting state for task-evoked activities. The differences in the predicted accuracy between the subjects displayed individual variations in this relationship. Our results showed that the activity of the dorsal default mode network in the resting state had the largest predictive power for task-evoked activation of the precuneus network (PN) only in the OT group. The results also demonstrated that OT reduced the individual variation in PN in the prediction process. These findings suggest a distributed but modulatory effect of OT on the association between resting and task-dependent brain networks.
Collapse
Affiliation(s)
- Qingyuan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau 999078, China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qi Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau 999078, China
| |
Collapse
|
15
|
Bolt T, Nomi JS, Bzdok D, Salas JA, Chang C, Thomas Yeo BT, Uddin LQ, Keilholz SD. A parsimonious description of global functional brain organization in three spatiotemporal patterns. Nat Neurosci 2022; 25:1093-1103. [PMID: 35902649 DOI: 10.1038/s41593-022-01118-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Resting-state functional magnetic resonance imaging (MRI) has yielded seemingly disparate insights into large-scale organization of the human brain. The brain's large-scale organization can be divided into two broad categories: zero-lag representations of functional connectivity structure and time-lag representations of traveling wave or propagation structure. In this study, we sought to unify observed phenomena across these two categories in the form of three low-frequency spatiotemporal patterns composed of a mixture of standing and traveling wave dynamics. We showed that a range of empirical phenomena, including functional connectivity gradients, the task-positive/task-negative anti-correlation pattern, the global signal, time-lag propagation patterns, the quasiperiodic pattern and the functional connectome network structure, are manifestations of these three spatiotemporal patterns. These patterns account for much of the global spatial structure that underlies functional connectivity analyses and unifies phenomena in resting-state functional MRI previously thought distinct.
Collapse
Affiliation(s)
- Taylor Bolt
- Emory University/Georgia Institute of Technology, Atlanta, GA, USA. .,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jason S Nomi
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danilo Bzdok
- The Neuro (Montreal Neurological Institute), McGill University & Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Jorge A Salas
- Departments of Electrical and Computer Engineering, Computer Science, and Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Catie Chang
- Departments of Electrical and Computer Engineering, Computer Science, and Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - B T Thomas Yeo
- Department of Electrical & Computer Engineering, Centre for Translational MR Research, Centre for Sleep & Cognition, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
16
|
Chen J, Tam A, Kebets V, Orban C, Ooi LQR, Asplund CL, Marek S, Dosenbach NUF, Eickhoff SB, Bzdok D, Holmes AJ, Yeo BTT. Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study. Nat Commun 2022; 13:2217. [PMID: 35468875 PMCID: PMC9038754 DOI: 10.1038/s41467-022-29766-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/18/2022] [Indexed: 12/30/2022] Open
Abstract
How individual differences in brain network organization track behavioral variability is a fundamental question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, most studies focus on single behavioral traits, thus not capturing broader relationships across behaviors. In a large sample of 1858 typically developing children from the Adolescent Brain Cognitive Development (ABCD) study, we show that predictive network features are distinct across the domains of cognitive performance, personality scores and mental health assessments. On the other hand, traits within each behavioral domain are predicted by similar network features. Predictive network features and models generalize to other behavioral measures within the same behavioral domain. Although tasks are known to modulate the functional connectome, predictive network features are similar between resting and task states. Overall, our findings reveal shared brain network features that account for individual variation within broad domains of behavior in childhood.
Collapse
Affiliation(s)
- Jianzhong Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Angela Tam
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Valeria Kebets
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Csaba Orban
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Leon Qi Rong Ooi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.,Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| | - Christopher L Asplund
- Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.,Division of Social Sciences, Yale-NUS College, Singapore, Singapore.,Department of Psychology, National University of Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviours (INM-7), Research Center Jülich, Jülich, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Avram J Holmes
- Yale University, Departments of Psychology and Psychiatry, New Haven, CT, USA
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore. .,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore. .,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore. .,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore. .,Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore. .,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
17
|
Williams KA, Numssen O, Hartwigsen G. Task-specific network interactions across key cognitive domains. Cereb Cortex 2022; 32:5050-5071. [PMID: 35158372 PMCID: PMC9667178 DOI: 10.1093/cercor/bhab531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022] Open
Abstract
Human cognition is organized in distributed networks in the brain. Although distinct specialized networks have been identified for different cognitive functions, previous work also emphasizes the overlap of key cognitive domains in higher level association areas. The majority of previous studies focused on network overlap and dissociation during resting states whereas task-related network interactions across cognitive domains remain largely unexplored. A better understanding of network overlap and dissociation during different cognitive tasks may elucidate flexible (re-)distribution of resources during human cognition. The present study addresses this issue by providing a broad characterization of large-scale network dynamics in three key cognitive domains. Combining prototypical tasks of the larger domains of attention, language, and social cognition with whole-brain multivariate activity and connectivity approaches, we provide a spatiotemporal characterization of multiple large-scale, overlapping networks that differentially interact across cognitive domains. We show that network activity and interactions increase with increased cognitive complexity across domains. Interaction patterns reveal a common core structure across domains as well as dissociable domain-specific network activity. The observed patterns of activation and deactivation of overlapping and strongly coupled networks provide insight beyond region-specific activity within a particular cognitive domain toward a network perspective approach across diverse key cognitive functions.
Collapse
Affiliation(s)
- Kathleen A Williams
- Address correspondence to Kathleen A. Williams, Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
18
|
|
19
|
Bonkhoff AK, Lim JS, Bae HJ, Weaver NA, Kuijf HJ, Biesbroek JM, Rost NS, Bzdok D. Generative lesion pattern decomposition of cognitive impairment after stroke. Brain Commun 2021; 3:fcab110. [PMID: 34189457 PMCID: PMC8233115 DOI: 10.1093/braincomms/fcab110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2021] [Accepted: 05/20/2021] [Indexed: 01/28/2023] Open
Abstract
Cognitive impairment is a frequent and disabling sequela of stroke. There is however incomplete understanding of how lesion topographies in the left and right cerebral hemisphere brain interact to cause distinct cognitive deficits. We integrated machine learning and Bayesian hierarchical modelling to enable a hemisphere-aware analysis of 1080 acute ischaemic stroke patients with deep profiling ∼3 months after stroke. We show the relevance of the left hemisphere in the prediction of language and memory assessments and relevance of the right hemisphere in the prediction of visuospatial functioning. Global cognitive impairments were equally well predicted by lesion topographies from both sides. Damage to the hippocampal and occipital regions on the left was particularly informative about lost naming and memory functions, while damage to these regions on the right was linked to lost visuospatial functioning. Global cognitive impairment was predominantly linked to lesioned tissue in the supramarginal and angular gyrus, the post-central gyrus as well as the lateral occipital and opercular cortices of the left hemisphere. Hence, our analysis strategy uncovered that lesion patterns with unique hemispheric distributions are characteristic of how cognitive capacity is lost due to ischaemic brain tissue damage.
Collapse
Affiliation(s)
- Anna K Bonkhoff
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, MA, Boston, USA
| | - Jae-Sung Lim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Nick A Weaver
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J Matthijs Biesbroek
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Natalia S Rost
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, MA, Boston, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada.,Mila-Quebec Artificial Intelligence Institute, Montreal, Canada
| |
Collapse
|
20
|
Boos M, Lücke J, Rieger JW. Generalizable dimensions of human cortical auditory processing of speech in natural soundscapes: A data-driven ultra high field fMRI approach. Neuroimage 2021; 237:118106. [PMID: 33991696 DOI: 10.1016/j.neuroimage.2021.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/25/2021] [Indexed: 11/27/2022] Open
Abstract
Speech comprehension in natural soundscapes rests on the ability of the auditory system to extract speech information from a complex acoustic signal with overlapping contributions from many sound sources. Here we reveal the canonical processing of speech in natural soundscapes on multiple scales by using data-driven modeling approaches to characterize sounds to analyze ultra high field fMRI recorded while participants listened to the audio soundtrack of a movie. We show that at the functional level the neuronal processing of speech in natural soundscapes can be surprisingly low dimensional in the human cortex, highlighting the functional efficiency of the auditory system for a seemingly complex task. Particularly, we find that a model comprising three functional dimensions of auditory processing in the temporal lobes is shared across participants' fMRI activity. We further demonstrate that the three functional dimensions are implemented in anatomically overlapping networks that process different aspects of speech in natural soundscapes. One is most sensitive to complex auditory features present in speech, another to complex auditory features and fast temporal modulations, that are not specific to speech, and one codes mainly sound level. These results were derived with few a-priori assumptions and provide a detailed and computationally reproducible account of the cortical activity in the temporal lobe elicited by the processing of speech in natural soundscapes.
Collapse
Affiliation(s)
- Moritz Boos
- Applied Neurocognitive Psychology Lab, University of Oldenburg, Oldenburg, Germany; Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany.
| | - Jörg Lücke
- Machine Learning Division, University of Oldenburg, Oldenburg, Germany; Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
| | - Jochem W Rieger
- Applied Neurocognitive Psychology Lab, University of Oldenburg, Oldenburg, Germany; Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
21
|
Baxter L, Moultrie F, Fitzgibbon S, Aspbury M, Mansfield R, Bastiani M, Rogers R, Jbabdi S, Duff E, Slater R. Functional and diffusion MRI reveal the neurophysiological basis of neonates' noxious-stimulus evoked brain activity. Nat Commun 2021; 12:2744. [PMID: 33980860 PMCID: PMC8115252 DOI: 10.1038/s41467-021-22960-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/05/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding the neurophysiology underlying neonatal responses to noxious stimulation is central to improving early life pain management. In this neonatal multimodal MRI study, we use resting-state and diffusion MRI to investigate inter-individual variability in noxious-stimulus evoked brain activity. We observe that cerebral haemodynamic responses to experimental noxious stimulation can be predicted from separately acquired resting-state brain activity (n = 18). Applying this prediction model to independent Developing Human Connectome Project data (n = 215), we identify negative associations between predicted noxious-stimulus evoked responses and white matter mean diffusivity. These associations are subsequently confirmed in the original noxious stimulation paradigm dataset, validating the prediction model. Here, we observe that noxious-stimulus evoked brain activity in healthy neonates is coupled to resting-state activity and white matter microstructure, that neural features can be used to predict responses to noxious stimulation, and that the dHCP dataset could be utilised for future exploratory research of early life pain system neurophysiology.
Collapse
Affiliation(s)
- Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Fiona Moultrie
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sean Fitzgibbon
- FMRIB, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | | | - Matteo Bastiani
- FMRIB, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Richard Rogers
- Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford, UK
| | - Saad Jbabdi
- FMRIB, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Eugene Duff
- Department of Paediatrics, University of Oxford, Oxford, UK
- FMRIB, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Vidaurre D, Llera A, Smith SM, Woolrich MW. Behavioural relevance of spontaneous, transient brain network interactions in fMRI. Neuroimage 2021; 229:117713. [PMID: 33421594 PMCID: PMC7994296 DOI: 10.1016/j.neuroimage.2020.117713] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022] Open
Abstract
How spontaneously fluctuating functional magnetic resonance imaging (fMRI) signals in different brain regions relate to behaviour has been an open question for decades. Correlations in these signals, known as functional connectivity, can be averaged over several minutes of data to provide a stable representation of the functional network architecture for an individual. However, associations between these stable features and behavioural traits have been shown to be dominated by individual differences in anatomy. Here, using kernel learning tools, we propose methods to assess and compare the relation between time-varying functional connectivity, time-averaged functional connectivity, structural brain data, and non-imaging subject behavioural traits. We applied these methods to Human Connectome Project resting-state fMRI data to show that time-varying fMRI functional connectivity, detected at time-scales of a few seconds, has associations with some behavioural traits that are not dominated by anatomy. Despite time-averaged functional connectivity accounting for the largest proportion of variability in the fMRI signal between individuals, we found that some aspects of intelligence could only be explained by time-varying functional connectivity. The finding that time-varying fMRI functional connectivity has a unique relationship to population behavioural variability suggests that it might reflect transient neuronal communication fluctuating around a stable neural architecture.
Collapse
Affiliation(s)
- D Vidaurre
- Center for Functionally Integrative Neuroscience, Department of Clinical Health, Aarhus University, 8000 Denmark; Department of Psychiatry, University of Oxford, OX37JX UK; Wellcome Trust Center for Integrative Neuroimaging, University of Oxford, OX37JX UK,.
| | - A Llera
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 Netherlands
| | - S M Smith
- Wellcome Trust Center for Integrative Neuroimaging, University of Oxford, OX37JX UK
| | - M W Woolrich
- Department of Psychiatry, University of Oxford, OX37JX UK; Wellcome Trust Center for Integrative Neuroimaging, University of Oxford, OX37JX UK
| |
Collapse
|
23
|
Zhang Y, Tetrel L, Thirion B, Bellec P. Functional annotation of human cognitive states using deep graph convolution. Neuroimage 2021; 231:117847. [PMID: 33582272 DOI: 10.1016/j.neuroimage.2021.117847] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/17/2023] Open
Abstract
A key goal in neuroscience is to understand brain mechanisms of cognitive functions. An emerging approach is "brain decoding", which consists of inferring a set of experimental conditions performed by a participant, using pattern classification of brain activity. Few works so far have attempted to train a brain decoding model that would generalize across many different cognitive tasks drawn from multiple cognitive domains. To tackle this problem, we proposed a multidomain brain decoder that automatically learns the spatiotemporal dynamics of brain response within a short time window using a deep learning approach. We evaluated the decoding model on a large population of 1200 participants, under 21 different experimental conditions spanning six different cognitive domains, acquired from the Human Connectome Project task-fMRI database. Using a 10s window of fMRI response, the 21 cognitive states were identified with a test accuracy of 90% (chance level 4.8%). Performance remained good when using a 6s window (82%). It was even feasible to decode cognitive states from a single fMRI volume (720ms), with the performance following the shape of the hemodynamic response. Moreover, a saliency map analysis demonstrated that the high decoding performance was driven by the response of biologically meaningful brain regions. Together, we provide an automated tool to annotate human brain activity with fine temporal resolution and fine cognitive granularity. Our model shows potential applications as a reference model for domain adaptation, possibly making contributions in a variety of domains, including neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Yu Zhang
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, QC H3W 1W6, Canada; Department of Psychology, Université de Montréal, Montreal QC H3C 3J7, Canada
| | - Loïc Tetrel
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, QC H3W 1W6, Canada
| | - Bertrand Thirion
- Parietal team, INRIA, Neurospin, CEA Saclay, Gif-sur-Yvette, France
| | - Pierre Bellec
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, QC H3W 1W6, Canada; Department of Psychology, Université de Montréal, Montreal QC H3C 3J7, Canada.
| |
Collapse
|
24
|
Lacosse E, Scheffler K, Lohmann G, Martius G. Jumping over baselines with new methods to predict activation maps from resting-state fMRI. Sci Rep 2021; 11:3480. [PMID: 33568695 PMCID: PMC7875973 DOI: 10.1038/s41598-021-82681-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/21/2021] [Indexed: 11/09/2022] Open
Abstract
Cognitive fMRI research primarily relies on task-averaged responses over many subjects to describe general principles of brain function. Nonetheless, there exists a large variability between subjects that is also reflected in spontaneous brain activity as measured by resting state fMRI (rsfMRI). Leveraging this fact, several recent studies have therefore aimed at predicting task activation from rsfMRI using various machine learning methods within a growing literature on 'connectome fingerprinting'. In reviewing these results, we found lack of an evaluation against robust baselines that reliably supports a novelty of predictions for this task. On closer examination to reported methods, we found most underperform against trivial baseline model performances based on massive group averaging when whole-cortex prediction is considered. Here we present a modification to published methods that remedies this problem to large extent. Our proposed modification is based on a single-vertex approach that replaces commonly used brain parcellations. We further provide a summary of this model evaluation by characterizing empirical properties of where prediction for this task appears possible, explaining why some predictions largely fail for certain targets. Finally, with these empirical observations we investigate whether individual prediction scores explain individual behavioral differences in a task.
Collapse
Affiliation(s)
- Eric Lacosse
- Autonomous Learning Group, Max Planck Institute for Intelligent Systems, 72076, Tübingen, Germany.
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany.
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance Imaging, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Gabriele Lohmann
- Department of Biomedical Magnetic Resonance Imaging, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Georg Martius
- Autonomous Learning Group, Max Planck Institute for Intelligent Systems, 72076, Tübingen, Germany
| |
Collapse
|
25
|
Dohmatob E, Richard H, Pinho AL, Thirion B. Brain topography beyond parcellations: Local gradients of functional maps. Neuroimage 2021; 229:117706. [PMID: 33484851 DOI: 10.1016/j.neuroimage.2020.117706] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 12/19/2020] [Indexed: 01/21/2023] Open
Abstract
Functional neuroimaging provides the unique opportunity to characterize brain regions based on their response to tasks or ongoing activity. As such, it holds the premise to capture brain spatial organization. Yet, the conceptual framework to describe this organization has remained elusive: on the one hand, parcellations build implicitly on a piecewise constant organization, i.e. flat regions separated by sharp boundaries; on the other hand, the recently popularized concept of functional gradient hints instead at a smooth structure. Noting that both views converge to a topographic scheme that pieces together local variations of functional features, we perform a quantitative assessment of local gradient-based models. Using as a driving case the prediction of functional Magnetic Resonance Imaging (fMRI) data -concretely, the prediction of task-fMRI from rest-fMRI maps across subjects- we develop a parcel-wise linear regression model based on a dictionary of reference topographies. Our method uses multiple random parcellations -as opposed to a single fixed parcellation- and aggregates estimates across these parcellations to predict functional features in left-out subjects. Our experiments demonstrate the existence of an optimal cardinality of the parcellation to capture local gradients of functional maps.
Collapse
Affiliation(s)
- Elvis Dohmatob
- Inria, CEA, Université Paris-Saclay, Saclay, France; Criteo AI Lab, France
| | - Hugo Richard
- Inria, CEA, Université Paris-Saclay, Saclay, France
| | | | | |
Collapse
|
26
|
Deep learning identifies partially overlapping subnetworks in the human social brain. Commun Biol 2021; 4:65. [PMID: 33446815 PMCID: PMC7809473 DOI: 10.1038/s42003-020-01559-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/03/2020] [Indexed: 12/23/2022] Open
Abstract
Complex social interplay is a defining property of the human species. In social neuroscience, many experiments have sought to first define and then locate ‘perspective taking’, ‘empathy’, and other psychological concepts to specific brain circuits. Seldom, bottom-up studies were conducted to first identify explanatory patterns of brain variation, which are then related to psychological concepts; perhaps due to a lack of large population datasets. In this spirit, we performed a systematic de-construction of social brain morphology into its elementary building blocks, involving ~10,000 UK Biobank participants. We explored coherent representations of structural co-variation at population scale within a recent social brain atlas, by translating autoencoder neural networks from deep learning. The learned subnetworks revealed essential patterns of structural relationships between social brain regions, with the nucleus accumbens, medial prefrontal cortex, and temporoparietal junction embedded at the core. Some of the uncovered subnetworks contributed to predicting examined social traits in general, while other subnetworks helped predict specific facets of social functioning, such as the experience of social isolation. As a consequence of our population-level evidence, spatially overlapping subsystems of the social brain probably relate to interindividual differences in everyday social life. Kiesow et al. use deep learning to identify partially overlapping subnetworks in the human social brain at the population level. They also demonstrate that the learned subnetwork representations can be used to predict social traits.
Collapse
|
27
|
Zabihi M, Floris DL, Kia SM, Wolfers T, Tillmann J, Arenas AL, Moessnang C, Banaschewski T, Holt R, Baron-Cohen S, Loth E, Charman T, Bourgeron T, Murphy D, Ecker C, Buitelaar JK, Beckmann CF, Marquand A, The EU-AIMS LEAP Group. Fractionating autism based on neuroanatomical normative modeling. Transl Psychiatry 2020; 10:384. [PMID: 33159037 PMCID: PMC7648836 DOI: 10.1038/s41398-020-01057-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
Autism is a complex neurodevelopmental condition with substantial phenotypic, biological, and etiologic heterogeneity. It remains a challenge to identify biomarkers to stratify autism into replicable cognitive or biological subtypes. Here, we aim to introduce a novel methodological framework for parsing neuroanatomical subtypes within a large cohort of individuals with autism. We used cortical thickness (CT) in a large and well-characterized sample of 316 participants with autism (88 female, age mean: 17.2 ± 5.7) and 206 with neurotypical development (79 female, age mean: 17.5 ± 6.1) aged 6-31 years across six sites from the EU-AIMS multi-center Longitudinal European Autism Project. Five biologically based putative subtypes were derived using normative modeling of CT and spectral clustering. Three of these clusters showed relatively widespread decreased CT and two showed relatively increased CT. These subtypes showed morphometric differences from one another, providing a potential explanation for inconsistent case-control findings in autism, and loaded differentially and more strongly onto symptoms and polygenic risk, indicating a dilution of clinical effects across heterogeneous cohorts. Our results provide an important step towards parsing the heterogeneous neurobiology of autism.
Collapse
Affiliation(s)
- Mariam Zabihi
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands. .,Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.
| | - Dorothea L. Floris
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands ,grid.10417.330000 0004 0444 9382Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Seyed Mostafa Kia
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands ,grid.10417.330000 0004 0444 9382Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Thomas Wolfers
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands ,grid.5510.10000 0004 1936 8921Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), University of Oslo & Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Psychology, University of Oslo, Oslo, Norway
| | - Julian Tillmann
- grid.13097.3c0000 0001 2322 6764Department of Psychology, Institute of Psychiatry, Psychology, & Neuroscience, King’s College London, London, UK ,grid.10420.370000 0001 2286 1424Department of Applied Psychology: Health, Development, Enhancement, and Intervention, University of Vienna, Vienna, Austria
| | - Alberto Llera Arenas
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands ,grid.10417.330000 0004 0444 9382Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Carolin Moessnang
- grid.7700.00000 0001 2190 4373Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Tobias Banaschewski
- grid.7700.00000 0001 2190 4373Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rosemary Holt
- grid.5335.00000000121885934Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- grid.5335.00000000121885934Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Eva Loth
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK ,grid.13097.3c0000 0001 2322 6764Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Tony Charman
- grid.13097.3c0000 0001 2322 6764Department of Psychology, Institute of Psychiatry, Psychology, & Neuroscience, King’s College London, London, UK
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Declan Murphy
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK ,grid.13097.3c0000 0001 2322 6764Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Christine Ecker
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK ,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe University, Frankfurt, Germany
| | - Jan K. Buitelaar
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands ,grid.10417.330000 0004 0444 9382Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands ,grid.461871.d0000 0004 0624 8031Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Christian F. Beckmann
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands ,grid.10417.330000 0004 0444 9382Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands ,grid.4991.50000 0004 1936 8948Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Andre Marquand
- grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands ,grid.10417.330000 0004 0444 9382Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands ,grid.13097.3c0000 0001 2322 6764Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King’s College London, London, UK
| | | |
Collapse
|
28
|
Dohmatob E, Dumas G, Bzdok D. Dark control: The default mode network as a reinforcement learning agent. Hum Brain Mapp 2020; 41:3318-3341. [PMID: 32500968 PMCID: PMC7375062 DOI: 10.1002/hbm.25019] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/22/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022] Open
Abstract
The default mode network (DMN) is believed to subserve the baseline mental activity in humans. Its higher energy consumption compared to other brain networks and its intimate coupling with conscious awareness are both pointing to an unknown overarching function. Many research streams speak in favor of an evolutionarily adaptive role in envisioning experience to anticipate the future. In the present work, we propose a process model that tries to explain how the DMN may implement continuous evaluation and prediction of the environment to guide behavior. The main purpose of DMN activity, we argue, may be described by Markov decision processes that optimize action policies via value estimates through vicarious trial and error. Our formal perspective on DMN function naturally accommodates as special cases previous interpretations based on (a) predictive coding, (b) semantic associations, and (c) a sentinel role. Moreover, this process model for the neural optimization of complex behavior in the DMN offers parsimonious explanations for recent experimental findings in animals and humans.
Collapse
Affiliation(s)
- Elvis Dohmatob
- Criteo AI LabParisFrance
- INRIA, Parietal TeamSaclayFrance
- Neurospin, CEAGif‐sur‐YvetteFrance
| | - Guillaume Dumas
- Institut Pasteur, Human Genetics and Cognitive Functions UnitParisFrance
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut PasteurParisFrance
- University Paris Diderot, Sorbonne Paris CitéParisFrance
- Centre de Bioinformatique, Biostatistique et Biologie IntégrativeParisFrance
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, School of Computer ScienceMcGill UniversityMontrealCanada
- Mila—Quebec Artificial Intelligence InstituteMontrealCanada
| |
Collapse
|
29
|
Dadi K, Varoquaux G, Machlouzarides-Shalit A, Gorgolewski KJ, Wassermann D, Thirion B, Mensch A. Fine-grain atlases of functional modes for fMRI analysis. Neuroimage 2020; 221:117126. [PMID: 32673748 DOI: 10.1016/j.neuroimage.2020.117126] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 02/04/2023] Open
Abstract
Population imaging markedly increased the size of functional-imaging datasets, shedding new light on the neural basis of inter-individual differences. Analyzing these large data entails new scalability challenges, computational and statistical. For this reason, brain images are typically summarized in a few signals, for instance reducing voxel-level measures with brain atlases or functional modes. A good choice of the corresponding brain networks is important, as most data analyses start from these reduced signals. We contribute finely-resolved atlases of functional modes, comprising from 64 to 1024 networks. These dictionaries of functional modes (DiFuMo) are trained on millions of fMRI functional brain volumes of total size 2.4 TB, spanned over 27 studies and many research groups. We demonstrate the benefits of extracting reduced signals on our fine-grain atlases for many classic functional data analysis pipelines: stimuli decoding from 12,334 brain responses, standard GLM analysis of fMRI across sessions and individuals, extraction of resting-state functional-connectomes biomarkers for 2500 individuals, data compression and meta-analysis over more than 15,000 statistical maps. In each of these analysis scenarii, we compare the performance of our functional atlases with that of other popular references, and to a simple voxel-level analysis. Results highlight the importance of using high-dimensional "soft" functional atlases, to represent and analyze brain activity while capturing its functional gradients. Analyses on high-dimensional modes achieve similar statistical performance as at the voxel level, but with much reduced computational cost and higher interpretability. In addition to making them available, we provide meaningful names for these modes, based on their anatomical location. It will facilitate reporting of results.
Collapse
Affiliation(s)
- Kamalaker Dadi
- Inria, CEA, Université Paris-Saclay, Palaiseau, 91120, France.
| | - Gaël Varoquaux
- Inria, CEA, Université Paris-Saclay, Palaiseau, 91120, France
| | | | | | | | | | - Arthur Mensch
- Inria, CEA, Université Paris-Saclay, Palaiseau, 91120, France; ENS, DMA, 45 Rue D'Ulm, 75005, Paris, France
| |
Collapse
|
30
|
Pervaiz U, Vidaurre D, Woolrich MW, Smith SM. Optimising network modelling methods for fMRI. Neuroimage 2020; 211:116604. [PMID: 32062083 PMCID: PMC7086233 DOI: 10.1016/j.neuroimage.2020.116604] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 11/09/2022] Open
Abstract
A major goal of neuroimaging studies is to develop predictive models to analyze the relationship between whole brain functional connectivity patterns and behavioural traits. However, there is no single widely-accepted standard pipeline for analyzing functional connectivity. The common procedure for designing functional connectivity based predictive models entails three main steps: parcellating the brain, estimating the interaction between defined parcels, and lastly, using these integrated associations between brain parcels as features fed to a classifier for predicting non-imaging variables e.g., behavioural traits, demographics, emotional measures, etc. There are also additional considerations when using correlation-based measures of functional connectivity, resulting in three supplementary steps: utilising Riemannian geometry tangent space parameterization to preserve the geometry of functional connectivity; penalizing the connectivity estimates with shrinkage approaches to handle challenges related to short time-series (and noisy) data; and removing confounding variables from brain-behaviour data. These six steps are contingent on each-other, and to optimise a general framework one should ideally examine these various methods simultaneously. In this paper, we investigated strengths and short-comings, both independently and jointly, of the following measures: parcellation techniques of four kinds (categorized further depending upon number of parcels), five measures of functional connectivity, the decision of staying in the ambient space of connectivity matrices or in tangent space, the choice of applying shrinkage estimators, six alternative techniques for handling confounds and finally four novel classifiers/predictors. For performance evaluation, we have selected two of the largest datasets, UK Biobank and the Human Connectome Project resting state fMRI data, and have run more than 9000 different pipeline variants on a total of ∼14000 individuals to determine the optimum pipeline. For independent performance validation, we have run some best-performing pipeline variants on ABIDE and ACPI datasets (∼1000 subjects) to evaluate the generalisability of proposed network modelling methods.
Collapse
Affiliation(s)
- Usama Pervaiz
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom.
| | - Diego Vidaurre
- Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom; Department of Clinical Medicine, Aarhus University, Denmark
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Stephen M Smith
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
31
|
Wang HT, Smallwood J, Mourao-Miranda J, Xia CH, Satterthwaite TD, Bassett DS, Bzdok D. Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists. Neuroimage 2020; 216:116745. [PMID: 32278095 DOI: 10.1016/j.neuroimage.2020.116745] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
The 21st century marks the emergence of "big data" with a rapid increase in the availability of datasets with multiple measurements. In neuroscience, brain-imaging datasets are more commonly accompanied by dozens or hundreds of phenotypic subject descriptors on the behavioral, neural, and genomic level. The complexity of such "big data" repositories offer new opportunities and pose new challenges for systems neuroscience. Canonical correlation analysis (CCA) is a prototypical family of methods that is useful in identifying the links between variable sets from different modalities. Importantly, CCA is well suited to describing relationships across multiple sets of data, such as in recently available big biomedical datasets. Our primer discusses the rationale, promises, and pitfalls of CCA.
Collapse
Affiliation(s)
- Hao-Ting Wang
- Department of Psychology, University of York, Heslington, York, United Kingdom; Sackler Center for Consciousness Science, University of Sussex, Brighton, United Kingdom.
| | - Jonathan Smallwood
- Department of Psychology, University of York, Heslington, York, United Kingdom
| | - Janaina Mourao-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Cedric Huchuan Xia
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Germany; Parietal Team, INRIA, Neurospin, Bat 145, CEA Saclay, 91191, Gif-sur-Yvette, France; Department of Biomedical Engineering, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada; Mila - Quebec Artificial Intelligence Institute, Canada.
| |
Collapse
|
32
|
Xia CH, Ma Z, Cui Z, Bzdok D, Thirion B, Bassett DS, Satterthwaite TD, Shinohara RT, Witten DM. Multi-scale network regression for brain-phenotype associations. Hum Brain Mapp 2020; 41:2553-2566. [PMID: 32216125 PMCID: PMC7383128 DOI: 10.1002/hbm.24982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 02/03/2023] Open
Abstract
Brain networks are increasingly characterized at different scales, including summary statistics, community connectivity, and individual edges. While research relating brain networks to behavioral measurements has yielded many insights into brain‐phenotype relationships, common analytical approaches only consider network information at a single scale. Here, we designed, implemented, and deployed Multi‐Scale Network Regression (MSNR), a penalized multivariate approach for modeling brain networks that explicitly respects both edge‐ and community‐level information by assuming a low rank and sparse structure, both encouraging less complex and more interpretable modeling. Capitalizing on a large neuroimaging cohort (n = 1, 051), we demonstrate that MSNR recapitulates interpretable and statistically significant connectivity patterns associated with brain development, sex differences, and motion‐related artifacts. Compared to single‐scale methods, MSNR achieves a balance between prediction performance and model complexity, with improved interpretability. Together, by jointly exploiting both edge‐ and community‐level information, MSNR has the potential to yield novel insights into brain‐behavior relationships.
Collapse
Affiliation(s)
- Cedric Huchuan Xia
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zongming Ma
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zaixu Cui
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Danilo Bzdok
- Department of Psychiatry, Psychopathology and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.,Université Paris-Saclay, CEA, Inria, Gif-sur-Yvette, France.,Department of Bioengineering, McGill University, Montreal, Canada
| | | | - Danielle S Bassett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Physics and Astronomy, School of Arts and Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Russell T Shinohara
- Penn Statistics and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Biomedical Imaging Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniela M Witten
- Department of Statistics, College of Arts and Science, University of Washington, Seattle, Washington, USA.,Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
33
|
Lee TH, Kim SH, Katz B, Mather M. The Decline in Intrinsic Connectivity Between the Salience Network and Locus Coeruleus in Older Adults: Implications for Distractibility. Front Aging Neurosci 2020; 12:2. [PMID: 32082136 PMCID: PMC7004957 DOI: 10.3389/fnagi.2020.00002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/08/2020] [Indexed: 11/26/2022] Open
Abstract
We examined functional connectivity between the locus coeruleus (LC) and the salience network in healthy young and older adults to investigate why people become more prone to distraction with age. Recent findings suggest that the LC plays an important role in focusing processing on salient or goal-relevant information from multiple incoming sensory inputs (Mather et al., 2016). We hypothesized that the connection between LC and the salience network declines in older adults, and therefore the salience network fails to appropriately filter out irrelevant sensory signals. To examine this possibility, we used resting-state-like fMRI data, in which all task-related activities were regressed out (Fair et al., 2007; Elliott et al., 2019) and performed a functional connectivity analysis based on the time-course of LC activity. Older adults showed reduced functional connectivity between the LC and salience network compared with younger adults. Additionally, the salience network was relatively more coupled with the frontoparietal network than the default-mode network in older adults compared with younger adults, even though all task-related activities were regressed out. Together, these findings suggest that reduced interactions between LC and the salience network impairs the ability to prioritize the importance of incoming events, and in turn, the salience network fails to initiate network switching (e.g., Menon and Uddin, 2010; Uddin, 2015) that would promote further attentional processing. A chronic lack of functional connection between LC and salience network may limit older adults' attentional and executive control resources.
Collapse
Affiliation(s)
- Tae-Ho Lee
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| | - Sun Hyung Kim
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, United States
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
34
|
Clemens B, Derntl B, Smith E, Junger J, Neulen J, Mingoia G, Schneider F, Abel T, Bzdok D, Habel U. Predictive Pattern Classification Can Distinguish Gender Identity Subtypes from Behavior and Brain Imaging. Cereb Cortex 2020; 30:2755-2765. [PMID: 31999324 DOI: 10.1093/cercor/bhz272] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
The exact neurobiological underpinnings of gender identity (i.e., the subjective perception of oneself belonging to a certain gender) still remain unknown. Combining both resting-state functional connectivity and behavioral data, we examined gender identity in cisgender and transgender persons using a data-driven machine learning strategy. Intrinsic functional connectivity and questionnaire data were obtained from cisgender (men/women) and transgender (trans men/trans women) individuals. Machine learning algorithms reliably detected gender identity with high prediction accuracy in each of the four groups based on connectivity signatures alone. The four normative gender groups were classified with accuracies ranging from 48% to 62% (exceeding chance level at 25%). These connectivity-based classification accuracies exceeded those obtained from a widely established behavioral instrument for gender identity. Using canonical correlation analyses, functional brain measurements and questionnaire data were then integrated to delineate nine canonical vectors (i.e., brain-gender axes), providing a multilevel window into the conventional sex dichotomy. Our dimensional gender perspective captures four distinguishable brain phenotypes for gender identity, advocating a biologically grounded reconceptualization of gender dimorphism. We hope to pave the way towards objective, data-driven diagnostic markers for gender identity and transgender, taking into account neurobiological and behavioral differences in an integrative modeling approach.
Collapse
Affiliation(s)
- Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, 52074 Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Wilhelm-Johnen-Straße 52425 Jülich, Germany
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany.,Werner Reichardt Center for Integrative Neuroscience (CIN), University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany.,LEAD Research Network, Walter-Simon-Straße 12, 72072 Tübingen, Germany
| | - Elke Smith
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, 52074 Aachen, Germany.,Department of Psychology, Biological Psychology, University of Cologne, Bernhard-Feilchenfeld-Str. 11, 50969 Cologne, Germany
| | - Jessica Junger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, 52074 Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Wilhelm-Johnen-Straße 52425 Jülich, Germany
| | - Josef Neulen
- Department of Gynecological Endocrinology and Reproductive Medicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Gianluca Mingoia
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Faculty of Medicine, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Frank Schneider
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Wilhelm-Johnen-Straße 52425 Jülich, Germany.,University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Ted Abel
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, United States.,Department of Neuroscience & Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 51 Newton Road 5-660 Bowen Science Building, Iowa City, IA 52242, United States
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, 52074 Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Wilhelm-Johnen-Straße 52425 Jülich, Germany.,Parietal Team, INRIA/Neurospin Saclay, 1 rue Honoré d'Estienne d'Orves, Campus de l'École Polytechnique, 91120 Palaiseau, France.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775, rue University Montréal, QC H3A 2B4, Canada.,Montreal Institute for Learning Algorithms (MILA), 6666 St-Urbain, #200 Montreal, QC H2S 3H1, Canada
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, 52074 Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Wilhelm-Johnen-Straße 52425 Jülich, Germany
| |
Collapse
|
35
|
Jiang R, Zuo N, Ford JM, Qi S, Zhi D, Zhuo C, Xu Y, Fu Z, Bustillo J, Turner JA, Calhoun VD, Sui J. Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships. Neuroimage 2019; 207:116370. [PMID: 31751666 PMCID: PMC7345498 DOI: 10.1016/j.neuroimage.2019.116370] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 02/05/2023] Open
Abstract
Although both resting and task-induced functional connectivity (FC) have been used to characterize the human brain and cognitive abilities, the potential of task-induced FCs in individualized prediction for out-of-scanner cognitive traits remains largely unexplored. A recent study Greene et al. (2018) predicted the fluid intelligence scores using FCs derived from rest and multiple task conditions, suggesting that task-induced brain state manipulation improved prediction of individual traits. Here, using a large dataset incorporating fMRI data from rest and 7 distinct task conditions, we replicated the original study by employing a different machine learning approach, and applying the method to predict two reading comprehension-related cognitive measures. Consistent with their findings, we found that task-based machine learning models often outperformed rest-based models. We also observed that combining multi-task fMRI improved prediction performance, yet, integrating the more fMRI conditions can not necessarily ensure better predictions. Compared with rest, the predictive FCs derived from language and working memory tasks were highlighted with more predictive power in predominantly default mode and frontoparietal networks. Moreover, prediction models demonstrated high stability to be generalizable across distinct cognitive states. Together, this replication study highlights the benefit of using task-based FCs to reveal brain-behavior relationships, which may confer more predictive power and promote the detection of individual differences of connectivity patterns underlying relevant cognitive traits, providing strong evidence for the validity and robustness of the original findings.
Collapse
Affiliation(s)
- Rongtao Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nianming Zuo
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Judith M Ford
- Department of Psychiatry, University of California, San Francisco, CA, 94143, USA; San Francisco VA Medical Center, San Francisco, CA, 94143, USA
| | - Shile Qi
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA, 30303
| | - Dongmei Zhi
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Anding Hospital, Tianjin Mental Health Center, Tianjin, 300222, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA, 30303
| | - Juan Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jessica A Turner
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA, 30303; Department of Psychology and Neuroscience, Georgia State University, Atlanta, GA, 30302, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA, 30303.
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA, 30303; Chinese Academy of Sciences Center for Excellence in Brain Science, Institute of Automation, Beijing, China.
| |
Collapse
|
36
|
de la Vega A, Yarkoni T, Wager TD, Banich MT. Large-scale Meta-analysis Suggests Low Regional Modularity in Lateral Frontal Cortex. Cereb Cortex 2019; 28:3414-3428. [PMID: 28968758 DOI: 10.1093/cercor/bhx204] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/20/2017] [Indexed: 01/24/2023] Open
Abstract
Extensive fMRI study of human lateral frontal cortex (LFC) has yet to yield a consensus mapping between discrete anatomy and psychological states, partly due to the difficulty of inferring mental states from brain activity. Despite this, there have been few large-scale efforts to map the full range of psychological states across the entirety of LFC. Here, we used a data-driven approach to generate a comprehensive functional-anatomical mapping of LFC from 11 406 neuroimaging studies. We identified putatively separable LFC regions on the basis of whole-brain co-activation, revealing 14 clusters organized into 3 whole-brain networks. Next, we generated functional preference profiles by using multivariate classification to identify the psychological states that best predicted activity within each cluster. We observed large functional differences between networks, suggesting brain networks support distinct modes of processing. Within each network, however, we observed relatively low functional specificity, suggesting discrete psychological states are not strongly localized to individual regions; instead, our results are consistent with the view that individual LFC regions work as part of distributed networks to give rise to flexible behavior. Collectively, our results provide a comprehensive synthesis of a diverse neuroimaging literature using relatively unbiased data-driven methods.
Collapse
Affiliation(s)
- Alejandro de la Vega
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.,Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Tal Yarkoni
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
37
|
Li J, Bolt T, Bzdok D, Nomi JS, Yeo BTT, Spreng RN, Uddin LQ. Topography and behavioral relevance of the global signal in the human brain. Sci Rep 2019; 9:14286. [PMID: 31582792 PMCID: PMC6776616 DOI: 10.1038/s41598-019-50750-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 11/09/2022] Open
Abstract
The global signal in resting-state functional MRI data is considered to be dominated by physiological noise and artifacts, yet a growing literature suggests that it also carries information about widespread neural activity. The biological relevance of the global signal remains poorly understood. Applying principal component analysis to a large neuroimaging dataset, we found that individual variation in global signal topography recapitulates well-established patterns of large-scale functional brain networks. Using canonical correlation analysis, we delineated relationships between individual differences in global signal topography and a battery of phenotypes. The first canonical variate of the global signal, resembling the frontoparietal control network, was significantly related to an axis of positive and negative life outcomes and psychological function. These results suggest that the global signal contains a rich source of information related to trait-level cognition and behavior. This work has significant implications for the contentious debate over artifact removal practices in neuroimaging.
Collapse
Affiliation(s)
- Jingwei Li
- ECE, CIRC, N.1 & MNP, National University of Singapore, Singapore, Singapore
| | - Taylor Bolt
- Data Science Division, Gallup, Atlanta, GA, USA
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, Aachen University, Aachen, Germany.,JARA, Translational Brain Medicine, Aachen, Germany.,Parietal Team, INRIA, Neurospin, bat 145, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - B T Thomas Yeo
- ECE, CIRC, N.1 & MNP, National University of Singapore, Singapore, Singapore
| | - R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada. .,Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada.
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA. .,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
38
|
Karrer TM, Bassett DS, Derntl B, Gruber O, Aleman A, Jardri R, Laird AR, Fox PT, Eickhoff SB, Grisel O, Varoquaux G, Thirion B, Bzdok D. Brain-based ranking of cognitive domains to predict schizophrenia. Hum Brain Mapp 2019; 40:4487-4507. [PMID: 31313451 DOI: 10.1002/hbm.24716] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/10/2019] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a devastating brain disorder that disturbs sensory perception, motor action, and abstract thought. Its clinical phenotype implies dysfunction of various mental domains, which has motivated a series of theories regarding the underlying pathophysiology. Aiming at a predictive benchmark of a catalog of cognitive functions, we developed a data-driven machine-learning strategy and provide a proof of principle in a multisite clinical dataset (n = 324). Existing neuroscientific knowledge on diverse cognitive domains was first condensed into neurotopographical maps. We then examined how the ensuing meta-analytic cognitive priors can distinguish patients and controls using brain morphology and intrinsic functional connectivity. Some affected cognitive domains supported well-studied directions of research on auditory evaluation and social cognition. However, rarely suspected cognitive domains also emerged as disease relevant, including self-oriented processing of bodily sensations in gustation and pain. Such algorithmic charting of the cognitive landscape can be used to make targeted recommendations for future mental health research.
Collapse
Affiliation(s)
- Teresa M Karrer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Birgit Derntl
- Translational Brain Medicine, Jülich Aachen Research Alliance (JARA), Aachen, Germany.,Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oliver Gruber
- Department of Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - André Aleman
- BCN Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Renaud Jardri
- Division of Psychiatry, University of Lille, CNRS UMR 9193, SCALab and CHU Lille, Fontan Hospital, Lille, France
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, Florida
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas.,South Texas Veterans Health Care System, San Antonio, Texas.,State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Olivier Grisel
- Parietal Team, INRIA Saclay/NeuroSpin, Palaiseau, France
| | - Gaël Varoquaux
- Parietal Team, INRIA Saclay/NeuroSpin, Palaiseau, France
| | | | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.,Translational Brain Medicine, Jülich Aachen Research Alliance (JARA), Aachen, Germany.,Parietal Team, INRIA Saclay/NeuroSpin, Palaiseau, France
| |
Collapse
|
39
|
Gilson M, Kouvaris NE, Deco G, Mangin JF, Poupon C, Lefranc S, Rivière D, Zamora-López G. Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability. Neuroimage 2019; 201:116007. [PMID: 31306771 DOI: 10.1016/j.neuroimage.2019.116007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 11/26/2022] Open
Abstract
Neuroimaging techniques such as MRI have been widely used to explore the associations between brain areas. Structural connectivity (SC) captures the anatomical pathways across the brain and functional connectivity (FC) measures the correlation between the activity of brain regions. These connectivity measures have been much studied using network theory in order to uncover the distributed organization of brain structures, in particular FC for task-specific brain communication. However, the application of network theory to study FC matrices is often "static" despite the dynamic nature of time series obtained from fMRI. The present study aims to overcome this limitation by introducing a network-oriented analysis applied to whole-brain effective connectivity (EC) useful to interpret the brain dynamics. Technically, we tune a multivariate Ornstein-Uhlenbeck (MOU) process to reproduce the statistics of the whole-brain resting-state fMRI signals, which provides estimates for MOU-EC as well as input properties (similar to local excitabilities). The network analysis is then based on the Green function (or network impulse response) that describes the interactions between nodes across time for the estimated dynamics. This model-based approach provides time-dependent graph-like descriptor, named communicability, that characterize the roles that either nodes or connections play in the propagation of activity within the network. They can be used at both global and local levels, and also enables the comparison of estimates from real data with surrogates (e.g. random network or ring lattice). In contrast to classical graph approaches to study SC or FC, our framework stresses the importance of taking the temporal aspect of fMRI signals into account. Our results show a merging of functional communities over time, moving from segregated to global integration of the network activity. Our formalism sets a solid ground for the analysis and interpretation of fMRI data, including task-evoked activity.
Collapse
Affiliation(s)
- Matthieu Gilson
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas 25-27, Barcelona, 08005, Spain.
| | - Nikos E Kouvaris
- Namur Institute for Complex Systems (naXys), Department of Mathematics, University of Namur, Rempart de la Vierge 8, B 5000, Namur, Belgium; DRIBIA Data Research S.L., Barcelona, Spain
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas 25-27, Barcelona, 08005, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | | | - Cyril Poupon
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, 91191, France
| | - Sandrine Lefranc
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, 91191, France
| | - Denis Rivière
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, 91191, France
| | - Gorka Zamora-López
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas 25-27, Barcelona, 08005, Spain
| |
Collapse
|
40
|
Bijsterbosch JD, Beckmann CF, Woolrich MW, Smith SM, Harrison SJ. The relationship between spatial configuration and functional connectivity of brain regions revisited. eLife 2019; 8:e44890. [PMID: 31066676 PMCID: PMC6541435 DOI: 10.7554/elife.44890] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/07/2019] [Indexed: 11/29/2022] Open
Abstract
Previously we showed that network-based modelling of brain connectivity interacts strongly with the shape and exact location of brain regions, such that cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity (Bijsterbosch et al., 2018). Here we show that these spatial effects on connectivity estimates actually occur as a result of spatial overlap between brain networks. This is shown to systematically bias connectivity estimates obtained from group spatial ICA followed by dual regression. We introduce an extended method that addresses the bias and achieves more accurate connectivity estimates.
Collapse
Affiliation(s)
- Janine Diane Bijsterbosch
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Christian F Beckmann
- Donders Institute, Department of Cognitive NeurosciencesRadboud University Medical CentreNijmegenNetherlands
| | - Mark W Woolrich
- Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUnited Kingdom
| | - Stephen M Smith
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Samuel J Harrison
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
41
|
Elliott ML, Knodt AR, Cooke M, Kim MJ, Melzer TR, Keenan R, Ireland D, Ramrakha S, Poulton R, Caspi A, Moffitt TE, Hariri AR. General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. Neuroimage 2019; 189:516-532. [PMID: 30708106 PMCID: PMC6462481 DOI: 10.1016/j.neuroimage.2019.01.068] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 01/15/2023] Open
Abstract
Intrinsic connectivity, measured using resting-state fMRI, has emerged as a fundamental tool in the study of the human brain. However, due to practical limitations, many studies do not collect enough resting-state data to generate reliable measures of intrinsic connectivity necessary for studying individual differences. Here we present general functional connectivity (GFC) as a method for leveraging shared features across resting-state and task fMRI and demonstrate in the Human Connectome Project and the Dunedin Study that GFC offers better test-retest reliability than intrinsic connectivity estimated from the same amount of resting-state data alone. Furthermore, at equivalent scan lengths, GFC displayed higher estimates of heritability than resting-state functional connectivity. We also found that predictions of cognitive ability from GFC generalized across datasets, performing as well or better than resting-state or task data alone. Collectively, our work suggests that GFC can improve the reliability of intrinsic connectivity estimates in existing datasets and, subsequently, the opportunity to identify meaningful correlates of individual differences in behavior. Given that task and resting-state data are often collected together, many researchers can immediately derive more reliable measures of intrinsic connectivity through the adoption of GFC rather than solely using resting-state data. Moreover, by better capturing heritable variation in intrinsic connectivity, GFC represents a novel endophenotype with broad applications in clinical neuroscience and biomarker discovery.
Collapse
Affiliation(s)
- Maxwell L Elliott
- Department of Psychology & Neuroscience, Duke University, Box 104410, Durham, NC, 27708, USA.
| | - Annchen R Knodt
- Department of Psychology & Neuroscience, Duke University, Box 104410, Durham, NC, 27708, USA
| | - Megan Cooke
- Department of Psychology & Neuroscience, Duke University, Box 104410, Durham, NC, 27708, USA
| | - M Justin Kim
- Department of Psychology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Tracy R Melzer
- New Zealand Brain Research Institute, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Ross Keenan
- New Zealand Brain Research Institute, Christchurch, New Zealand; Christchurch Radiology Group, Christchurch, New Zealand
| | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, 163 Union St E, Dunedin, 9016, New Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, 163 Union St E, Dunedin, 9016, New Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, 163 Union St E, Dunedin, 9016, New Zealand
| | - Avshalom Caspi
- Department of Psychology & Neuroscience, Duke University, Box 104410, Durham, NC, 27708, USA; Social, Genetic, & Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK; Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27708, USA; Center for Genomic and Computational Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Terrie E Moffitt
- Department of Psychology & Neuroscience, Duke University, Box 104410, Durham, NC, 27708, USA; Social, Genetic, & Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK; Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27708, USA; Center for Genomic and Computational Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Ahmad R Hariri
- Department of Psychology & Neuroscience, Duke University, Box 104410, Durham, NC, 27708, USA
| |
Collapse
|
42
|
Jackson RL, Cloutman LL, Lambon Ralph MA. Exploring distinct default mode and semantic networks using a systematic ICA approach. Cortex 2019; 113:279-297. [PMID: 30716610 PMCID: PMC6459395 DOI: 10.1016/j.cortex.2018.12.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/26/2018] [Accepted: 12/22/2018] [Indexed: 11/20/2022]
Abstract
Resting-state networks (RSNs; groups of regions consistently co-activated without an explicit task) are hugely influential in modern brain research. Despite this popularity, the link between specific RSNs and their functions remains elusive, limiting the impact on cognitive neuroscience (where the goal is to link cognition to neural systems). Here we present a series of logical steps to formally test the relationship between a coherent RSN with a cognitive domain. This approach is applied to a challenging and significant test-case; extracting a recently-proposed semantic RSN, determining its relation with a well-known RSN, the default mode network (DMN), and assessing their roles in semantic cognition. Results showed the DMN and semantic network are two distinct coherent RSNs. Assessing the cognitive signature of these spatiotemporally coherent networks directly (and therefore accounting for overlapping networks) showed involvement of the proposed semantic network, but not the DMN, in task-based semantic cognition. Following the steps presented here, researchers could formally test specific hypotheses regarding the function of RSNs, including other possible functions of the DMN.
Collapse
Affiliation(s)
- Rebecca L Jackson
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Lauren L Cloutman
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology (Zochonis Building), University of Manchester, Manchester, UK
| | | |
Collapse
|
43
|
Pinho AL, Amadon A, Ruest T, Fabre M, Dohmatob E, Denghien I, Ginisty C, Becuwe-Desmidt S, Roger S, Laurier L, Joly-Testault V, Médiouni-Cloarec G, Doublé C, Martins B, Pinel P, Eger E, Varoquaux G, Pallier C, Dehaene S, Hertz-Pannier L, Thirion B. Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping. Sci Data 2018; 5:180105. [PMID: 29893753 PMCID: PMC5996851 DOI: 10.1038/sdata.2018.105] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/23/2018] [Indexed: 01/11/2023] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) has furthered brain mapping on perceptual, motor, as well as higher-level cognitive functions. However, to date, no data collection has systematically addressed the functional mapping of cognitive mechanisms at a fine spatial scale. The Individual Brain Charting (IBC) project stands for a high-resolution multi-task fMRI dataset that intends to provide the objective basis toward a comprehensive functional atlas of the human brain. The data refer to a cohort of 12 participants performing many different tasks. The large amount of task-fMRI data on the same subjects yields a precise mapping of the underlying functions, free from both inter-subject and inter-site variability. The present article gives a detailed description of the first release of the IBC dataset. It comprises a dozen of tasks, addressing both low- and high- level cognitive functions. This openly available dataset is thus intended to become a reference for cognitive brain mapping.
Collapse
Affiliation(s)
- Ana Luísa Pinho
- Parietal Team, Inria, Saclay, France
- Neurospin, CEA, Saclay, France
- Paris-Saclay University, Paris, France
| | | | - Torsten Ruest
- Parietal Team, Inria, Saclay, France
- Neurospin, CEA, Saclay, France
- Paris-Saclay University, Paris, France
| | - Murielle Fabre
- Neurospin, CEA, Saclay, France
- Paris-Saclay University, Paris, France
- Cognitive Neuroimaging Unit, Saclay, France
- INSERM, Paris, France
- Paris-Sud University, Paris, France
| | - Elvis Dohmatob
- Parietal Team, Inria, Saclay, France
- Neurospin, CEA, Saclay, France
- Paris-Saclay University, Paris, France
| | - Isabelle Denghien
- Neurospin, CEA, Saclay, France
- Paris-Saclay University, Paris, France
- Cognitive Neuroimaging Unit, Saclay, France
- INSERM, Paris, France
- Paris-Sud University, Paris, France
| | | | | | - Séverine Roger
- Neurospin, CEA, Saclay, France
- UNIACT-U1129, Paris, France
| | | | | | | | | | | | | | - Evelyn Eger
- Neurospin, CEA, Saclay, France
- Paris-Saclay University, Paris, France
- Cognitive Neuroimaging Unit, Saclay, France
- INSERM, Paris, France
- Paris-Sud University, Paris, France
| | - Gaël Varoquaux
- Parietal Team, Inria, Saclay, France
- Neurospin, CEA, Saclay, France
- Paris-Saclay University, Paris, France
| | - Christophe Pallier
- Neurospin, CEA, Saclay, France
- Paris-Saclay University, Paris, France
- Cognitive Neuroimaging Unit, Saclay, France
- INSERM, Paris, France
- Paris-Sud University, Paris, France
| | - Stanislas Dehaene
- Neurospin, CEA, Saclay, France
- Paris-Saclay University, Paris, France
- Cognitive Neuroimaging Unit, Saclay, France
- INSERM, Paris, France
- Paris-Sud University, Paris, France
- Collège de France, Paris, France
| | - Lucie Hertz-Pannier
- Neurospin, CEA, Saclay, France
- INSERM, Paris, France
- UNIACT-U1129, Paris, France
- Paris Descartes University, Paris, France
| | - Bertrand Thirion
- Parietal Team, Inria, Saclay, France
- Neurospin, CEA, Saclay, France
- Paris-Saclay University, Paris, France
| |
Collapse
|
44
|
Lefort‐Besnard J, Bassett DS, Smallwood J, Margulies DS, Derntl B, Gruber O, Aleman A, Jardri R, Varoquaux G, Thirion B, Eickhoff SB, Bzdok D. Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function. Hum Brain Mapp 2018; 39:644-661. [PMID: 29105239 PMCID: PMC5764781 DOI: 10.1002/hbm.23870] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a devastating mental disease with an apparent disruption in the highly associative default mode network (DMN). Interplay between this canonical network and others probably contributes to goal-directed behavior so its disturbance is a candidate neural fingerprint underlying schizophrenia psychopathology. Previous research has reported both hyperconnectivity and hypoconnectivity within the DMN, and both increased and decreased DMN coupling with the multimodal saliency network (SN) and dorsal attention network (DAN). This study systematically revisited network disruption in patients with schizophrenia using data-derived network atlases and multivariate pattern-learning algorithms in a multisite dataset (n = 325). Resting-state fluctuations in unconstrained brain states were used to estimate functional connectivity, and local volume differences between individuals were used to estimate structural co-occurrence within and between the DMN, SN, and DAN. In brain structure and function, sparse inverse covariance estimates of network coupling were used to characterize healthy participants and patients with schizophrenia, and to identify statistically significant group differences. Evidence did not confirm that the backbone of the DMN was the primary driver of brain dysfunction in schizophrenia. Instead, functional and structural aberrations were frequently located outside of the DMN core, such as in the anterior temporoparietal junction and precuneus. Additionally, functional covariation analyses highlighted dysfunctional DMN-DAN coupling, while structural covariation results highlighted aberrant DMN-SN coupling. Our findings reframe the role of the DMN core and its relation to canonical networks in schizophrenia. We thus underline the importance of large-scale neural interactions as effective biomarkers and indicators of how to tailor psychiatric care to single patients.
Collapse
Affiliation(s)
- Jérémy Lefort‐Besnard
- Department of Psychiatry, Psychotherapy, and PsychosomaticsRWTH Aachen UniversityGermany
| | - Danielle S. Bassett
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | | | - Daniel S. Margulies
- Max Planck Research Group for Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig04103Germany
| | - Birgit Derntl
- Department of Psychiatry, Psychotherapy, and PsychosomaticsRWTH Aachen UniversityGermany
- Jülich Aachen Research Alliance (JARA) — Translational Brain MedicineAachenGermany
- Department of Psychiatry and PsychotherapyUniversity of TübingenGermany
| | - Oliver Gruber
- Department of PsychiatryUniversity of HeidelbergGermany
| | - Andre Aleman
- BCN Neuroimaging Center, University Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Renaud Jardri
- Division of PsychiatryUniversity of Lille, CNRS UMR9193, SCALab & CHU Lille, Fontan Hospital, CURE platformLille59000France
| | | | | | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Heinrich‐Heine UniversityDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7), Research Centre Jülich52425Germany
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy, and PsychosomaticsRWTH Aachen UniversityGermany
- Jülich Aachen Research Alliance (JARA) — Translational Brain MedicineAachenGermany
- Parietal Team, INRIA/Neurospin SaclayFrance
| |
Collapse
|
45
|
Wang HT, Poerio G, Murphy C, Bzdok D, Jefferies E, Smallwood J. Dimensions of Experience: Exploring the Heterogeneity of the Wandering Mind. Psychol Sci 2018; 29:56-71. [PMID: 29131720 PMCID: PMC6346304 DOI: 10.1177/0956797617728727] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 08/01/2017] [Indexed: 01/27/2023] Open
Abstract
The tendency for the mind to wander to concerns other than the task at hand is a fundamental feature of human cognition, yet the consequences of variations in its experiential content for psychological functioning are not well understood. Here, we adopted multivariate pattern analysis to simultaneously decompose experience-sampling data and neural functional-connectivity data, which revealed dimensions that simultaneously describe individual variation in self-reported experience and default-mode-network connectivity. We identified dimensions corresponding to traits of positive-habitual thoughts and spontaneous task-unrelated thoughts. These dimensions were uniquely related to aspects of cognition, such as executive control and the ability to generate information in a creative fashion, and independently distinguished well-being measures. These data provide the most convincing evidence to date for an ontological view of the mind-wandering state as encompassing a broad range of different experiences and show that this heterogeneity underlies mind wandering's complex relationship to psychological functioning.
Collapse
Affiliation(s)
| | | | | | - Danilo Bzdok
- Department of Psychiatry, Aachen
University
- JARA-BRAIN, Jülich-Aachen Research
Alliance, Frankfurt am Main, Germany
- Parietal Team, INRIA, Neurospin,
Gif-sur-Yvette, France
| | | | | |
Collapse
|
46
|
Rubin TN, Koyejo O, Gorgolewski KJ, Jones MN, Poldrack RA, Yarkoni T. Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition. PLoS Comput Biol 2017; 13:e1005649. [PMID: 29059185 PMCID: PMC5683652 DOI: 10.1371/journal.pcbi.1005649] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/13/2017] [Accepted: 06/26/2017] [Indexed: 01/28/2023] Open
Abstract
A central goal of cognitive neuroscience is to decode human brain activity—that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive—that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model—Generalized Correspondence Latent Dirichlet Allocation—that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to “seed” decoder priors with arbitrary images and text—enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity. A central goal of cognitive neuroscience is to decode human brain activity—i.e., to be able to infer mental processes from observed patterns of whole-brain activity. However, existing approaches to brain decoding suffer from a number of important limitations—for example, they often work only in one narrow domain of cognition, and cannot be easily generalized to novel contexts. Here we address such limitations by introducing a simple probabilistic framework based on a novel topic modeling approach. We use our approach to extract a set of highly interpretable latent “topics” from a large meta-analytic database of over 11,000 published fMRI studies. Each topic is associated with a single brain region and a set of semantically coherent cognitive functions. We demonstrate how these topics can be used to automatically “decode” brain activity in an open-ended way, enabling researchers to draw tentative conclusions about mental function on the basis of virtually any pattern of whole-brain activity. We highlight several important features of our framework, notably including the ability to take into account knowledge of the experimental context and/or prior experimenter belief.
Collapse
Affiliation(s)
- Timothy N. Rubin
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States of America
- SurveyMonkey, San Mateo, CA, United States of America
| | - Oluwasanmi Koyejo
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Department of Psychology, Stanford University, Stanford, CA, United States of America
| | | | - Michael N. Jones
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States of America
| | - Russell A. Poldrack
- Department of Psychology, Stanford University, Stanford, CA, United States of America
| | - Tal Yarkoni
- Department of Psychology, University of Texas at Austin, Austin, TX, United States of America
- * E-mail:
| |
Collapse
|
47
|
Bzdok D. Classical Statistics and Statistical Learning in Imaging Neuroscience. Front Neurosci 2017; 11:543. [PMID: 29056896 PMCID: PMC5635056 DOI: 10.3389/fnins.2017.00543] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
Brain-imaging research has predominantly generated insight by means of classical statistics, including regression-type analyses and null-hypothesis testing using t-test and ANOVA. Throughout recent years, statistical learning methods enjoy increasing popularity especially for applications in rich and complex data, including cross-validated out-of-sample prediction using pattern classification and sparsity-inducing regression. This concept paper discusses the implications of inferential justifications and algorithmic methodologies in common data analysis scenarios in neuroimaging. It is retraced how classical statistics and statistical learning originated from different historical contexts, build on different theoretical foundations, make different assumptions, and evaluate different outcome metrics to permit differently nuanced conclusions. The present considerations should help reduce current confusion between model-driven classical hypothesis testing and data-driven learning algorithms for investigating the brain with imaging techniques.
Collapse
Affiliation(s)
- Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Translational Brain Medicine, Jülich-Aachen Research Alliance (JARA), Aachen, Germany.,Parietal Team, Institut National de Recherche en Informatique et en Automatique (INRIA), Gif-sur-Yvette, France
| |
Collapse
|
48
|
Bzdok D, Varoquaux G, Thirion B. Neuroimaging Research: From Null-Hypothesis Falsification to Out-of-Sample Generalization. EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT 2017; 77:868-880. [PMID: 29795936 PMCID: PMC5965634 DOI: 10.1177/0013164416667982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brain-imaging technology has boosted the quantification of neurobiological phenomena underlying human mental operations and their disturbances. Since its inception, drawing inference on neurophysiological effects hinged on classical statistical methods, especially, the general linear model. The tens of thousands of variables per brain scan were routinely tackled by independent statistical tests on each voxel. This circumvented the curse of dimensionality in exchange for neurobiologically imperfect observation units, a challenging multiple comparisons problem, and limited scaling to currently growing data repositories. Yet, the always bigger information granularity of neuroimaging data repositories has lunched a rapidly increasing adoption of statistical learning algorithms. These scale naturally to high-dimensional data, extract models from data rather than prespecifying them, and are empirically evaluated for extrapolation to unseen data. The present article portrays commonalities and differences between long-standing classical inference and upcoming generalization inference relevant for conducting neuroimaging research.
Collapse
Affiliation(s)
- Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA, Translational Brain Medicine, Aachen, Germany
- INRIA, Neurospin, Gif-sur-Yvette, Paris, France
| | | | | |
Collapse
|
49
|
Vatansever D, Bzdok D, Wang HT, Mollo G, Sormaz M, Murphy C, Karapanagiotidis T, Smallwood J, Jefferies E. Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour. Neuroimage 2017; 158:1-11. [DOI: 10.1016/j.neuroimage.2017.06.067] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/11/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022] Open
|
50
|
Hartogsveld B, Bramson B, Vijayakumar S, van Campen AD, Marques JP, Roelofs K, Toni I, Bekkering H, Mars RB. Lateral frontal pole and relational processing: Activation patterns and connectivity profile. Behav Brain Res 2017; 355:2-11. [PMID: 28811179 DOI: 10.1016/j.bbr.2017.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/06/2017] [Accepted: 08/02/2017] [Indexed: 01/23/2023]
Abstract
The functional contribution of the lateral frontal cortex to behavior has been discussed with reference to several higher-order cognitive domains. In a separate line of research, recent studies have focused on the anatomical organization of this part of the brain. These different approaches are rarely combined. Here, we combine previous work using anatomical connectivity that identified a lateral subdivision of the human frontal pole and work that suggested a general role for rostrolateral prefrontal cortex in processing higher-order relations, irrespective of the type of information. We asked healthy human volunteers to judge the relationship between pairs of stimuli, a task previously suggested to engage the lateral frontal pole. Presenting both shape and face stimuli, we indeed observed overlapping activation of the lateral prefrontal cortex when subjects judged relations between pairs. Using resting state functional MRI, we confirmed that the activated region's whole-brain connectivity most strongly resembles that of the lateral frontal pole. Using diffusion MRI, we showed that the pattern of connections of this region with the main association fibers again is most similar to that of the lateral frontal pole, consistent with the observation that it is this anatomical region that is involved in relational processing.
Collapse
Affiliation(s)
- Bart Hartogsveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Bob Bramson
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Suhas Vijayakumar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - A Dilene van Campen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Harold Bekkering
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EZ Nijmegen, The Netherlands; Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|