1
|
Majumder S, Gupta A, Das A, Barui A, Das M, Chowdhury AR. Comparing the bone regeneration potential between a trabecular bone and a porous scaffold through osteoblast migration and differentiation: A multiscale approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3821. [PMID: 38637289 DOI: 10.1002/cnm.3821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Both cell migration and osteogenic differentiation are critical for successful bone regeneration. Therefore, understanding the mechanobiological aspects that govern these two processes is essential in designing effective scaffolds that promote faster bone regeneration. Studying these two factors at different locations is necessary to manage bone regeneration in various sections of a scaffold. Hence, a multiscale computational model was used to observe the mechanical responses of osteoblasts placed in different positions of the trabecular bone and gyroid scaffold. Fluid shear stresses in scaffolds at cell seeded locations (representing osteogenic differentiation) and strain energy densities in cells at cell substrate interface (representing cell migration) were observed as mechanical response parameters in this study. Comparison of these responses, as two critical factors for bone regeneration, between the trabecular bone and gyroid scaffold at different locations, is the overall goal of the study. This study reveals that the gyroid scaffold exhibits higher osteogenic differentiation and cell migration potential compared to the trabecular bone. However, the responses in the gyroid only mimic the trabecular bone in two out of nine positions. These findings can guide us in predicting the ideal cell seeded sites within a scaffold for better bone regeneration and in replicating a replaced bone condition by altering the physical parameters of a scaffold.
Collapse
Affiliation(s)
- Santanu Majumder
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Abhisek Gupta
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Mitun Das
- Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, Kolkata, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Howrah, India
| |
Collapse
|
2
|
Allenby MC, Woodruff MA. Image analyses for engineering advanced tissue biomanufacturing processes. Biomaterials 2022; 284:121514. [DOI: 10.1016/j.biomaterials.2022.121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
3
|
Zhao F, Xiong Y, Ito K, van Rietbergen B, Hofmann S. Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 9:736489. [PMID: 34595161 PMCID: PMC8476750 DOI: 10.3389/fbioe.2021.736489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent - assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
4
|
Cdkn1a deletion or suppression by cyclic stretch enhance the osteogenic potential of bone marrow mesenchymal stem cell-derived cultures. Stem Cell Res 2021; 56:102513. [PMID: 34517335 DOI: 10.1016/j.scr.2021.102513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
CDKN1A/P21 is a potent inhibitor of cell cycle progression and its overexpression is thought to be associated with inhibition of normal bone regenerative osteogenesis during spaceflight. To test whether CDKN1A/P21 regulates osteogenesis in response to mechanical loading we studied cyclic stretch versus static culture of Cdkn1a-/- (null) or wildtype primary mouse bone marrow osteoprogenitors during 21-day ex-vivo mineralization assays. Cyclically stretched Cdkn1a-/- cells are 3.95-fold more proliferative than wildtype, while static Cdkn1a-/- cells show a 2.50-fold increase. Furthermore, stage-specific single cell RNAseq analyses show expression of Cdkn1a is strongly suppressed by cyclic stretch in early and late osteoblasts, and minimally in the progenitor population. Lastly, both stretch and/or Cdkn1a deletion cause population shift from osteoprogenitors to osteoblasts, also indicating increased differentiation. Collectively, our results support the hypothesis that Cdkn1a constitutively plays a mechano-reversible anti-proliferative role during osteogenesis and suggests a new molecular target to counter regenerative deficits caused by disuse.
Collapse
|
5
|
Thiels W, Smeets B, Cuvelier M, Caroti F, Jelier R. spheresDT/Mpacts-PiCS: Cell Tracking and Shape Retrieval in Membrane-labeled Embryos. Bioinformatics 2021; 37:4851-4856. [PMID: 34329378 PMCID: PMC8665764 DOI: 10.1093/bioinformatics/btab557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation Uncovering the cellular and mechanical processes that drive embryo formation requires an accurate read out of cell geometries over time. However, automated extraction of 3D cell shapes from time-lapse microscopy remains challenging, especially when only membranes are labeled. Results We present an image analysis framework for automated tracking and three-dimensional cell segmentation in confocal time lapses. A sphere clustering approach allows for local thresholding and application of logical rules to facilitate tracking and unseeded segmentation of variable cell shapes. Next, the segmentation is refined by a discrete element method simulation where cell shapes are constrained by a biomechanical cell shape model. We apply the framework on Caenorhabditis elegans embryos in various stages of early development and analyze the geometry of the 7- and 8-cell stage embryo, looking at volume, contact area and shape over time. Availability and implementation The Python code for the algorithm and for measuring performance, along with all data needed to recreate the results is freely available at 10.5281/zenodo.5108416 and 10.5281/zenodo.4540092. The most recent version of the software is maintained at https://bitbucket.org/pgmsembryogenesis/sdt-pics. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wim Thiels
- CMPG, KU Leuven, Heverlee, 3001, Belgium
| | | | | | | | - Rob Jelier
- CMPG, KU Leuven, Heverlee, 3001, Belgium
| |
Collapse
|
6
|
Allenby MC, Okutsu N, Brailey K, Guasch J, Zhang Q, Panoskaltsis N, Mantalaris A. A spatiotemporal microenvironment model to improve design of a 3D bioreactor for red cell production. Tissue Eng Part A 2021; 28:38-53. [PMID: 34130508 DOI: 10.1089/ten.tea.2021.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular microenvironments provide stimuli including paracrine and autocrine growth factors and physico-chemical cues, which support efficient in vivo cell production unmatched by current in vitro biomanufacturing platforms. While three-dimensional (3D) culture systems aim to recapitulate niche architecture and function of the target tissue/organ, they are limited in accessing spatiotemporal information to evaluate and optimize in situ cell/tissue process development. Herein, a mathematical modelling framework is parameterized by single-cell phenotypic imaging and multiplexed biochemical assays to simulate the non-uniform tissue distribution of nutrients/metabolites and growth factors in cell niche environments. This model is applied to a bone marrow mimicry 3D perfusion bioreactor containing dense stromal and hematopoietic tissue with limited red blood cell (RBC) egress. The model characterized an imbalance between endogenous cytokine production and nutrient starvation within the microenvironmental niches, and recommended increased cell inoculum density and enhanced medium exchange, guiding the development of a miniaturized prototype bioreactor. The second-generation prototype improved the distribution of nutrients and growth factors and supported a 50-fold increase in RBC production efficiency. This image-informed bioprocess modelling framework leverages spatiotemporal niche information to enhance biochemical factor utilization and improve cell manufacturing in 3D systems.
Collapse
Affiliation(s)
- Mark Colin Allenby
- Queensland University of Technology, 1969, Institute of Health and Biomedical Innovation (IHBI), Kelvin Grove, Queensland, Australia.,Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Naoki Okutsu
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Kate Brailey
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Joana Guasch
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Qiming Zhang
- Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Nicki Panoskaltsis
- Emory University, 1371, Winship Cancer Institute, Department of Hematology & Medical Oncology, Atlanta, Georgia, United States.,Imperial College London, 4615, Department of Haematology, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Athanasios Mantalaris
- Georgia Institute of Technology, 1372, BME, Atlanta, Georgia, United States.,Imperial College London, 4615, Department of Chemical Engineering, London, London, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
7
|
Ristori T, Sjöqvist M, Sahlgren CM. Ex Vivo Models to Decipher the Molecular Mechanisms of Genetic Notch Cardiovascular Disorders. Tissue Eng Part C Methods 2021; 27:167-176. [PMID: 33403934 PMCID: PMC7984653 DOI: 10.1089/ten.tec.2020.0327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Notch is an evolutionary, conserved, cell-cell signaling pathway that is central to several biological processes, from tissue morphogenesis to homeostasis. It is therefore not surprising that several genetic mutations of Notch components cause inherited human diseases, especially cardiovascular disorders. Despite numerous efforts, current in vivo models are still insufficient to unravel the underlying mechanisms of these pathologies, hindering the development of utmost needed medical therapies. In this perspective review, we discuss the limitations of current murine models and outline how the combination of microphysiological systems (MPSs) and targeted computational models can lead to breakthroughs in this field. In particular, while MPSs enable the experimentation on human cells in controlled and physiological environments, in silico models can provide a versatile tool to translate the in vitro findings to the more complex in vivo setting. As a showcase example, we focus on Notch-related cardiovascular diseases, such as Alagille syndrome, Adams-Oliver syndrome, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Impact statement In this review, a comprehensive overview of the limitations of current in vivo models of genetic Notch cardiovascular diseases is provided, followed by a discussion over the potential of microphysiological systems and computational models in overcoming these limitations and in potentiating drug testing and modeling of these pathologies.
Collapse
Affiliation(s)
- Tommaso Ristori
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Marika Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia M. Sahlgren
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| |
Collapse
|
8
|
Zhao F, van Rietbergen B, Ito K, Hofmann S. Fluid flow-induced cell stimulation in bone tissue engineering changes due to interstitial tissue formation in vitro. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3342. [PMID: 32323478 PMCID: PMC7388075 DOI: 10.1002/cnm.3342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 06/01/2023]
Abstract
In tissue engineering experiments in vitro, bioreactors have been used for applying wall shear stress (WSS) on cells to regulate cellular activities. To determine the loading conditions within bioreactors and to design tissue engineering products, in silico models are used. Previous in silico studies in bone tissue engineering (BTE) focused on quantifying the WSS on cells and the influence on appositional tissue growth. However, many BTE experiments also show interstitial tissue formation (i.e., tissue infiltrated in the pores rather than growing on the struts - appositional growth), which has not been considered in previous in silico studies. We hereby used a multiscale fluid-solid interaction model to quantify the WSS and mechanical strain on cells with interstitial tissue formation, taken from a reported BTE experiment. The WSS showed a high variation among different interstitial tissue morphologies. This is different to the situation under appositional tissue growth. It is found that a 35% filling of the pores results (by mineralised bone tissue) when the average WSS increases from 1.530 (day 0) to 5.735 mPa (day 28). Furthermore, the mechanical strain on cells caused by the fluid flow was extremely low (at the level of 10-14 -10-15 ), comparing to the threshold in a previous mechanobiological theory of osteogenesis (eg, 10-2 ). The output from this study offers a significant insight of the WSS changes during interstitial tissue growth under a constant perfusion flow rate in a BTE experiment. It has paved the way for optimising the local micro-fluidic environment for interstitial tissue mineralisation.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenThe Netherlands
- Zienkiewicz Centre for Computational Engineering (ZCCE), College of EngineeringSwansea UniversitySwanseaUnited Kingdom
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenThe Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
9
|
Van Liedekerke P, Neitsch J, Johann T, Warmt E, Gonzàlez-Valverde I, Hoehme S, Grosser S, Kaes J, Drasdo D. A quantitative high-resolution computational mechanics cell model for growing and regenerating tissues. Biomech Model Mechanobiol 2019; 19:189-220. [PMID: 31749071 PMCID: PMC7005086 DOI: 10.1007/s10237-019-01204-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/16/2019] [Indexed: 12/19/2022]
Abstract
Mathematical models are increasingly designed to guide experiments in biology, biotechnology, as well as to assist in medical decision making. They are in particular important to understand emergent collective cell behavior. For this purpose, the models, despite still abstractions of reality, need to be quantitative in all aspects relevant for the question of interest. This paper considers as showcase example the regeneration of liver after drug-induced depletion of hepatocytes, in which the surviving and dividing hepatocytes must squeeze in between the blood vessels of a network to refill the emerged lesions. Here, the cells' response to mechanical stress might significantly impact the regeneration process. We present a 3D high-resolution cell-based model integrating information from measurements in order to obtain a refined and quantitative understanding of the impact of cell-biomechanical effects on the closure of drug-induced lesions in liver. Our model represents each cell individually and is constructed by a discrete, physically scalable network of viscoelastic elements, capable of mimicking realistic cell deformation and supplying information at subcellular scales. The cells have the capability to migrate, grow, and divide, and the nature and parameters of their mechanical elements can be inferred from comparisons with optical stretcher experiments. Due to triangulation of the cell surface, interactions of cells with arbitrarily shaped (triangulated) structures such as blood vessels can be captured naturally. Comparing our simulations with those of so-called center-based models, in which cells have a largely rigid shape and forces are exerted between cell centers, we find that the migration forces a cell needs to exert on its environment to close a tissue lesion, is much smaller than predicted by center-based models. To stress generality of the approach, the liver simulations were complemented by monolayer and multicellular spheroid growth simulations. In summary, our model can give quantitative insight in many tissue organization processes, permits hypothesis testing in silico, and guide experiments in situations in which cell mechanics is considered important.
Collapse
Affiliation(s)
- Paul Van Liedekerke
- Inria Paris & Sorbonne Université LJLL, 2 Rue Simone IFF, 75012, Paris, France. .,IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund, Germany.
| | - Johannes Neitsch
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Tim Johann
- IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund, Germany
| | - Enrico Warmt
- Faculty of Physics and Earth Science, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany.,Institute for Computer Science, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Steffen Grosser
- Faculty of Physics and Earth Science, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
| | - Josef Kaes
- Faculty of Physics and Earth Science, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103, Leipzig, Germany
| | - Dirk Drasdo
- Inria Paris & Sorbonne Université LJLL, 2 Rue Simone IFF, 75012, Paris, France. .,IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund, Germany. .,Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107, Leipzig, Germany.
| |
Collapse
|
10
|
Pearce D, Fischer S, Huda F, Vahdati A. Applications of Computer Modeling and Simulation in Cartilage Tissue Engineering. Tissue Eng Regen Med 2019; 17:1-13. [PMID: 32002838 DOI: 10.1007/s13770-019-00216-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Advances in cartilage tissue engineering have demonstrated noteworthy potential for developing cartilage for implantation onto sites impacted by joint degeneration and injury. To supplement resource-intensive in vivo and in vitro studies required for cartilage tissue engineering, computational models and simulations can assist in enhancing experimental design. METHODS Research articles pertinent to cartilage tissue engineering and computer modeling were identified, reviewed, and summarized. Various applications of computer modeling for cartilage tissue engineering are highlighted, limitations of in silico modeling are addressed, and suggestions for future work are enumerated. RESULTS Computational modeling can help better characterize shear stresses generated by bioreactor fluid flow, refine scaffold geometry, customize the mechanical properties of engineered cartilage tissue, and model rates of cell growth and dynamics. Thus, results from in silico studies can help resourcefully enhance in vitro and in vivo studies; however, the limitations of these studies, such as the underlying assumptions and simplifications applied in each model, should always be addressed and justified where applicable. In silico models should also seek validation and verification when possible. CONCLUSION Future studies may adopt similar approaches to supplement in vitro trials and further investigate effects of mechanical stimulation on chondrocyte and stem cell dynamics. Additionally, as precision medicine, machine learning, and powerful open-source software become more popular and accessible, applications of multi-scale and multiphysics computational models in cartilage tissue engineering are expected to increase.
Collapse
Affiliation(s)
- Daniel Pearce
- Department of Engineering, East Carolina University, 1000 E Fifth Street, Greenville, NC, 27858, USA
| | - Sarah Fischer
- Department of Engineering, East Carolina University, 1000 E Fifth Street, Greenville, NC, 27858, USA.,Department of Biomedical Engineering, University of Stuttgart, Keplerstraße 7, 70174, Stuttgart, Germany
| | - Fatama Huda
- Department of Engineering, East Carolina University, 1000 E Fifth Street, Greenville, NC, 27858, USA
| | - Ali Vahdati
- Department of Engineering, East Carolina University, 1000 E Fifth Street, Greenville, NC, 27858, USA.
| |
Collapse
|
11
|
Zhao F, Melke J, Ito K, van Rietbergen B, Hofmann S. A multiscale computational fluid dynamics approach to simulate the micro-fluidic environment within a tissue engineering scaffold with highly irregular pore geometry. Biomech Model Mechanobiol 2019; 18:1965-1977. [PMID: 31201621 PMCID: PMC6825226 DOI: 10.1007/s10237-019-01188-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Mechanical stimulation can regulate cellular behavior, e.g., differentiation, proliferation, matrix production and mineralization. To apply fluid-induced wall shear stress (WSS) on cells, perfusion bioreactors have been commonly used in tissue engineering experiments. The WSS on cells depends on the nature of the micro-fluidic environment within scaffolds under medium perfusion. Simulating the fluidic environment within scaffolds will be important for gaining a better insight into the actual mechanical stimulation on cells in a tissue engineering experiment. However, biomaterial scaffolds used in tissue engineering experiments typically have highly irregular pore geometries. This complexity in scaffold geometry implies high computational costs for simulating the precise fluidic environment within the scaffolds. In this study, we propose a low-computational cost and feasible technique for quantifying the micro-fluidic environment within the scaffolds, which have highly irregular pore geometries. This technique is based on a multiscale computational fluid dynamics approach. It is demonstrated that this approach can capture the WSS distribution in most regions within the scaffold. Importantly, the central process unit time needed to run the model is considerably low.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Johanna Melke
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands. .,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
12
|
Quantitative cell-based model predicts mechanical stress response of growing tumor spheroids over various growth conditions and cell lines. PLoS Comput Biol 2019; 15:e1006273. [PMID: 30849070 PMCID: PMC6538187 DOI: 10.1371/journal.pcbi.1006273] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 05/28/2019] [Accepted: 10/31/2018] [Indexed: 11/19/2022] Open
Abstract
Model simulations indicate that the response of growing cell populations on mechanical stress follows the same functional relationship and is predictable over different cell lines and growth conditions despite experimental response curves look largely different. We develop a hybrid model strategy in which cells are represented by coarse-grained individual units calibrated with a high resolution cell model and parameterized by measurable biophysical and cell-biological parameters. Cell cycle progression in our model is controlled by volumetric strain, the latter being derived from a bio-mechanical relation between applied pressure and cell compressibility. After parameter calibration from experiments with mouse colon carcinoma cells growing against the resistance of an elastic alginate capsule, the model adequately predicts the growth curve in i) soft and rigid capsules, ii) in different experimental conditions where the mechanical stress is generated by osmosis via a high molecular weight dextran solution, and iii) for other cell types with different growth kinetics from the growth kinetics in absence of external stress. Our model simulation results suggest a generic, even quantitatively same, growth response of cell populations upon externally applied mechanical stress, as it can be quantitatively predicted using the same growth progression function.
Collapse
|
13
|
Burova I, Peticone C, De Silva Thompson D, Knowles JC, Wall I, Shipley RJ. A parameterised mathematical model to elucidate osteoblast cell growth in a phosphate-glass microcarrier culture. J Tissue Eng 2019; 10:2041731419830264. [PMID: 30858965 PMCID: PMC6402060 DOI: 10.1177/2041731419830264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/16/2019] [Indexed: 01/16/2023] Open
Abstract
Tissue engineering has the potential to augment bone grafting. Employing microcarriers as cell-expansion vehicles is a promising bottom-up bone tissue engineering strategy. Here we propose a collaborative approach between experimental work and mathematical modelling to develop protocols for growing microcarrier-based engineered constructs of clinically relevant size. Experiments in 96-well plates characterise cell growth with the model human cell line MG-63 using four phosphate glass microcarrier materials. Three of the materials are doped with 5 mol% TiO2 and contain 0%, 2% or 5% CoO, and the fourth material is doped only with 7% TiO2 (0% CoO). A mathematical model of cell growth is parameterised by finding material-specific growth coefficients through data-fitting against these experiments. The parameterised mathematical model offers more insight into the material performance by comparing culture outcome against clinically relevant criteria: maximising final cell number starting with the lowest cell number in the shortest time frame. Based on this analysis, material 7% TiO2 is identified as the most promising.
Collapse
Affiliation(s)
- Iva Burova
- Department of Mechanical Engineering, University College London, London, UK
| | - Carlotta Peticone
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK.,The Discoveries Centre for Regenerative and Precision Medicine, London, UK.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Ivan Wall
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, UK
| | - Rebecca J Shipley
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
14
|
Olofsson S, Mehrian M, Calandra R, Geris L, Deisenroth MP, Misener R. Bayesian Multiobjective Optimisation With Mixed Analytical and Black-Box Functions: Application to Tissue Engineering. IEEE Trans Biomed Eng 2019; 66:727-739. [DOI: 10.1109/tbme.2018.2855404] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Burova I, Wall I, Shipley RJ. Mathematical and computational models for bone tissue engineering in bioreactor systems. J Tissue Eng 2019; 10:2041731419827922. [PMID: 30834100 PMCID: PMC6391543 DOI: 10.1177/2041731419827922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/01/2019] [Indexed: 01/13/2023] Open
Abstract
Research into cellular engineered bone grafts offers a promising solution to problems associated with the currently used auto- and allografts. Bioreactor systems can facilitate the development of functional cellular bone grafts by augmenting mass transport through media convection and shear flow-induced mechanical stimulation. Developing successful and reproducible protocols for growing bone tissue in vitro is dependent on tuning the bioreactor operating conditions to the specific cell type and graft design. This process, largely reliant on a trial-and-error approach, is challenging, time-consuming and expensive. Modelling can streamline the process by providing further insight into the effect of the bioreactor environment on the cell culture, and by identifying a beneficial range of operational settings to stimulate tissue production. Models can explore the impact of changing flow speeds, scaffold properties, and nutrient and growth factor concentrations. Aiming to act as an introductory reference for bone tissue engineers looking to direct their experimental work, this article presents a comprehensive framework of mathematical models on various aspects of bioreactor bone cultures and overviews modelling case studies from literature.
Collapse
Affiliation(s)
- Iva Burova
- Department of Mechanical Engineering, University College London (UCL), London, UK
| | - Ivan Wall
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Rebecca J Shipley
- Department of Mechanical Engineering, University College London (UCL), London, UK
| |
Collapse
|
16
|
Zhao F, van Rietbergen B, Ito K, Hofmann S. Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro. J Biomech 2018; 79:232-237. [PMID: 30149981 DOI: 10.1016/j.jbiomech.2018.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/28/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022]
Abstract
In bone tissue engineering experiments, fluid-induced shear stress is able to stimulate cells to produce mineralised extracellular matrix (ECM). The application of shear stress on seeded cells can for example be achieved through bioreactors that perfuse medium through porous scaffolds. The generated mechanical environment (i.e. wall shear stress: WSS) within the scaffolds is complex due to the complexity of scaffold geometry. This complexity has so far prevented setting an optimal loading (i.e. flow rate) of the bioreactor to achieve an optimal distribution of WSS for stimulating cells to produce mineralised ECM. In this study, we demonstrate an approach combining computational fluid dynamics (CFD) and mechano-regulation theory to optimise flow rates of a perfusion bioreactor and various scaffold geometries (i.e. pore shape, porosity and pore diameter) in order to maximise shear stress induced mineralisation. The optimal flow rates, under which the highest fraction of scaffold surface area is subjected to a wall shear stress that induces mineralisation, are mainly dependent on the scaffold geometries. Nevertheless, the variation range of such optimal flow rates are within 0.5-5 mL/min (or in terms of fluid velocity: 0.166-1.66 mm/s), among different scaffolds. This approach can facilitate the determination of scaffold-dependent flow rates for bone tissue engineering experiments in vitro, avoiding performing a series of trial and error experiments.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Department of Orthopaedics, UMC Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
17
|
Simulated tissue growth for 3D printed scaffolds. Biomech Model Mechanobiol 2018; 17:1481-1495. [DOI: 10.1007/s10237-018-1040-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
|