1
|
Dainiak N, Albanese J. Medical management of acute radiation syndrome. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:031002. [PMID: 35767939 DOI: 10.1088/1361-6498/ac7d18] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Acute radiation syndrome (ARS) is a clinical syndrome involving four organ systems, resulting in the hematopoietic syndrome (HS), gastrointestinal subsyndrome (GIS), neurovascular subsyndrome (NVS) and cutaneous subsyndrome (CS). Since few healthcare providers have seen an ARS case, evidence-based recommendations are needed to guide medical management in a mass casualty scenario. The authors reviewed recommendations from evidence-based and narrative reviews by expert consultants to the World Health Organisation (WHO), a subsequent review of published HS cases, and infectious disease guidelines for management of febrile neutropenia. The WHO Consultancy applied a rigorous grading system to evaluate treatment strategies described in published ARS cases as of 2009, strategies to manage HS in unirradiated persons, results of ARS studies in animal models of ARS, and recommendations of prior expert panels. Major findings for HS were (a) no randomised controlled studies have been performed, (b) data are restricted by the lack of comparator groups, and (c) reports of countermeasures for management of injury to non-hematopoietic organs are often incomplete. Strength of recommendations ranged from strong to weak. Countermeasures of potential benefit include cytokines and for a subgroup of HS patients, hematopoietic stem cell transplantation. These recommendations did not change in a subsequent analysis of HS cases. Recommendations also included fluoroquinolones, bowel decontamination, serotonin receptor antagonists, loperamide and enteral nutrition for GIS; supportive care for NVS; and topical steroids, antihistamines and antibiotics, and surgical excision/grafting for CS. Also reviewed are critical care management guidelines, the role of mesenchymal stem cells for CS, the potential of a platelet-stimulating cytokine for HS, and the author's approach to clinical management of microbial infections associated with ARS based on published guidelines of infectious disease experts. Today's management of HS is supported by evidence-based guidelines. Management of non-HS subsyndromes is supported by a narrative review of the literature and recommendations of infectious disease societies.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Department of Therapeutic Radiology, Yale University School of Medicine, 15 York Street, New Haven, CT 06520, United States of America
| | - Joseph Albanese
- Department of Therapeutic Radiology, Yale University School of Medicine, 15 York Street, New Haven, CT 06520, United States of America
- Center for Emergency Preparedness and Disaster Response, Yale New Haven Health, 99 Hawley Lane, Stratford, CT 06614, United States of America
| |
Collapse
|
2
|
Shuryak I. Enhancing low-dose risk assessment using mechanistic mathematical models of radiation effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:S1-S13. [PMID: 31292290 DOI: 10.1088/1361-6498/ab3101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mechanistic mathematical modeling of ionizing radiation (IR) effects has a long history spanning several decades. Models that mathematically represent current knowledge and hypotheses about how radiation damages cells and organs, leading to deleterious outcomes such as carcinogenesis, are particularly useful for estimating radiation risks at doses that are relevant for radiation protection, but are too low to provide a strong 'signal-to-noise ratio' in epidemiological or experimental studies with realistic sample sizes. Here, I discuss examples of models in several relevant areas, including radionuclide biokinetics, non-targeted IR effects, DNA double-strand break (DSB) rejoining and radiation carcinogenesis. I do not provide a detailed review of the vast modeling literature in these fields, but focus on concepts that we have implemented, such as using continuous probability distributions of exponential rates to model radionuclide biokinetics and DSB rejoining, and combining short and long time scales in carcinogenesis models. Improvements in models, including the ability to generate new hypotheses based on model predictions, may come from the introduction of additional novel concepts and from integrating multiple data types.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, New York, NY, United States of America
| |
Collapse
|
3
|
Perduca V, Alexandrov LB, Kelly-Irving M, Delpierre C, Omichessan H, Little MP, Vineis P, Severi G. Stem cell replication, somatic mutations and role of randomness in the development of cancer. Eur J Epidemiol 2019; 34:439-445. [PMID: 30623292 PMCID: PMC10654895 DOI: 10.1007/s10654-018-0477-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
An intense scientific debate has recently taken place relating to the "bad luck" hypothesis in cancer development, namely that intrinsic random, and therefore unavoidable, mutagenic events would have a predominant role in tumorigenesis. In this article we review the main contributions to this debate and explain the reasons why the claim that cancer is mostly explained by intrinsic random factors is unsupported by data and theoretical models. In support of this, we present an analysis showing that smoking-induced mutations are more predictive of cancer risk than the lifetime number of stem cell cellular divisions.
Collapse
Affiliation(s)
- Vittorio Perduca
- Laboratoire de Mathématiques Appliquées MAP5 (UMR CNRS 8145), Université Paris Descartes, 75006, Paris, France
- CESP (Inserm U1018), Facultés de Médicine Université Paris-Sud, UVSQ, Université Paris-Saclay, Gustave Roussy, 94805, Villejuif, France
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michelle Kelly-Irving
- UMR1027, INSERM, 31000, Toulouse, France
- UMR1027, Université Toulouse III Paul-Sabatier, 31000, Toulouse, France
| | - Cyrille Delpierre
- UMR1027, INSERM, 31000, Toulouse, France
- UMR1027, Université Toulouse III Paul-Sabatier, 31000, Toulouse, France
| | - Hanane Omichessan
- CESP (Inserm U1018), Facultés de Médicine Université Paris-Sud, UVSQ, Université Paris-Saclay, Gustave Roussy, 94805, Villejuif, France
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, 20892-9778, USA
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Imperial College, Norfolk Place, W21PG, London, UK
| | - Gianluca Severi
- CESP (Inserm U1018), Facultés de Médicine Université Paris-Sud, UVSQ, Université Paris-Saclay, Gustave Roussy, 94805, Villejuif, France.
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, 3004, Australia.
| |
Collapse
|
6
|
Nimmakayala RK, Seshacharyulu P, Lakshmanan I, Rachagani S, Chugh S, Karmakar S, Rauth S, Vengoji R, Atri P, Talmon GA, Lele SM, Smith LM, Thapa I, Bastola D, Ouellette MM, Batra SK, Ponnusamy MP. Cigarette Smoke Induces Stem Cell Features of Pancreatic Cancer Cells via PAF1. Gastroenterology 2018; 155:892-908.e6. [PMID: 29864419 PMCID: PMC6120776 DOI: 10.1053/j.gastro.2018.05.041] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/08/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Cigarette smoking is a major risk factor for pancreatic cancer. Aggressive pancreatic tumors contain cancer cells with stem cell features. We investigated whether cigarette smoke induces stem cell features in pancreatic cancer cells. METHODS KrasG12D; Pdx1-Cre mice were exposed to cigarette smoke or clean air (controls) for up to 20 weeks; pancreata were collected and analyzed by histology, quantitative reverse transcription polymerase chain reaction, and confocal immunofluorescence microscopy. HPNE and Capan1 cells were exposed to cigarette smoke extract (CSE), nicotine and nicotine-derived carcinogens (NNN or NNK), or clean air (controls) for 80 days and evaluated for stem cell markers and features using flow cytometry-based autofluorescence, sphere formation, and immunoblot assays. Proteins were knocked down in cells with small interfering RNAs. We performed RNA sequencing analyses of CSE-exposed cells. We used chromatin immunoprecipitation assays to confirm the binding of FOS-like 1, AP-1 transcription factor subunit (FOSL1) to RNA polymerase II-associated factor (PAF1) promoter. We obtained pancreatic ductal adenocarcinoma (PDAC) and matched nontumor tissues (n = 15) and performed immunohistochemical analyses. RESULTS Chronic exposure of HPNE and Capan1 cells to CSE caused them to increase markers of stem cells, including autofluorescence and sphere formation, compared with control cells. These cells increased expression of ABCG2, SOX9, and PAF1, via cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) signaling to mitogen-activated protein kinase 1 and FOSL1. CSE-exposed pancreatic cells with knockdown of PAF1 did not show stem cell features. Exposure of cells to NNN and NNK led to increased expression of CHRNA7, FOSL1, and PAF1 along with stem cell features. Pancreata from KrasG12D; Pdx1-Cre mice exposed to cigarette smoke had increased levels of PAF1 mRNA and protein, compared with control mice, as well as increased expression of SOX9. Levels of PAF1 and FOSL1 were increased in PDAC tissues, especially those from smokers, compared with nontumor pancreatic tissue. CSE exposure increased expression of PHD-finger protein 5A, a pluripotent transcription factor and its interaction with PAF1. CONCLUSIONS Exposure to cigarette smoke activates stem cell features of pancreatic cells, via CHRNA7 signaling and FOSL1 activation of PAF1 expression. Levels of PAF1 are increased in pancreatic tumors of humans and mice with chronic cigarette smoke exposure.
Collapse
Affiliation(s)
- Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Subodh M. Lele
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, NE
| | - Dhundy Bastola
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, NE
| | - Michel M. Ouellette
- Department of Internal Medicine, College of Medicine, University of Nebraska medical Center, Omaha, NE
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE,Correspondence: Moorthy P. Ponnusamy and Surinder K. Batra, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A., Phone: 402-559-1170, Fax: 402-559-6650, (M.P.P) and (S.K.B)
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE,Correspondence: Moorthy P. Ponnusamy and Surinder K. Batra, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198-5870, U.S.A., Phone: 402-559-1170, Fax: 402-559-6650, (M.P.P) and (S.K.B)
| |
Collapse
|
7
|
Dainiak N, Feinendegen LE, Hyer RN, Locke PA, Waltar AE. Synergies resulting from a systems biology approach: integrating radiation epidemiology and radiobiology to optimize protection of the public after exposure to low doses of ionizing radiation. Int J Radiat Biol 2017; 94:2-7. [DOI: 10.1080/09553002.2018.1407461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nicholas Dainiak
- Radiation Emergency Assistance Center/Training Site (REAC/TS), Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ludwig E. Feinendegen
- Department of Nuclear Medicine, Heinrich-Heine University, Dusseldorf, Germany
- Medical Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Randall N. Hyer
- CrisisCommunication.net and Center for Risk Communication, New York, NY, USA
- Dynavax Europe GmbH, Dynavax Technologies Corporation, Dusseldorf, Germany
| | - Paul A. Locke
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alan E. Waltar
- Pacific Northwest National Laboratory, Fast Reactor Safety and Fuels Organizations, Westinghouse Hanford Company, Richland, WA, USA
- Department of Nuclear Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|