1
|
Sabarís G, Schuettengruber B, Papadopoulos GL, Coronado-Zamora M, Fitz-James MH, González J, Cavalli G. A mechanistic basis for genetic assimilation in natural fly populations. Proc Natl Acad Sci U S A 2025; 122:e2415982122. [PMID: 40063800 PMCID: PMC11929479 DOI: 10.1073/pnas.2415982122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
Genetic assimilation is a process by which a trait originally driven by the environment becomes independent of the initial cue and is expressed constitutively in a population. More than seven decades have passed since Waddington's pioneering demonstration of the acquisition of morphological traits through genetic assimilation, but the underlying mechanism remains unknown. Here, we address this gap by performing combined genomic analyses of Waddington's genetic assimilation experiments using the ectopic veins (EV) phenocopy in Drosophila as a model. Our study reveals the assimilation of EV in both outbred and inbred fly natural populations, despite their limited genetic diversity. We identified key changes in the expression of developmental genes and pinpointed selected alleles involved in EV assimilation. The assimilation of EV is mainly driven by the selection of regulatory alleles already present in the ancestral populations, including the downregulation of the receptor tyrosine kinase gene Cad96Ca by the insertion of a transposable element in its 3' untranslated region. The genetic variation at this locus in the inbred population is maintained by a large chromosomal inversion. In outbred populations, the evolution of EV results from a polygenic response shaped by the selective environment. Our results support a model in which selection for multiple preexisting alleles in the ancestral population, rather than stress-induced genetic or epigenetic variation, drives the evolution of EV in natural fly populations.
Collapse
Affiliation(s)
- Gonzalo Sabarís
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| | - Giorgio L. Papadopoulos
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| | - Marta Coronado-Zamora
- Institute of Evolutionary Biology, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, Barcelona08003, Spain
| | | | - Josefa González
- Institute of Evolutionary Biology, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, Barcelona08003, Spain
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier34396 cedex 5, France
| |
Collapse
|
2
|
Wang X, Luo J, Wu L, Luo H, Guo F. deepTAD: an approach for identifying topologically associated domains based on convolutional neural network and transformer model. Brief Bioinform 2025; 26:bbaf127. [PMID: 40131313 PMCID: PMC11934553 DOI: 10.1093/bib/bbaf127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
MOTIVATION Topologically associated domains (TADs) play a key role in the 3D organization and function of genomes, and accurate detection of TADs is essential for revealing the relationship between genomic structure and function. Most current methods are developed to extract features in Hi-C interaction matrix to identify TADs. However, due to complexities in Hi-C contact matrices, it is difficult to directly extract features associated with TADs, which prevents current methods from identifying accurate TADs. RESULTS In this paper, a novel method is proposed, deepTAD, which is developed based on a convolutional neural network (CNN) and transformer model. First, based on Hi-C contact matrix, deepTAD utilizes CNN to directly extract features associated with TAD boundaries. Next, deepTAD takes advantage of the transformer model to analyze the variation features around TAD boundaries and determines the TAD boundaries. Second, deepTAD uses the Wilcoxon rank-sum test to further identify false-positive boundaries. Finally, deepTAD computes cosine similarity among identified TAD boundaries and assembles TAD boundaries to obtain hierarchical TADs. The experimental results show that TAD boundaries identified by deepTAD have a significant enrichment of biological features, including structural proteins, histone modifications, and transcription start site loci. Additionally, when evaluating the completeness and accuracy of identified TADs, deepTAD has a good performance compared with other methods. The source code of deepTAD is available at https://github.com/xiaoyan-wang99/deepTAD.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Software, Henan Polytechnic University, 2001 Century Road, Jiaozuo 454003, China
| | - Junwei Luo
- School of Software, Henan Polytechnic University, 2001 Century Road, Jiaozuo 454003, China
| | - Lili Wu
- School of Software, Henan Polytechnic University, 2001 Century Road, Jiaozuo 454003, China
| | - Huimin Luo
- School of Computer and Information Engineering, Henan University, North Section of Jinming Avenue, Kaifeng 475001, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, 932 Lushan South Road, Changsha 410083, China
| |
Collapse
|
3
|
Gong H, Zhang S, Zhang X, Chen Y. A method for chromatin domain partitioning based on hypergraph clustering. Comput Struct Biotechnol J 2024; 23:1584-1593. [PMID: 38655013 PMCID: PMC11035048 DOI: 10.1016/j.csbj.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
For many years, multi-scale models of chromatin domains, such as A/B compartments, sub-compartments, topologically associated domains (TADs), sub-TADs, and loops have been popular. However, existing methods can only identify structures at a single scale and cannot partition multi-scale structures. In this paper, we proposed a method (TORNADOES) for chromatin domain partitioning based on hypergraph clustering. First, we use a density clustering algorithm to identify TADs at different scales based on Hi-C data with different resolutions. Then, by combining ChIP-seq data features and TAD results at different scales, we generate a hypergraph based on these TADs. Finally, we partition the chromatin domain structure at different scales, including A/B, A1, A2, B1, B2, and B3 based on the Laplacian matrix feature of the hypergraph. Similarity comparison experiments and ChIP-seq signal enrichment analysis are performed on the A/B region and sub-TAD levels, respectively, demonstrating that our method can identify chromatin domains with distinct features and provide a deeper understanding of the organizational patterns and functional differences in TADs at the genomic hierarchical structure. Comparative analysis of multiple cell line data shows that TORNADOES can better classify different numbers and types of compartments by changing the factors ChIP-seq data and clustering number used to characterize TAD compared to other methods. Source code for the TORNADOES method can be found at https://github.com/ghaiyan/TORNADOES.
Collapse
Affiliation(s)
- Haiyan Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, Guangdong, China
| | - Sichen Zhang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaotong Zhang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, Guangdong, China
| | - Yang Chen
- The State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
4
|
Bista B, González-Rodelas L, Álvarez-González L, Wu ZQ, Montiel EE, Lee LS, Badenhorst DB, Radhakrishnan S, Literman R, Navarro-Dominguez B, Iverson JB, Orozco-Arias S, González J, Ruiz-Herrera A, Valenzuela N. De novo genome assemblies of two cryptodiran turtles with ZZ/ZW and XX/XY sex chromosomes provide insights into patterns of genome reshuffling and uncover novel 3D genome folding in amniotes. Genome Res 2024; 34:1553-1569. [PMID: 39414368 PMCID: PMC11529993 DOI: 10.1101/gr.279443.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq: Apalone spinifera (ZZ/ZW, 2n = 66) and Staurotypus triporcatus (XX/XY, 2n = 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling in Apalone (Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions in Staurotypus (Kinosternidae) and Trachemys scripta (Emydidae). Furthermore, we identified a chromosome folding pattern that enables "centromere-telomere interactions" previously undetected in turtles. The combined turtle pattern of "centromere-telomere interactions" (discovered here) plus "centromere clustering" (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.
Collapse
Affiliation(s)
- Basanta Bista
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Zhi-Qiang Wu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
- Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Eugenia E Montiel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ling Sze Lee
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Daleen B Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Srihari Radhakrishnan
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Beatriz Navarro-Dominguez
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - John B Iverson
- Department of Biology, Earlham College, Richmond, Indiana 47374, USA
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, 080003 Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA;
| |
Collapse
|
5
|
Chiliński M, Plewczynski D. HiCDiffusion - diffusion-enhanced, transformer-based prediction of chromatin interactions from DNA sequences. BMC Genomics 2024; 25:964. [PMID: 39407104 PMCID: PMC11481779 DOI: 10.1186/s12864-024-10885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Prediction of chromatin interactions from DNA sequence has been a significant research challenge in the last couple of years. Several solutions have been proposed, most of which are based on encoder-decoder architecture, where 1D sequence is convoluted, encoded into the latent representation, and then decoded using 2D convolutions into the Hi-C pairwise chromatin spatial proximity matrix. Those methods, while obtaining high correlation scores and improved metrics, produce Hi-C matrices that are artificial - they are blurred due to the deep learning model architecture. In our study, we propose the HiCDiffusion, sequence-only model that addresses this problem. We first train the encoder-decoder neural network and then use it as a component of the diffusion model - where we guide the diffusion using a latent representation of the sequence, as well as the final output from the encoder-decoder. That way, we obtain the high-resolution Hi-C matrices that not only better resemble the experimental results - improving the Fréchet inception distance by an average of 11 times, with the highest improvement of 56 times - but also obtain similar classic metrics to current state-of-the-art encoder-decoder architectures used for the task.
Collapse
Affiliation(s)
- Mateusz Chiliński
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, 00-662, Poland
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, 00-662, Poland.
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland.
| |
Collapse
|
6
|
Banerjee A, Zhang S, Bahar I. Genome structural dynamics: insights from Gaussian network analysis of Hi-C data. Brief Funct Genomics 2024; 23:525-537. [PMID: 38654598 PMCID: PMC11428154 DOI: 10.1093/bfgp/elae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/11/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Characterization of the spatiotemporal properties of the chromatin is essential to gaining insights into the physical bases of gene co-expression, transcriptional regulation and epigenetic modifications. The Gaussian network model (GNM) has proven in recent work to serve as a useful tool for modeling chromatin structural dynamics, using as input high-throughput chromosome conformation capture data. We focus here on the exploration of the collective dynamics of chromosomal structures at hierarchical levels of resolution, from single gene loci to topologically associating domains or entire chromosomes. The GNM permits us to identify long-range interactions between gene loci, shedding light on the role of cross-correlations between distal regions of the chromosomes in regulating gene expression. Notably, GNM analysis performed across diverse cell lines highlights the conservation of the global/cooperative movements of the chromatin across different types of cells. Variations driven by localized couplings between genomic loci, on the other hand, underlie cell differentiation, underscoring the significance of the four-dimensional properties of the genome in defining cellular identity. Finally, we demonstrate the close relation between the cell type-dependent mobility profiles of gene loci and their gene expression patterns, providing a clear demonstration of the role of chromosomal 4D features in defining cell-specific differential expression of genes.
Collapse
Affiliation(s)
- Anupam Banerjee
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, NY 11794, USA
| | - She Zhang
- OpenEye, Cadence Molecular Sciences, Santa Fe, NM 87508, USA
| | - Ivet Bahar
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, NY 11794, USA
- Department of Biochemistry and Cell Biology, Renaissance School of Medicine, Stony Brook University, NY 11794, USA
| |
Collapse
|
7
|
Kumar Halder A, Agarwal A, Jodkowska K, Plewczynski D. A systematic analyses of different bioinformatics pipelines for genomic data and its impact on deep learning models for chromatin loop prediction. Brief Funct Genomics 2024; 23:538-548. [PMID: 38555493 DOI: 10.1093/bfgp/elae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Genomic data analysis has witnessed a surge in complexity and volume, primarily driven by the advent of high-throughput technologies. In particular, studying chromatin loops and structures has become pivotal in understanding gene regulation and genome organization. This systematic investigation explores the realm of specialized bioinformatics pipelines designed specifically for the analysis of chromatin loops and structures. Our investigation incorporates two protein (CTCF and Cohesin) factor-specific loop interaction datasets from six distinct pipelines, amassing a comprehensive collection of 36 diverse datasets. Through a meticulous review of existing literature, we offer a holistic perspective on the methodologies, tools and algorithms underpinning the analysis of this multifaceted genomic feature. We illuminate the vast array of approaches deployed, encompassing pivotal aspects such as data preparation pipeline, preprocessing, statistical features and modelling techniques. Beyond this, we rigorously assess the strengths and limitations inherent in these bioinformatics pipelines, shedding light on the interplay between data quality and the performance of deep learning models, ultimately advancing our comprehension of genomic intricacies.
Collapse
Affiliation(s)
- Anup Kumar Halder
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Abhishek Agarwal
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Karolina Jodkowska
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Conte M, Abraham A, Esposito A, Yang L, Gibcus JH, Parsi KM, Vercellone F, Fontana A, Di Pierno F, Dekker J, Nicodemi M. Polymer Physics Models Reveal Structural Folding Features of Single-Molecule Gene Chromatin Conformations. Int J Mol Sci 2024; 25:10215. [PMID: 39337699 PMCID: PMC11432541 DOI: 10.3390/ijms251810215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Here, we employ polymer physics models of chromatin to investigate the 3D folding of a 2 Mb wide genomic region encompassing the human LTN1 gene, a crucial DNA locus involved in key cellular functions. Through extensive Molecular Dynamics simulations, we reconstruct in silico the ensemble of single-molecule LTN1 3D structures, which we benchmark against recent in situ Hi-C 2.0 data. The model-derived single molecules are then used to predict structural folding features at the single-cell level, providing testable predictions for super-resolution microscopy experiments.
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Krishna M. Parsi
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Francesca Vercellone
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Florinda Di Pierno
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
9
|
Drogaris C, Zhang Y, Zhang E, Nazarova E, Sarrazin-Gendron R, Wilhelm-Landry S, Cyr Y, Majewski J, Blanchette M, Waldispühl J. ARGV: 3D genome structure exploration using augmented reality. BMC Bioinformatics 2024; 25:277. [PMID: 39192184 DOI: 10.1186/s12859-024-05882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Over the past two decades, scientists have increasingly realized the importance of the three-dimensional (3D) genome organization in regulating cellular activity. Hi-C and related experiments yield 2D contact matrices that can be used to infer 3D models of chromosome structure. Visualizing and analyzing genomes in 3D space remains challenging. Here, we present ARGV, an augmented reality 3D Genome Viewer. ARGV contains more than 350 pre-computed and annotated genome structures inferred from Hi-C and imaging data. It offers interactive and collaborative visualization of genomes in 3D space, using standard mobile phones or tablets. A user study comparing ARGV to existing tools demonstrates its benefits.
Collapse
Affiliation(s)
| | - Yanlin Zhang
- School of Computer Science, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Eric Zhang
- School of Computer Science, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Elena Nazarova
- School of Computer Science, McGill University, Montréal, QC, H3A 0E9, Canada
| | | | | | - Yan Cyr
- Beam Me Up Inc., 5925 Monkland Ave, Suite, 100, Montréal, H4A 1G7, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1B1, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Jérôme Waldispühl
- School of Computer Science, McGill University, Montréal, QC, H3A 0E9, Canada.
| |
Collapse
|
10
|
Conte M, Abraham A, Esposito A, Yang L, Gibcus JH, Parsi KM, Vercellone F, Fontana A, Pierno FD, Dekker J, Nicodemi M. Polymer physics models reveal structural folding features of single-molecule gene chromatin conformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603769. [PMID: 39071404 PMCID: PMC11275793 DOI: 10.1101/2024.07.16.603769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Here, we employ polymer physics models of chromatin to investigate the 3D folding of a 2Mb wide genomic region encompassing the human LTN1 gene, a crucial DNA locus involved in key cellular functions. Through extensive Molecular Dynamics simulations, we reconstruct in-silico the ensemble of single-molecule LTN1 3D structures, which we benchmark against recent in-situ Hi-C 2.0 data. The model-derived single molecules are then used to predict structural folding features at the single-cell level, providing testable predictions for super-resolution microscopy experiments.
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Krishna M. Parsi
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655
| | - Francesca Vercellone
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Florinda Di Pierno
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
11
|
Maisuradze L, King MC, Surovtsev IV, Mochrie SGJ, Shattuck MD, O’Hern CS. Identifying topologically associating domains using differential kernels. PLoS Comput Biol 2024; 20:e1012221. [PMID: 39008525 PMCID: PMC11249266 DOI: 10.1371/journal.pcbi.1012221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Chromatin is a polymer complex of DNA and proteins that regulates gene expression. The three-dimensional (3D) structure and organization of chromatin controls DNA transcription and replication. High-throughput chromatin conformation capture techniques generate Hi-C maps that can provide insight into the 3D structure of chromatin. Hi-C maps can be represented as a symmetric matrix [Formula: see text], where each element represents the average contact probability or number of contacts between chromatin loci i and j. Previous studies have detected topologically associating domains (TADs), or self-interacting regions in [Formula: see text] within which the contact probability is greater than that outside the region. Many algorithms have been developed to identify TADs within Hi-C maps. However, most TAD identification algorithms are unable to identify nested or overlapping TADs and for a given Hi-C map there is significant variation in the location and number of TADs identified by different methods. We develop a novel method to identify TADs, KerTAD, using a kernel-based technique from computer vision and image processing that is able to accurately identify nested and overlapping TADs. We benchmark this method against state-of-the-art TAD identification methods on both synthetic and experimental data sets. We find that the new method consistently has higher true positive rates (TPR) and lower false discovery rates (FDR) than all tested methods for both synthetic and manually annotated experimental Hi-C maps. The TPR for KerTAD is also largely insensitive to increasing noise and sparsity, in contrast to the other methods. We also find that KerTAD is consistent in the number and size of TADs identified across replicate experimental Hi-C maps for several organisms. Thus, KerTAD will improve automated TAD identification and enable researchers to better correlate changes in TADs to biological phenomena, such as enhancer-promoter interactions and disease states.
Collapse
Affiliation(s)
- Luka Maisuradze
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Megan C. King
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ivan V. Surovtsev
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Simon G. J. Mochrie
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Mark D. Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York, United States of America
| | - Corey S. O’Hern
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut, United States of America
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
12
|
龚 海, 张 司, 张 晓. [An identification method of chromatin topological associated domains based on spatial density clustering]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:552-559. [PMID: 38932542 PMCID: PMC11208664 DOI: 10.7507/1001-5515.202311059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Indexed: 06/28/2024]
Abstract
The rapid development of high-throughput chromatin conformation capture (Hi-C) technology provides rich genomic interaction data between chromosomal loci for chromatin structure analysis. However, existing methods for identifying topologically associated domains (TADs) based on Hi-C data suffer from low accuracy and sensitivity to parameters. In this context, a TAD identification method based on spatial density clustering was designed and implemented in this paper. The method preprocessed the raw Hi-C data to obtain normalized Hi-C contact matrix data. Then, it computed the distance matrix between loci, generated a reachability graph based on the core distance and reachability distance of loci, and extracted clustering clusters. Finally, it extracted TAD boundaries based on clustering results. This method could identify TAD structures with higher coherence, and TAD boundaries were enriched with more ChIP-seq factors. Experimental results demonstrate that our method has advantages such as higher accuracy and practical significance in TAD identification.
Collapse
Affiliation(s)
- 海燕 龚
- 北京科技大学 新材料技术研究院(北京 100083)Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- 北京科技大学 计算机与通信工程学院(北京 100083)School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - 司臣 张
- 北京科技大学 新材料技术研究院(北京 100083)Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - 晓彤 张
- 北京科技大学 新材料技术研究院(北京 100083)Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- 北京科技大学 计算机与通信工程学院(北京 100083)School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
13
|
Kadlof M, Banecki K, Chiliński M, Plewczynski D. Chromatin image-driven modelling. Methods 2024; 226:54-60. [PMID: 38636797 DOI: 10.1016/j.ymeth.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
The challenge of modelling the spatial conformation of chromatin remains an open problem. While multiple data-driven approaches have been proposed, each has limitations. This work introduces two image-driven modelling methods based on the Molecular Dynamics Flexible Fitting (MDFF) approach: the force method and the correlational method. Both methods have already been used successfully in protein modelling. We propose a novel way to employ them for building chromatin models directly from 3D images. This approach is termed image-driven modelling. Additionally, we introduce the initial structure generator, a tool designed to generate optimal starting structures for the proposed algorithms. The methods are versatile and can be applied to various data types, with minor modifications to accommodate new generation imaging techniques.
Collapse
Affiliation(s)
- Michał Kadlof
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
| | - Krzysztof Banecki
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Mateusz Chiliński
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland; Centre of New Technologies, University of Warsaw, Warsaw, Poland; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
D'haene E, López-Soriano V, Martínez-García PM, Kalayanamontri S, Rey AD, Sousa-Ortega A, Naranjo S, Van de Sompele S, Vantomme L, Mahieu Q, Vergult S, Neto A, Gómez-Skarmeta JL, Martínez-Morales JR, Bauwens M, Tena JJ, De Baere E. Comparative 3D genome analysis between neural retina and retinal pigment epithelium reveals differential cis-regulatory interactions at retinal disease loci. Genome Biol 2024; 25:123. [PMID: 38760655 PMCID: PMC11100165 DOI: 10.1186/s13059-024-03250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/17/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.
Collapse
Affiliation(s)
- Eva D'haene
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Víctor López-Soriano
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Soraya Kalayanamontri
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ana Sousa-Ortega
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Stijn Van de Sompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lies Vantomme
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Quinten Mahieu
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan Ramón Martínez-Morales
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain.
| | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Juan Jesús Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain.
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
15
|
Keenan CR, Coughlan HD, Iannarella N, Tapia Del Fierro A, Keniry A, Johanson TM, Chan WF, Garnham AL, Whitehead LW, Blewitt ME, Smyth GK, Allan RS. Suv39h-catalyzed H3K9me3 is critical for euchromatic genome organization and the maintenance of gene transcription. Genome Res 2024; 34:556-571. [PMID: 38719473 PMCID: PMC11146594 DOI: 10.1101/gr.279119.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/03/2024] [Indexed: 06/05/2024]
Abstract
H3K9me3-dependent heterochromatin is critical for the silencing of repeat-rich pericentromeric regions and also has key roles in repressing lineage-inappropriate protein-coding genes in differentiation and development. Here, we investigate the molecular consequences of heterochromatin loss in cells deficient in both SUV39H1 and SUV39H2 (Suv39DKO), the major mammalian histone methyltransferase enzymes that catalyze heterochromatic H3K9me3 deposition. We reveal a paradoxical repression of protein-coding genes in Suv39DKO cells, with these differentially expressed genes principally in euchromatic (Tn5-accessible, H3K4me3- and H3K27ac-marked) rather than heterochromatic (H3K9me3-marked) or polycomb (H3K27me3-marked) regions. Examination of the three-dimensional (3D) nucleome reveals that transcriptomic dysregulation occurs in euchromatic regions close to the nuclear periphery in 3D space. Moreover, this transcriptomic dysregulation is highly correlated with altered 3D genome organization in Suv39DKO cells. Together, our results suggest that the nuclear lamina-tethering of Suv39-dependent H3K9me3 domains provides an essential scaffold to support euchromatic genome organization and the maintenance of gene transcription for healthy cellular function.
Collapse
Affiliation(s)
- Christine R Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Hannah D Coughlan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nadia Iannarella
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Andres Tapia Del Fierro
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wing Fuk Chan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lachlan W Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
16
|
Open2C, Abdennur N, Abraham S, Fudenberg G, Flyamer IM, Galitsyna AA, Goloborodko A, Imakaev M, Oksuz BA, Venev SV, Xiao Y. Cooltools: Enabling high-resolution Hi-C analysis in Python. PLoS Comput Biol 2024; 20:e1012067. [PMID: 38709825 PMCID: PMC11098495 DOI: 10.1371/journal.pcbi.1012067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/16/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Chromosome conformation capture (3C) technologies reveal the incredible complexity of genome organization. Maps of increasing size, depth, and resolution are now used to probe genome architecture across cell states, types, and organisms. Larger datasets add challenges at each step of computational analysis, from storage and memory constraints to researchers' time; however, analysis tools that meet these increased resource demands have not kept pace. Furthermore, existing tools offer limited support for customizing analysis for specific use cases or new biology. Here we introduce cooltools (https://github.com/open2c/cooltools), a suite of computational tools that enables flexible, scalable, and reproducible analysis of high-resolution contact frequency data. Cooltools leverages the widely-adopted cooler format which handles storage and access for high-resolution datasets. Cooltools provides a paired command line interface (CLI) and Python application programming interface (API), which respectively facilitate workflows on high-performance computing clusters and in interactive analysis environments. In short, cooltools enables the effective use of the latest and largest genome folding datasets.
Collapse
Affiliation(s)
- Open2C
- https://open2c.github.io/
| | - Nezar Abdennur
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sameer Abraham
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Ilya M. Flyamer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Aleksandra A. Galitsyna
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Anton Goloborodko
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Maxim Imakaev
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Betul A. Oksuz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Yao Xiao
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
17
|
Open2C, Abdennur N, Fudenberg G, Flyamer IM, Galitsyna AA, Goloborodko A, Imakaev M, Venev SV. Pairtools: From sequencing data to chromosome contacts. PLoS Comput Biol 2024; 20:e1012164. [PMID: 38809952 PMCID: PMC11164360 DOI: 10.1371/journal.pcbi.1012164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/10/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The field of 3D genome organization produces large amounts of sequencing data from Hi-C and a rapidly-expanding set of other chromosome conformation protocols (3C+). Massive and heterogeneous 3C+ data require high-performance and flexible processing of sequenced reads into contact pairs. To meet these challenges, we present pairtools-a flexible suite of tools for contact extraction from sequencing data. Pairtools provides modular command-line interface (CLI) tools that can be flexibly chained into data processing pipelines. The core operations provided by pairtools are parsing of.sam alignments into Hi-C pairs, sorting and removal of PCR duplicates. In addition, pairtools provides auxiliary tools for building feature-rich 3C+ pipelines, including contact pair manipulation, filtration, and quality control. Benchmarking pairtools against popular 3C+ data pipelines shows advantages of pairtools for high-performance and flexible 3C+ analysis. Finally, pairtools provides protocol-specific tools for restriction-based protocols, haplotype-resolved contacts, and single-cell Hi-C. The combination of CLI tools and tight integration with Python data analysis libraries makes pairtools a versatile foundation for a broad range of 3C+ pipelines.
Collapse
Affiliation(s)
- Open2C
- https://open2c.github.io/
| | - Nezar Abdennur
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Geoffrey Fudenberg
- Department of Computational and Quantitative Biology, University of Southern California, Los Angeles, California, United States of America
| | - Ilya M. Flyamer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Aleksandra A. Galitsyna
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Anton Goloborodko
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Maxim Imakaev
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
18
|
Moreno-Oñate M, Gallardo-Fuentes L, Martínez-García PM, Naranjo S, Jiménez-Gancedo S, Tena JJ, Santos-Pereira JM. Rewiring of the epigenome and chromatin architecture by exogenously induced retinoic acid signaling during zebrafish embryonic development. Nucleic Acids Res 2024; 52:3682-3701. [PMID: 38321954 PMCID: PMC11040003 DOI: 10.1093/nar/gkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.
Collapse
Affiliation(s)
- Marta Moreno-Oñate
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Pedro M Martínez-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Sandra Jiménez-Gancedo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - José M Santos-Pereira
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
19
|
Serra F, Nieto-Aliseda A, Fanlo-Escudero L, Rovirosa L, Cabrera-Pasadas M, Lazarenkov A, Urmeneta B, Alcalde-Merino A, Nola EM, Okorokov AL, Fraser P, Graupera M, Castillo SD, Sardina JL, Valencia A, Javierre BM. p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response. Nat Commun 2024; 15:2821. [PMID: 38561401 PMCID: PMC10984980 DOI: 10.1038/s41467-024-46666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Activation of the p53 tumor suppressor triggers a transcriptional program to control cellular response to stress. However, the molecular mechanisms by which p53 controls gene transcription are not completely understood. Here, we uncover the critical role of spatio-temporal genome architecture in this process. We demonstrate that p53 drives direct and indirect changes in genome compartments, topologically associating domains, and DNA loops prior to one hour of its activation, which escort the p53 transcriptional program. Focusing on p53-bound enhancers, we report 340 genes directly regulated by p53 over a median distance of 116 kb, with 74% of these genes not previously identified. Finally, we showcase that p53 controls transcription of distal genes through newly formed and pre-existing enhancer-promoter loops in a cohesin dependent manner. Collectively, our findings demonstrate a previously unappreciated architectural role of p53 as regulator at distinct topological layers and provide a reliable set of new p53 direct target genes that may help designs of cancer therapies.
Collapse
Affiliation(s)
- François Serra
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | | | | | | | - Mónica Cabrera-Pasadas
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Barcelona Supercomputing Center, Barcelona, Spain
| | | | - Blanca Urmeneta
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | | | - Emanuele M Nola
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Andrei L Okorokov
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Mariona Graupera
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jose L Sardina
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Biola M Javierre
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain.
- Institute for Health Science Research Germans Trias i Pujol, Barcelona, Spain.
| |
Collapse
|
20
|
Liu R, Xu R, Yan S, Li P, Jia C, Sun H, Sheng K, Wang Y, Zhang Q, Guo J, Xin X, Li X, Guo D. Hi-C, a chromatin 3D structure technique advancing the functional genomics of immune cells. Front Genet 2024; 15:1377238. [PMID: 38586584 PMCID: PMC10995239 DOI: 10.3389/fgene.2024.1377238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
The functional performance of immune cells relies on a complex transcriptional regulatory network. The three-dimensional structure of chromatin can affect chromatin status and gene expression patterns, and plays an important regulatory role in gene transcription. Currently available techniques for studying chromatin spatial structure include chromatin conformation capture techniques and their derivatives, chromatin accessibility sequencing techniques, and others. Additionally, the recently emerged deep learning technology can be utilized as a tool to enhance the analysis of data. In this review, we elucidate the definition and significance of the three-dimensional chromatin structure, summarize the technologies available for studying it, and describe the research progress on the chromatin spatial structure of dendritic cells, macrophages, T cells, B cells, and neutrophils.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Dianhao Guo
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
21
|
Liu E, Lyu H, Liu Y, Fu L, Cheng X, Yin X. Identifying TAD-like domains on single-cell Hi-C data by graph embedding and changepoint detection. Bioinformatics 2024; 40:btae138. [PMID: 38449288 PMCID: PMC10960928 DOI: 10.1093/bioinformatics/btae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/10/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
MOTIVATION Topologically associating domains (TADs) are fundamental building blocks of 3D genome. TAD-like domains in single cells are regarded as the underlying genesis of TADs discovered in bulk cells. Understanding the organization of TAD-like domains helps to get deeper insights into their regulatory functions. Unfortunately, it remains a challenge to identify TAD-like domains on single-cell Hi-C data due to its ultra-sparsity. RESULTS We propose scKTLD, an in silico tool for the identification of TAD-like domains on single-cell Hi-C data. It takes Hi-C contact matrix as the adjacency matrix for a graph, embeds the graph structures into a low-dimensional space with the help of sparse matrix factorization followed by spectral propagation, and the TAD-like domains can be identified using a kernel-based changepoint detection in the embedding space. The results tell that our scKTLD is superior to the other methods on the sparse contact matrices, including downsampled bulk Hi-C data as well as simulated and experimental single-cell Hi-C data. Besides, we demonstrated the conservation of TAD-like domain boundaries at single-cell level apart from heterogeneity within and across cell types, and found that the boundaries with higher frequency across single cells are more enriched for architectural proteins and chromatin marks, and they preferentially occur at TAD boundaries in bulk cells, especially at those with higher hierarchical levels. AVAILABILITY AND IMPLEMENTATION scKTLD is freely available at https://github.com/lhqxinghun/scKTLD.
Collapse
Affiliation(s)
- Erhu Liu
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hongqiang Lyu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi'an 710049, China
| | - Yuan Liu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi'an 710049, China
| | - Laiyi Fu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi'an 710049, China
| | - Xiaoliang Cheng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710061, China
| | - Xiaoran Yin
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
22
|
Zhang Y, Boninsegna L, Yang M, Misteli T, Alber F, Ma J. Computational methods for analysing multiscale 3D genome organization. Nat Rev Genet 2024; 25:123-141. [PMID: 37673975 PMCID: PMC11127719 DOI: 10.1038/s41576-023-00638-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/08/2023]
Abstract
Recent progress in whole-genome mapping and imaging technologies has enabled the characterization of the spatial organization and folding of the genome in the nucleus. In parallel, advanced computational methods have been developed to leverage these mapping data to reveal multiscale three-dimensional (3D) genome features and to provide a more complete view of genome structure and its connections to genome functions such as transcription. Here, we discuss how recently developed computational tools, including machine-learning-based methods and integrative structure-modelling frameworks, have led to a systematic, multiscale delineation of the connections among different scales of 3D genome organization, genomic and epigenomic features, functional nuclear components and genome function. However, approaches that more comprehensively integrate a wide variety of genomic and imaging datasets are still needed to uncover the functional role of 3D genome structure in defining cellular phenotypes in health and disease.
Collapse
Affiliation(s)
- Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lorenzo Boninsegna
- Department of Microbiology, Immunology and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Muyu Yang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tom Misteli
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Frank Alber
- Department of Microbiology, Immunology and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Kocanova S, Raynal F, Goiffon I, Oksuz BA, Baú D, Kamgoué A, Cantaloube S, Zhan Y, Lajoie B, Marti-Renom MA, Dekker J, Bystricky K. Enhancer-driven 3D chromatin domain folding modulates transcription in human mammary tumor cells. Life Sci Alliance 2024; 7:e202302154. [PMID: 37989525 PMCID: PMC10663337 DOI: 10.26508/lsa.202302154] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
The genome is organized in functional compartments and structural domains at the sub-megabase scale. How within these domains interactions between numerous cis-acting enhancers and promoters regulate transcription remains an open question. Here, we determined chromatin folding and composition over several hundred kb around estrogen-responsive genes in human breast cancer cell lines after hormone stimulation. Modeling of 5C data at 1.8 kb resolution was combined with quantitative 3D analysis of multicolor FISH measurements at 100 nm resolution and integrated with ChIP-seq data on transcription factor binding and histone modifications. We found that rapid estradiol induction of the progesterone gene expression occurs in the context of preexisting, cell type-specific chromosomal architectures encompassing the 90 kb progesterone gene coding region and an enhancer-spiked 5' 300 kb upstream genomic region. In response to estradiol, interactions between estrogen receptor α (ERα) bound regulatory elements are reinforced. Whereas initial enhancer-gene contacts coincide with RNA Pol 2 binding and transcription initiation, sustained hormone stimulation promotes ERα accumulation creating a regulatory hub stimulating transcript synthesis. In addition to implications for estrogen receptor signaling, we uncover that preestablished chromatin architectures efficiently regulate gene expression upon stimulation without the need for de novo extensive rewiring of long-range chromatin interactions.
Collapse
Affiliation(s)
- Silvia Kocanova
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Flavien Raynal
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Isabelle Goiffon
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Betul Akgol Oksuz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Davide Baú
- Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Alain Kamgoué
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Sylvain Cantaloube
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
| | - Ye Zhan
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bryan Lajoie
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marc A Marti-Renom
- Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
- Genome Biology Program, Centre de Regulació Genòmica (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kerstin Bystricky
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
24
|
Liu T, Qiu QT, Hua KJ, Ma BG. Chromosome structure modeling tools and their evaluation in bacteria. Brief Bioinform 2024; 25:bbae044. [PMID: 38385874 PMCID: PMC10883143 DOI: 10.1093/bib/bbae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The three-dimensional (3D) structure of bacterial chromosomes is crucial for understanding chromosome function. With the growing availability of high-throughput chromosome conformation capture (3C/Hi-C) data, the 3D structure reconstruction algorithms have become powerful tools to study bacterial chromosome structure and function. It is highly desired to have a recommendation on the chromosome structure reconstruction tools to facilitate the prokaryotic 3D genomics. In this work, we review existing chromosome 3D structure reconstruction algorithms and classify them based on their underlying computational models into two categories: constraint-based modeling and thermodynamics-based modeling. We briefly compare these algorithms utilizing 3C/Hi-C datasets and fluorescence microscopy data obtained from Escherichia coli and Caulobacter crescentus, as well as simulated datasets. We discuss current challenges in the 3D reconstruction algorithms for bacterial chromosomes, primarily focusing on software usability. Finally, we briefly prospect future research directions for bacterial chromosome structure reconstruction algorithms.
Collapse
Affiliation(s)
- Tong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin-Tian Qiu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang-Jian Hua
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
25
|
Luo B, Zhang Z, Li B, Zhang H, Ma J, Li J, Han Z, Zhang C, Zhang S, Yu T, Zhang G, Ma P, Lan Y, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Zhang X, Gao S. Chromatin remodeling analysis reveals the RdDM pathway responds to low-phosphorus stress in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:33-52. [PMID: 37731059 DOI: 10.1111/tpj.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ziqi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Binyang Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Zheng Han
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ting Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Guidi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, SE-23422, Lomma, Sweden
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| |
Collapse
|
26
|
Yin ZT, Li XQ, Sun YX, Smith J, Hincke M, Yang N, Hou ZC. Selection on the promoter regions plays an important role in complex traits during duck domestication. BMC Biol 2023; 21:303. [PMID: 38129834 PMCID: PMC10740227 DOI: 10.1186/s12915-023-01801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Identifying the key factors that underlie complex traits during domestication is a great challenge for evolutionary and biological studies. In addition to the protein-coding region differences caused by variants, a large number of variants are located in the noncoding regions containing multiple types of regulatory elements. However, the roles of accumulated variants in gene regulatory elements during duck domestication and economic trait improvement are poorly understood. RESULTS We constructed a genomics, transcriptomics, and epigenomics map of the duck genome and assessed the evolutionary forces that have been in play across the whole genome during domestication. In total, 304 (42.94%) gene promoters have been specifically selected in Pekin duck among all selected genes. Joint multi-omics analysis reveals that 218 genes (72.01%) with selected promoters are located in open and active chromatin, and 267 genes (87.83%) with selected promoters were highly and differentially expressed in domestic trait-related tissues. One important candidate gene ELOVL3, with a strong signature of differentiation on the core promoter region, is known to regulate fatty acid elongation. Functional experiments showed that the nearly fixed variants in the top selected ELOVL3 promoter in Pekin duck decreased binding ability with HLF and increased gene expression, with the overexpression of ELOVL3 able to increase lipid deposition and unsaturated fatty acid enrichment. CONCLUSIONS This study presents genome resequencing, RNA-Seq, Hi-C, and ATAC-Seq data of mallard and Pekin duck, showing that selection of the gene promoter region plays an important role in gene expression and phenotypic changes during domestication and highlights that the variants of the ELOVL3 promoter may have multiple effects on fat and long-chain fatty acid content in ducks.
Collapse
Affiliation(s)
- Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yun-Xiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Maxwell Hincke
- Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, MARA, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
27
|
Armaos A, Serra F, Núñez-Carpintero I, Seo JH, Baca SC, Gustincich S, Valencia A, Freedman ML, Cirillo D, Giambartolomei C, Tartaglia GG. The PENGUIN approach to reconstruct protein interactions at enhancer-promoter regions and its application to prostate cancer. Nat Commun 2023; 14:8084. [PMID: 38057321 PMCID: PMC10700545 DOI: 10.1038/s41467-023-43767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/18/2023] [Indexed: 12/08/2023] Open
Abstract
We introduce Promoter-Enhancer-Guided Interaction Networks (PENGUIN), a method for studying protein-protein interaction (PPI) networks within enhancer-promoter interactions. PENGUIN integrates H3K27ac-HiChIP data with tissue-specific PPIs to define enhancer-promoter PPI networks (EPINs). We validated PENGUIN using cancer (LNCaP) and benign (LHSAR) prostate cell lines. Our analysis detected EPIN clusters enriched with the architectural protein CTCF, a regulator of enhancer-promoter interactions. CTCF presence was coupled with the prevalence of prostate cancer (PrCa) single nucleotide polymorphisms (SNPs) within the same EPIN clusters, suggesting functional implications in PrCa. Within the EPINs displaying enrichments in both CTCF and PrCa SNPs, we also show enrichment in oncogenes. We substantiated our identified SNPs through CRISPR/Cas9 knockout and RNAi screens experiments. Here we show that PENGUIN provides insights into the intricate interplay between enhancer-promoter interactions and PPI networks, which are crucial for identifying key genes and potential intervention targets. A dedicated server is available at https://penguin.life.bsc.es/ .
Collapse
Affiliation(s)
- Alexandros Armaos
- Istituto Italiano di Tecnologia, CHT@Erzelli, Via Enrico Melen 83, Building B, 7th floor, 16152, Genova, Italy
| | - François Serra
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti, Camí de les Escoles, 08916, Badalona, Barcelona, Spain
| | | | - Ji-Heui Seo
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Sylvan C Baca
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Stefano Gustincich
- Istituto Italiano di Tecnologia, CHT@Erzelli, Via Enrico Melen 83, Building B, 7th floor, 16152, Genova, Italy
| | - Alfonso Valencia
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- ICREA - Institució Catalana de Recerca I Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Matthew L Freedman
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA, 02215, USA
- Eli and Edythe L. Broad Institute, 415 Main St., Cambridge, MA, 02142, USA
| | - Davide Cirillo
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.
| | - Claudia Giambartolomei
- Istituto Italiano di Tecnologia, CHT@Erzelli, Via Enrico Melen 83, Building B, 7th floor, 16152, Genova, Italy.
- Health Data Science Centre, Human Technopole, Milan, Italy.
| | - Gian Gaetano Tartaglia
- Istituto Italiano di Tecnologia, CHT@Erzelli, Via Enrico Melen 83, Building B, 7th floor, 16152, Genova, Italy.
- ICREA - Institució Catalana de Recerca I Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
- Istituto Italiano di Tecnologia, CNLS@Sapienza, Viale Regina Elena, 00161, Rome, Italy.
| |
Collapse
|
28
|
Gao GF, Li P, Leonard WJ. Co-localization of clusters of TCR-regulated genes with TAD rearrangements. BMC Genomics 2023; 24:650. [PMID: 37898735 PMCID: PMC10613383 DOI: 10.1186/s12864-023-09693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/21/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Gene expression has long been known to be influenced by the relative proximity of DNA regulatory elements. Topologically associating domains (TADs) are self-interacting genomic regions involved in regulating gene expression by controlling the proximity of these elements. Prior studies of TADs and their biological roles have revealed correlations between TAD changes and cellular differentiation. Here, we used Hi-C and RNA-seq data to correlate TCR-induced changes in TAD structure and gene expression in human CD4+ T cells. RESULTS We developed a pipeline, Differentially Expressed Gene Enrichment Finder (DEGEF), that identifies regions of differentially expressed gene enrichment. Using DEGEF, we found that TCR-regulated genes cluster non-uniformly across the genome and that these clusters preferentially localized in regions of TAD rearrangement. Interestingly, clusters of upregulated genes preferentially formed new Hi-C contacts compared to downregulated clusters, suggesting that TCR-activated CD4+ T cells may regulate genes by changing stimulatory contacts rather than inhibitory contacts. CONCLUSIONS Our observations support a significant relationship between TAD rearrangements and changes in local gene expression. These findings indicate potentially important roles for TAD rearrangements in shaping their local regulatory environments and thus driving differential expression of nearby genes during CD4+ T cell activation. Moreover, they provide new insights into global mechanisms that regulate gene expression.
Collapse
Affiliation(s)
- Galen F Gao
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA.
| |
Collapse
|
29
|
Gong H, Zhang D, Zhang X. TOAST: A novel method for identifying topologically associated domains based on graph auto-encoders and clustering. Comput Struct Biotechnol J 2023; 21:4759-4768. [PMID: 37822562 PMCID: PMC10562672 DOI: 10.1016/j.csbj.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023] Open
Abstract
Topologically associated domains (TADs) play a pivotal role in disease detection. This study introduces a novel TADs recognition approach named TOAST, leveraging graph auto-encoders and clustering techniques. TOAST conceptualizes each genomic bin as a node of a graph and employs the Hi-C contact matrix as the graph's adjacency matrix. By employing graph auto-encoders, TOAST generates informative embeddings as features. Subsequently, the unsupervised clustering algorithm HDBSCAN is utilized to assign labels to each genomic bin, facilitating the identification of contiguous regions with the same label as TADs. Our experimental analysis of several simulated Hi-C data sets shows that TOAST can quickly and accurately identify TADs from different types of simulated Hi-C contact matrices, outperforming existing algorithms. We also determined the anchoring ratio of TAD boundaries by analyzing different TAD recognition algorithms, and obtained an average ratio of anchoring CTCF, SMC3, RAD21, POLR2A, H3K36me3, H3K9me3, H3K4me3, H3K4me1, Enhancer, and Promoters of 0.66, 0.47, 0.54, 0.27, 0.24, 0.12, 0.32, 0.41, 0.26, and 0.13, respectively. In conclusion, TOAST is a method that can quickly identify TAD boundary parameters that are easy to understand and have important biological significance. The TOAST web server can be accessed via http://223.223.185.189:4005/. The code of TOAST is available online at https://github.com/ghaiyan/TOAST.
Collapse
Affiliation(s)
- Haiyan Gong
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- School of Computer and Communication Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde innovation School, University of Science and Technology Beijing, Foshan, 528399, Guangdong, China
| | - Dawei Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde innovation School, University of Science and Technology Beijing, Foshan, 528399, Guangdong, China
| | - Xiaotong Zhang
- School of Computer and Communication Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde innovation School, University of Science and Technology Beijing, Foshan, 528399, Guangdong, China
| |
Collapse
|
30
|
Tapia Del Fierro A, den Hamer B, Benetti N, Jansz N, Chen K, Beck T, Vanyai H, Gurzau AD, Daxinger L, Xue S, Ly TTN, Wanigasuriya I, Iminitoff M, Breslin K, Oey H, Krom YD, van der Hoorn D, Bouwman LF, Johanson TM, Ritchie ME, Gouil QA, Reversade B, Prin F, Mohun T, van der Maarel SM, McGlinn E, Murphy JM, Keniry A, de Greef JC, Blewitt ME. SMCHD1 has separable roles in chromatin architecture and gene silencing that could be targeted in disease. Nat Commun 2023; 14:5466. [PMID: 37749075 PMCID: PMC10519958 DOI: 10.1038/s41467-023-40992-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
The interplay between 3D chromatin architecture and gene silencing is incompletely understood. Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances its silencing capacity at endogenous developmental targets. Moreover, it also results in enhanced silencing at the facioscapulohumeral muscular dystrophy associated macrosatellite-array, D4Z4, resulting in enhanced repression of DUX4 encoded by this repeat. Heightened SMCHD1 silencing perturbs developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the mutant SMCHD1 appears to enhance insulation against other epigenetic regulators, including PRC2 and CTCF, while depleting long range chromatin interactions akin to what is observed in the absence of SMCHD1. These data suggest that SMCHD1's role in long range chromatin interactions is not directly linked to gene silencing or insulating the chromatin, refining the model for how the different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in normal development and disease.
Collapse
Affiliation(s)
- Andres Tapia Del Fierro
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Bianca den Hamer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Natalia Benetti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kelan Chen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tamara Beck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Hannah Vanyai
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Alexandra D Gurzau
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Lucia Daxinger
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Shifeng Xue
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Thanh Thao Nguyen Ly
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Iromi Wanigasuriya
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Megan Iminitoff
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Kelsey Breslin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Harald Oey
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Yvonne D Krom
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Dinja van der Hoorn
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Linde F Bouwman
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Quentin A Gouil
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Bruno Reversade
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Fabrice Prin
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Timothy Mohun
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | | | - Edwina McGlinn
- EMBL Australia, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- The Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
31
|
Raffo A, Paulsen J. The shape of chromatin: insights from computational recognition of geometric patterns in Hi-C data. Brief Bioinform 2023; 24:bbad302. [PMID: 37646128 PMCID: PMC10516369 DOI: 10.1093/bib/bbad302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
The three-dimensional organization of chromatin plays a crucial role in gene regulation and cellular processes like deoxyribonucleic acid (DNA) transcription, replication and repair. Hi-C and related techniques provide detailed views of spatial proximities within the nucleus. However, data analysis is challenging partially due to a lack of well-defined, underpinning mathematical frameworks. Recently, recognizing and analyzing geometric patterns in Hi-C data has emerged as a powerful approach. This review provides a summary of algorithms for automatic recognition and analysis of geometric patterns in Hi-C data and their correspondence with chromatin structure. We classify existing algorithms on the basis of the data representation and pattern recognition paradigm they make use of. Finally, we outline some of the challenges ahead and promising future directions.
Collapse
Affiliation(s)
- Andrea Raffo
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Jonas Paulsen
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
32
|
Yang J, Zhu X, Wang R, Li M, Tang Q. Revisiting Assessment of Computational Methods for Hi-C Data Analysis. Int J Mol Sci 2023; 24:13814. [PMID: 37762117 PMCID: PMC10531246 DOI: 10.3390/ijms241813814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The performances of algorithms for Hi-C data preprocessing, the identification of topologically associating domains, and the detection of chromatin interactions and promoter-enhancer interactions have been mostly evaluated using semi-quantitative or synthetic data approaches, without utilizing the most recent methods, since 2017. In this study, we comprehensively evaluated 24 popular state-of-the-art methods for the complete end-to-end pipeline of Hi-C data analysis, using manually curated or experimentally validated benchmark datasets, including a CRISPR dataset for promoter-enhancer interaction validation. Our results indicate that, although no single method exhibited superior performance in all situations, HiC-Pro, DomainCaller, and Fit-Hi-C2 showed relatively balanced performances of most evaluation metrics for preprocessing, topologically associating domain identification, and chromatin interaction/promoter-enhancer interaction detection, respectively. The comprehensive comparison presented in this manuscript provides a reference for researchers to choose Hi-C analysis tools that best suit their needs.
Collapse
Affiliation(s)
- Jing Yang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (X.Z.); (R.W.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Xingxing Zhu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (X.Z.); (R.W.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Rui Wang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (X.Z.); (R.W.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (X.Z.); (R.W.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Qianzi Tang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.Y.); (X.Z.); (R.W.)
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| |
Collapse
|
33
|
Schuette G, Ding X, Zhang B. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction. Biophys J 2023; 122:3425-3438. [PMID: 37496267 PMCID: PMC10502442 DOI: 10.1016/j.bpj.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Genome-wide chromosome conformation capture (Hi-C) experiments have revealed many structural features of chromatin across multiple length scales. Further understanding genome organization requires relating these discoveries to the mechanisms that establish chromatin structures and reconstructing these structures in three dimensions, but both objectives are difficult to achieve with existing algorithms that are often computationally expensive. To alleviate this challenge, we present an algorithm that efficiently converts Hi-C data into contact energies, which measure the interaction strength between genomic loci brought into proximity. Contact energies are local quantities unaffected by the topological constraints that correlate Hi-C contact probabilities. Thus, extracting contact energies from Hi-C contact probabilities distills the biologically unique information contained in the data. We show that contact energies reveal the location of chromatin loop anchors, support a phase separation mechanism for genome compartmentalization, and parameterize polymer simulations that predict three-dimensional chromatin structures. Therefore, we anticipate that contact energy extraction will unleash the full potential of Hi-C data and that our inversion algorithm will facilitate the widespread adoption of contact energy analysis.
Collapse
Affiliation(s)
- Greg Schuette
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
34
|
Christou-Kent M, Cuartero S, Garcia-Cabau C, Ruehle J, Naderi J, Erber J, Neguembor MV, Plana-Carmona M, Alcoverro-Bertran M, De Andres-Aguayo L, Klonizakis A, Julià-Vilella E, Lynch C, Serrano M, Hnisz D, Salvatella X, Graf T, Stik G. CEBPA phase separation links transcriptional activity and 3D chromatin hubs. Cell Rep 2023; 42:112897. [PMID: 37516962 DOI: 10.1016/j.celrep.2023.112897] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
Cell identity is orchestrated through an interplay between transcription factor (TF) action and genome architecture. The mechanisms used by TFs to shape three-dimensional (3D) genome organization remain incompletely understood. Here we present evidence that the lineage-instructive TF CEBPA drives extensive chromatin compartment switching and promotes the formation of long-range chromatin hubs during induced B cell-to-macrophage transdifferentiation. Mechanistically, we find that the intrinsically disordered region (IDR) of CEBPA undergoes in vitro phase separation (PS) dependent on aromatic residues. Both overexpressing B cells and native CEBPA-expressing cell types such as primary granulocyte-macrophage progenitors, liver cells, and trophectoderm cells reveal nuclear CEBPA foci and long-range 3D chromatin hubs at CEBPA-bound regions. In short, we show that CEBPA can undergo PS through its IDR, which may underlie in vivo foci formation and suggest a potential role of PS in regulating CEBPA function.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Julia Ruehle
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Julian Naderi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Julia Erber
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Marcos Plana-Carmona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Luisa De Andres-Aguayo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Antonios Klonizakis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Cian Lynch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GP, UK
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GP, UK
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Grégoire Stik
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
| |
Collapse
|
35
|
Yildirim A, Hua N, Boninsegna L, Zhan Y, Polles G, Gong K, Hao S, Li W, Zhou XJ, Alber F. Evaluating the role of the nuclear microenvironment in gene function by population-based modeling. Nat Struct Mol Biol 2023; 30:1193-1206. [PMID: 37580627 PMCID: PMC10442234 DOI: 10.1038/s41594-023-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/16/2023] [Indexed: 08/16/2023]
Abstract
The nuclear folding of chromosomes relative to nuclear bodies is an integral part of gene function. Here, we demonstrate that population-based modeling-from ensemble Hi-C data-provides a detailed description of the nuclear microenvironment of genes and its role in gene function. We define the microenvironment by the subnuclear positions of genomic regions with respect to nuclear bodies, local chromatin compaction, and preferences in chromatin compartmentalization. These structural descriptors are determined in single-cell models, thereby revealing the structural variability between cells. We demonstrate that the microenvironment of a genomic region is linked to its functional potential in gene transcription, replication, and chromatin compartmentalization. Some chromatin regions feature a strong preference for a single microenvironment, due to association with specific nuclear bodies in most cells. Other chromatin shows high structural variability, which is a strong indicator of functional heterogeneity. Moreover, we identify specialized nuclear microenvironments, which distinguish chromatin in different functional states and reveal a key role of nuclear speckles in chromosome organization. We demonstrate that our method produces highly predictive three-dimensional genome structures, which accurately reproduce data from a variety of orthogonal experiments, thus considerably expanding the range of Hi-C data analysis.
Collapse
Affiliation(s)
- Asli Yildirim
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Nan Hua
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Lorenzo Boninsegna
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Yuxiang Zhan
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Guido Polles
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Ke Gong
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Shengli Hao
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Wenyuan Li
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xianghong Jasmine Zhou
- Department of Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Frank Alber
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Schuette G, Ding X, Zhang B. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533194. [PMID: 36993500 PMCID: PMC10055272 DOI: 10.1101/2023.03.17.533194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genome-wide chromosome conformation capture (Hi-C) experiments have revealed many structural features of chromatin across multiple length scales. Further understanding genome organization requires relating these discoveries to the mechanisms that establish chromatin structures and reconstructing these structures in three dimensions, but both objectives are difficult to achieve with existing algorithms that are often computationally expensive. To alleviate this challenge, we present an algorithm that efficiently converts Hi-C data into contact energies, which measure the interaction strength between genomic loci brought into proximity. Contact energies are local quantities unaffected by the topological constraints that correlate Hi-C contact probabilities. Thus, extracting contact energies from Hi-C contact probabilities distills the biologically unique information contained in the data. We show that contact energies reveal the location of chromatin loop anchors, support a phase separation mechanism for genome compartmentalization, and parameterize polymer simulations that predict three-dimensional chromatin structures. Therefore, we anticipate that contact energy extraction will unleash the full potential of Hi-C data and that our inversion algorithm will facilitate the widespread adoption of contact energy analysis.
Collapse
Affiliation(s)
- Greg Schuette
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
37
|
Schoonhoven AOV, de Bruijn MJ, Stikker B, Brouwer RW, Braunstahl GJ, van IJcken WF, Graf T, Huylebroeck D, Hendriks RW, Stik G, Stadhouders R. 3D chromatin reprogramming primes human memory T H2 cells for rapid recall and pathogenic dysfunction. Sci Immunol 2023; 8:eadg3917. [PMID: 37418545 PMCID: PMC7617366 DOI: 10.1126/sciimmunol.adg3917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
Memory T cells provide long-lasting defense responses through their ability to rapidly reactivate, but how they efficiently "recall" an inflammatory transcriptional program remains unclear. Here, we show that human CD4+ memory T helper 2 (TH2) cells carry a chromatin landscape synergistically reprogrammed at both one-dimensional (1D) and 3D levels to accommodate recall responses, which is absent in naive T cells. In memory TH2 cells, recall genes were epigenetically primed through the maintenance of transcription-permissive chromatin at distal (super)enhancers organized in long-range 3D chromatin hubs. Precise transcriptional control of key recall genes occurred inside dedicated topologically associating domains ("memory TADs"), in which activation-associated promoter-enhancer interactions were preformed and exploited by AP-1 transcription factors to promote rapid transcriptional induction. Resting memory TH2 cells from patients with asthma showed premature activation of primed recall circuits, linking aberrant transcriptional control of recall responses to chronic inflammation. Together, our results implicate stable multiscale reprogramming of chromatin organization as a key mechanism underlying immunological memory and dysfunction in T cells.
Collapse
Affiliation(s)
- Anne Onrust-van Schoonhoven
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjolein J.W. de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bernard Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rutger W.W. Brouwer
- Center for Biomics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gert-Jan Braunstahl
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | | | - Thomas Graf
- Centre for Genomic Regulation (CRG) and Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Grégoire Stik
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
38
|
Tolokh IS, Kinney NA, Sharakhov IV, Onufriev AV. Strong interactions between highly dynamic lamina-associated domains and the nuclear envelope stabilize the 3D architecture of Drosophila interphase chromatin. Epigenetics Chromatin 2023; 16:21. [PMID: 37254161 PMCID: PMC10228000 DOI: 10.1186/s13072-023-00492-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Interactions among topologically associating domains (TADs), and between the nuclear envelope (NE) and lamina-associated domains (LADs) are expected to shape various aspects of three-dimensional (3D) chromatin structure and dynamics; however, relevant genome-wide experiments that may provide statistically significant conclusions remain difficult. RESULTS We have developed a coarse-grained dynamical model of D. melanogaster nuclei at TAD resolution that explicitly accounts for four distinct epigenetic classes of TADs and LAD-NE interactions. The model is parameterized to reproduce the experimental Hi-C map of the wild type (WT) nuclei; it describes time evolution of the chromatin over the G1 phase of the interphase. The simulations include an ensemble of nuclei, corresponding to the experimentally observed set of several possible mutual arrangements of chromosomal arms. The model is validated against multiple structural features of chromatin from several different experiments not used in model development. Predicted positioning of all LADs at the NE is highly dynamic-the same LAD can attach, detach and move far away from the NE multiple times during interphase. The probabilities of LADs to be in contact with the NE vary by an order of magnitude, despite all having the same affinity to the NE in the model. These probabilities are mostly determined by a highly variable local linear density of LADs along the genome, which also has the same strong effect on the predicted positioning of individual TADs -- higher probability of a TAD to be near NE is largely determined by a higher linear density of LADs surrounding this TAD. The distribution of LADs along the chromosome chains plays a notable role in maintaining a non-random average global structure of chromatin. Relatively high affinity of LADs to the NE in the WT nuclei substantially reduces sensitivity of the global radial chromatin distribution to variations in the strength of TAD-TAD interactions compared to the lamin depleted nuclei, where a small (0.5 kT) increase of cross-type TAD-TAD interactions doubles the chromatin density in the central nucleus region. CONCLUSIONS A dynamical model of the entire fruit fly genome makes multiple genome-wide predictions of biological interest. The distribution of LADs along the chromatin chains affects their probabilities to be in contact with the NE and radial positioning of highly mobile TADs, playing a notable role in creating a non-random average global structure of the chromatin. We conjecture that an important role of attractive LAD-NE interactions is to stabilize global chromatin structure against inevitable cell-to-cell variations in TAD-TAD interactions.
Collapse
Affiliation(s)
- Igor S. Tolokh
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
| | - Nicholas Allen Kinney
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061 USA
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060 USA
| | | | - Alexey V. Onufriev
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
- Department of Physics, Virginia Tech, Blacksburg, VA 24061 USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
39
|
Gimenez-Llorente D, Portela M, Losada A, Manzanares M, Andreu MJ. A protocol to study three-dimensional genome structure in individual mutant preimplantation mouse embryos. STAR Protoc 2023; 4:102267. [PMID: 37126445 PMCID: PMC10165443 DOI: 10.1016/j.xpro.2023.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/02/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Hi-C studies the three-dimensional structure of the genome by detecting genome-wide chromatin regions that are in spatial proximity within the nucleus. We developed single-blastocyst Hi-C in mutant mouse embryos to genotype them on sequence. We describe steps for embryo fixation and nuclei permeabilization, after which chromatin is digested and re-ligated having incorporated a biotin-labeled nucleotide at the ligation junction. After cross-link reversal, we then detail purification of immobilized chimeric DNA ligations, library generation, sequencing, and genome-wide analysis of interactions. For complete details on the use and execution of this protocol, please refer to Andreu et al. (2022).1.
Collapse
Affiliation(s)
| | - Marta Portela
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ana Losada
- Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain
| | - Miguel Manzanares
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Jose Andreu
- Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
40
|
Marlétaz F, de la Calle-Mustienes E, Acemel RD, Paliou C, Naranjo S, Martínez-García PM, Cases I, Sleight VA, Hirschberger C, Marcet-Houben M, Navon D, Andrescavage A, Skvortsova K, Duckett PE, González-Rajal Á, Bogdanovic O, Gibcus JH, Yang L, Gallardo-Fuentes L, Sospedra I, Lopez-Rios J, Darbellay F, Visel A, Dekker J, Shubin N, Gabaldón T, Nakamura T, Tena JJ, Lupiáñez DG, Rokhsar DS, Gómez-Skarmeta JL. The little skate genome and the evolutionary emergence of wing-like fins. Nature 2023; 616:495-503. [PMID: 37046085 PMCID: PMC10115646 DOI: 10.1038/s41586-023-05868-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/21/2023] [Indexed: 04/14/2023]
Abstract
Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Elisa de la Calle-Mustienes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
- Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Christina Paliou
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Victoria A Sleight
- Department of Zoology, University of Cambridge, Cambridge, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Dina Navon
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Ali Andrescavage
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Ksenia Skvortsova
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Edward Duckett
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Álvaro González-Rajal
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Johan H Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Ismael Sospedra
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Neil Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain.
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| |
Collapse
|
41
|
Dang D, Zhang SW, Duan R, Zhang S. Defining the separation landscape of topological domains for decoding consensus domain organization of the 3D genome. Genome Res 2023; 33:386-400. [PMID: 36894325 PMCID: PMC10078287 DOI: 10.1101/gr.277187.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Topologically associating domains (TADs) have emerged as basic structural and functional units of genome organization and have been determined by many computational methods from Hi-C contact maps. However, the TADs obtained by different methods vary greatly, which makes the accurate determination of TADs a challenging issue and hinders subsequent biological analyses about their organization and functions. Obvious inconsistencies among the TADs identified by different methods indeed make the statistical and biological properties of TADs overly depend on the chosen method rather than on the data. To this end, we use the consensus structural information captured by these methods to define the TAD separation landscape for decoding the consensus domain organization of the 3D genome. We show that the TAD separation landscape could be used to compare domain boundaries across multiple cell types for discovering conserved and divergent topological structures, decipher three types of boundary regions with diverse biological features, and identify consensus TADs (ConsTADs). We illustrate that these analyses could deepen our understanding of the relationships between the topological domains and chromatin states, gene expression, and DNA replication timing.
Collapse
Affiliation(s)
- Dachang Dang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China;
| | - Ran Duan
- Department of Software Engineering, Yunnan University, Kunming 650500, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
42
|
Zhao Y, Ding Y, He L, Zhou Q, Chen X, Li Y, Alfonsi MV, Wu Z, Sun H, Wang H. Multiscale 3D genome reorganization during skeletal muscle stem cell lineage progression and aging. SCIENCE ADVANCES 2023; 9:eabo1360. [PMID: 36800432 PMCID: PMC9937580 DOI: 10.1126/sciadv.abo1360] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/17/2023] [Indexed: 06/13/2023]
Abstract
Little is known about three-dimensional (3D) genome organization in skeletal muscle stem cells [also called satellite cells (SCs)]. Here, we comprehensively map the 3D genome topology reorganization during mouse SC lineage progression. Specifically, rewiring at the compartment level is most pronounced when SCs become activated. Marked loss in topologically associating domain (TAD) border insulation and chromatin looping also occurs during early activation process. Meanwhile, TADs can form TAD clusters and super-enhancer-containing TAD clusters orchestrate stage-specific gene expression. Furthermore, we uncover that transcription factor PAX7 is pivotal in enhancer-promoter (E-P) loop formation. We also identify cis-regulatory elements that are crucial for local chromatin organization at Pax7 locus and Pax7 expression. Lastly, we unveil that geriatric SC displays a prominent gain in long-range contacts and loss of TAD border insulation. Together, our results uncover that 3D chromatin extensively reorganizes at multiple architectural levels and underpins the transcriptome remodeling during SC lineage development and SC aging.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yingzhe Ding
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Liangqiang He
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qin Zhou
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaona Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuying Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Maria Vittoria Alfonsi
- Division of Life Science, the State Key Laboratory on Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhenguo Wu
- Division of Life Science, the State Key Laboratory on Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Open2C, Abdennur N, Fudenberg G, Flyamer IM, Galitsyna AA, Goloborodko A, Imakaev M, Venev SV. Pairtools: from sequencing data to chromosome contacts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528389. [PMID: 36824968 PMCID: PMC9949071 DOI: 10.1101/2023.02.13.528389] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The field of 3D genome organization produces large amounts of sequencing data from Hi-C and a rapidly-expanding set of other chromosome conformation protocols (3C+). Massive and heterogeneous 3C+ data require high-performance and flexible processing of sequenced reads into contact pairs. To meet these challenges, we present pairtools - a flexible suite of tools for contact extraction from sequencing data. Pairtools provides modular command-line interface (CLI) tools that can be flexibly chained into data processing pipelines. Pairtools provides both crucial core tools as well as auxiliary tools for building feature-rich 3C+ pipelines, including contact pair manipulation, filtration, and quality control. Benchmarking pairtools against popular 3C+ data pipelines shows advantages of pairtools for high-performance and flexible 3C+ analysis. Finally, pairtools provides protocol-specific tools for multi-way contacts, haplotype-resolved contacts, and single-cell Hi-C. The combination of CLI tools and tight integration with Python data analysis libraries makes pairtools a versatile foundation for a broad range of 3C+ pipelines.
Collapse
Affiliation(s)
- Open2C
- https://open2c.github.io/
| | - Nezar Abdennur
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, MA
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Geoffrey Fudenberg
- Department of Computational and Quantitative Biology, University of Southern California, Los Angeles, CA, USA
| | - Ilya M. Flyamer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Aleksandra A. Galitsyna
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Anton Goloborodko
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Maxim Imakaev
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Sergey V. Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
44
|
Unveiling the Machinery behind Chromosome Folding by Polymer Physics Modeling. Int J Mol Sci 2023; 24:ijms24043660. [PMID: 36835064 PMCID: PMC9967178 DOI: 10.3390/ijms24043660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding the mechanisms underlying the complex 3D architecture of mammalian genomes poses, at a more fundamental level, the problem of how two or multiple genomic sites can establish physical contacts in the nucleus of the cells. Beyond stochastic and fleeting encounters related to the polymeric nature of chromatin, experiments have revealed specific, privileged patterns of interactions that suggest the existence of basic organizing principles of folding. In this review, we focus on two major and recently proposed physical processes of chromatin organization: loop-extrusion and polymer phase-separation, both supported by increasing experimental evidence. We discuss their implementation into polymer physics models, which we test against available single-cell super-resolution imaging data, showing that both mechanisms can cooperate to shape chromatin structure at the single-molecule level. Next, by exploiting the comprehension of the underlying molecular mechanisms, we illustrate how such polymer models can be used as powerful tools to make predictions in silico that can complement experiments in understanding genome folding. To this aim, we focus on recent key applications, such as the prediction of chromatin structure rearrangements upon disease-associated mutations and the identification of the putative chromatin organizing factors that orchestrate the specificity of DNA regulatory contacts genome-wide.
Collapse
|
45
|
Rosen J, Lee L, Abnousi A, Chen J, Wen J, Hu M, Li Y. HPTAD: A computational method to identify topologically associating domains from HiChIP and PLAC-seq datasets. Comput Struct Biotechnol J 2023; 21:931-939. [PMID: 38213897 PMCID: PMC10782010 DOI: 10.1016/j.csbj.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
High-throughput chromatin conformation capture technologies, such as Hi-C and Micro-C, have enabled genome-wide view of chromatin spatial organization. Most recently, Hi-C-derived enrichment-based technologies, including HiChIP and PLAC-seq, offer attractive alternatives due to their high signal-to-noise ratio and low cost. While a series of computational tools have been developed for Hi-C data, methods tailored for HiChIP and PLAC-seq data are still under development. Here we present HPTAD, a computational method to identify topologically associating domains (TADs) from HiChIP and PLAC-seq data. We performed comprehensive benchmark analysis to demonstrate its superior performance over existing TAD callers designed for Hi-C data. HPTAD is freely available at https://github.com/yunliUNC/HPTAD.
Collapse
Affiliation(s)
- Jonathan Rosen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Liu K, Li HD, Li Y, Wang J, Wang J. A Comparison of Topologically Associating Domain Callers Based on Hi-C Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:15-29. [PMID: 35104223 DOI: 10.1109/tcbb.2022.3147805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Topologically associating domains (TADs) are local chromatin interaction domains, which have been shown to play an important role in gene expression regulation. TADs were originally discovered in the investigation of 3D genome organization based on High-throughput Chromosome Conformation Capture (Hi-C) data. Continuous considerable efforts have been dedicated to developing methods for detecting TADs from Hi-C data. Different computational methods for TADs identification vary in their assumptions and criteria in calling TADs. As a consequence, the TADs called by these methods differ in their similarities and biological features they are enriched in. In this work, we performed a systematic comparison of twenty-six TAD callers. We first compared the TADs and gaps between adjacent TADs across different methods, resolutions, and sequencing depths. We then assessed the quality of TADs and TAD boundaries according to three criteria: the decay of contact frequencies over the genomic distance, enrichment and depletion of regulatory elements around TAD boundaries, and reproducibility of TADs and TAD boundaries in replicate samples. Last, due to the lack of a gold standard of TADs, we also evaluated the performance of the methods on synthetic datasets. We discussed the key principles of TAD callers, and pinpointed current situation in the detection of TADs. We provide a concise, comprehensive, and systematic framework for evaluating the performance of TAD callers, and expect our work will provide useful guidance in choosing suitable approaches for the detection and evaluation of TADs.
Collapse
|
47
|
Álvarez-González L, Arias-Sardá C, Montes-Espuña L, Marín-Gual L, Vara C, Lister NC, Cuartero Y, Garcia F, Deakin J, Renfree MB, Robinson TJ, Martí-Renom MA, Waters PD, Farré M, Ruiz-Herrera A. Principles of 3D chromosome folding and evolutionary genome reshuffling in mammals. Cell Rep 2022; 41:111839. [PMID: 36543130 DOI: 10.1016/j.celrep.2022.111839] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/01/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Studying the similarities and differences in genomic interactions between species provides fertile grounds for determining the evolutionary dynamics underpinning genome function and speciation. Here, we describe the principles of 3D genome folding in vertebrates and show how lineage-specific patterns of genome reshuffling can result in different chromatin configurations. We (1) identified different patterns of chromosome folding in across vertebrate species (centromere clustering versus chromosomal territories); (2) reconstructed ancestral marsupial and afrotherian genomes analyzing whole-genome sequences of species representative of the major therian phylogroups; (3) detected lineage-specific chromosome rearrangements; and (4) identified the dynamics of the structural properties of genome reshuffling through therian evolution. We present evidence of chromatin configurational changes that result from ancestral inversions and fusions/fissions. We catalog the close interplay between chromatin higher-order organization and therian genome evolution and introduce an interpretative hypothesis that explains how chromatin folding influences evolutionary patterns of genome reshuffling.
Collapse
Affiliation(s)
- Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | - Laia Montes-Espuña
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Covadonga Vara
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Nicholas C Lister
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yasmina Cuartero
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Francisca Garcia
- Servei de Cultius Cel.lulars-SCAC, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Janine Deakin
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia
| | - Marilyn B Renfree
- School of Biosciences, The University of Melbourne, Victoria, VIC 3010, Australia
| | - Terence J Robinson
- Evolutionary Genomics Group, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Marc A Martí-Renom
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028 Barcelona, Spain; Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Marta Farré
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
48
|
Ding T, Zhang H. Novel biological insights revealed from the investigation of multiscale genome architecture. Comput Struct Biotechnol J 2022; 21:312-325. [PMID: 36582436 PMCID: PMC9791078 DOI: 10.1016/j.csbj.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gene expression and cell fate determination require precise and coordinated epigenetic regulation. The complex three-dimensional (3D) genome organization plays a critical role in transcription in myriad biological processes. A wide range of architectural features of the 3D genome, including chromatin loops, topologically associated domains (TADs), chromatin compartments, and phase separation, together regulate the chromatin state and transcriptional activity at multiple levels. With the help of 3D genome informatics, recent biochemistry and imaging approaches based on different strategies have revealed functional interactions among biomacromolecules, even at the single-cell level. Here, we review the occurrence, mechanistic basis, and functional implications of dynamic genome organization, and outline recent experimental and computational approaches for profiling multiscale genome architecture to provide robust tools for studying the 3D genome.
Collapse
Affiliation(s)
- Tianyi Ding
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China
| | - He Zhang
- Institute for Regenerative Medicine of Shanghai East Hospital, Frontier Science Research Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai, PR China
| |
Collapse
|
49
|
Di Stefano M, Cavalli G. Integrative studies of 3D genome organization and chromatin structure. Curr Opin Struct Biol 2022; 77:102493. [PMID: 36335845 DOI: 10.1016/j.sbi.2022.102493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The structural organization of the genome is emerging as a crucial regulator of the cell state, affecting gene transcription, DNA replication, and repair. Over the last twenty years, increasing evidence prompted the development of new experimental techniques to study genome structure. In parallel with the complexity of the novel techniques, computational approaches have become an essential tool in any structural genomics laboratory to analyze and model the data. For biologists to be able to apply the most appropriate modeling approach, it is fundamental to understand the conceptual bases of distinct methods and the insights they can provide. Here, we will discuss recent advances that were possible thanks to 3D genome modeling, discuss their limitations and highlight future perspectives.
Collapse
Affiliation(s)
- Marco Di Stefano
- Institute of Human Genetics, CNRS and University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090, Montpellier, France. https://twitter.com/@MarcDiEsse
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, 34094 Cedex 5, 141 Rue de la Cardonille, 34090, Montpellier, France.
| |
Collapse
|
50
|
Zelenka T, Klonizakis A, Tsoukatou D, Papamatheakis DA, Franzenburg S, Tzerpos P, Tzonevrakis IR, Papadogkonas G, Kapsetaki M, Nikolaou C, Plewczynski D, Spilianakis C. The 3D enhancer network of the developing T cell genome is shaped by SATB1. Nat Commun 2022; 13:6954. [PMID: 36376298 PMCID: PMC9663569 DOI: 10.1038/s41467-022-34345-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanisms of tissue-specific gene expression regulation via 3D genome organization are poorly understood. Here we uncover the regulatory chromatin network of developing T cells and identify SATB1, a tissue-specific genome organizer, enriched at the anchors of promoter-enhancer loops. We have generated a T-cell specific Satb1 conditional knockout mouse which allows us to infer the molecular mechanisms responsible for the deregulation of its immune system. H3K27ac HiChIP and Hi-C experiments indicate that SATB1-dependent promoter-enhancer loops regulate expression of master regulator genes (such as Bcl6), the T cell receptor locus and adhesion molecule genes, collectively being critical for cell lineage specification and immune system homeostasis. SATB1-dependent regulatory chromatin loops represent a more refined layer of genome organization built upon a high-order scaffold provided by CTCF and other factors. Overall, our findings unravel the function of a tissue-specific factor that controls transcription programs, via spatial chromatin arrangements complementary to the chromatin structure imposed by ubiquitously expressed genome organizers.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Despina Tsoukatou
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | | - Petros Tzerpos
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032, Hungary
| | | | - George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Manouela Kapsetaki
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", 16672, Vari, Greece
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece.
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| |
Collapse
|