1
|
Barta T, Monsempès C, Demondion E, Chatterjee A, Kostal L, Lucas P. Stimulus duration encoding occurs early in the moth olfactory pathway. Commun Biol 2024; 7:1252. [PMID: 39363042 PMCID: PMC11449909 DOI: 10.1038/s42003-024-06921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Pheromones convey rich ethological information and guide insects' search behavior. Insects navigating in turbulent environments are tasked with the challenge of coding the temporal structure of an odor plume, obliging recognition of the onset and offset of whiffs of odor. The coding mechanisms that shape odor offset recognition remain elusive. We designed a device to deliver sharp pheromone pulses and simultaneously measured the response dynamics from pheromone-tuned olfactory receptor neurons (ORNs) in male moths and Drosophila. We show that concentration-invariant stimulus duration encoding is implemented in moth ORNs by spike frequency adaptation at two time scales. A linear-nonlinear model fully captures the underlying neural computations and offers an insight into their biophysical mechanisms. Drosophila use pheromone cis-vaccenyl acetate (cVA) only for very short distance communication and are not faced with the need to encode the statistics of the cVA plume. Their cVA-sensitive ORNs are indeed unable to encode odor-off events. Expression of moth pheromone receptors in Drosophila cVA-sensitive ORNs indicates that stimulus-offset coding is receptor independent. In moth ORNs, stimulus-offset coding breaks down for short ( < 200 ms) whiffs. This physiological constraint matches the behavioral latency of switching from the upwind surge to crosswind cast flight upon losing contact with the pheromone.
Collapse
Affiliation(s)
- Tomas Barta
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna, 904-0412, Okinawa, Japan.
| | - Christelle Monsempès
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Elodie Demondion
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Abhishek Chatterjee
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France
| | - Lubomir Kostal
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
| | - Philippe Lucas
- Department of Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Route de Saint Cyr, Versailles, 78000, France.
| |
Collapse
|
2
|
Kim B, Haney S, Milan AP, Joshi S, Aldworth Z, Rulkov N, Kim AT, Bazhenov M, Stopfer MA. Olfactory receptor neurons generate multiple response motifs, increasing coding space dimensionality. eLife 2023; 12:79152. [PMID: 36719272 PMCID: PMC9925048 DOI: 10.7554/elife.79152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/31/2023] [Indexed: 02/01/2023] Open
Abstract
Odorants binding to olfactory receptor neurons (ORNs) trigger bursts of action potentials, providing the brain with its only experience of the olfactory environment. Our recordings made in vivo from locust ORNs showed that odor-elicited firing patterns comprise four distinct response motifs, each defined by a reliable temporal profile. Different odorants could elicit different response motifs from a given ORN, a property we term motif switching. Further, each motif undergoes its own form of sensory adaptation when activated by repeated plume-like odor pulses. A computational model constrained by our recordings revealed that organizing responses into multiple motifs provides substantial benefits for classifying odors and processing complex odor plumes: each motif contributes uniquely to encode the plume's composition and structure. Multiple motifs and motif switching further improve odor classification by expanding coding dimensionality. Our model demonstrated that these response features could provide benefits for olfactory navigation, including determining the distance to an odor source.
Collapse
Affiliation(s)
- Brian Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
- Brown University - National Institutes of Health Graduate Partnership ProgramProvidenceUnited States
| | - Seth Haney
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Ana P Milan
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Shruti Joshi
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Zane Aldworth
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
| | - Nikolai Rulkov
- Biocircuits Institute, University of California, San DiegoLa JollaUnited States
| | - Alexander T Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
| | - Maxim Bazhenov
- Department of Medicine, University of California, San DiegoSan DiegoUnited States
| | - Mark A Stopfer
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUnited States
| |
Collapse
|
3
|
Spike frequency adaptation facilitates the encoding of input gradient in insect olfactory projection neurons. Biosystems 2023; 223:104802. [PMID: 36375712 DOI: 10.1016/j.biosystems.2022.104802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
The olfactory system in insects has evolved to process the dynamic changes in the concentration of food odors or sex pheromones to localize the nutrients or conspecific mating partners. Experimental studies have suggested that projection neurons (PNs) in insects encode not only the stimulus intensity but also its rate-of-change (input gradient). In this study, we aim to develop a simple computational model for a PN to understand the mechanism underlying the coding of the rate-of-change information. We show that the spike frequency adaptation is a potential key mechanism for reproducing the phasic response pattern of the PN in Drosophila. We also demonstrate that this adaptation mechanism enables the PN to encode the rate-of-change of the input firing rate. Finally, our model predicts that the PN exhibits the intensity-invariant response for the pulse and ramp odor stimulus. These results suggest that the developed model is useful for investigating the coding principle underlying olfactory information processing in insects.
Collapse
|
4
|
Rigolli N, Magnoli N, Rosasco L, Seminara A. Learning to predict target location with turbulent odor plumes. eLife 2022; 11:72196. [PMID: 35959726 PMCID: PMC9374438 DOI: 10.7554/elife.72196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Animal behavior and neural recordings show that the brain is able to measure both the intensity and the timing of odor encounters. However, whether intensity or timing of odor detections is more informative for olfactory-driven behavior is not understood. To tackle this question, we consider the problem of locating a target using the odor it releases. We ask whether the position of a target is best predicted by measures of timing vs intensity of its odor, sampled for a short period of time. To answer this question, we feed data from accurate numerical simulations of odor transport to machine learning algorithms that learn how to connect odor to target location. We find that both intensity and timing can separately predict target location even from a distance of several meters; however, their efficacy varies with the dilution of the odor in space. Thus, organisms that use olfaction from different ranges may have to switch among different modalities. This has implications on how the brain should represent odors as the target is approached. We demonstrate simple strategies to improve accuracy and robustness of the prediction by modifying odor sampling and appropriately combining distinct measures together. To test the predictions, animal behavior and odor representation should be monitored as the animal moves relative to the target, or in virtual conditions that mimic concentrated vs dilute environments.
Collapse
Affiliation(s)
- Nicola Rigolli
- Department of Physics, University of Genova, Genova, Italy.,Institut de Physique de Nice, Université Côte d'Azur, Centre National de la Recherche Scientifique, Nice, France.,National Institute of Nuclear Physics, Genova, Italy.,MalGa, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| | - Nicodemo Magnoli
- Department of Physics, University of Genova, Genova, Italy.,National Institute of Nuclear Physics, Genova, Italy
| | - Lorenzo Rosasco
- MaLGa, Department of computer science, bioengineering, robotics and systems engineering, University of Genova, Genova, Italy
| | - Agnese Seminara
- Institut de Physique de Nice, Université Côte d'Azur, Centre National de la Recherche Scientifique, Nice, France.,MalGa, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| |
Collapse
|
5
|
Jayaram V, Kadakia N, Emonet T. Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes. eLife 2022; 11:e72415. [PMID: 35072625 PMCID: PMC8871351 DOI: 10.7554/elife.72415] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
We and others have shown that during odor plume navigation, walking Drosophila melanogaster bias their motion upwind in response to both the frequency of their encounters with the odor (Demir et al., 2020) and the intermittency of the odor signal, which we define to be the fraction of time the signal is above a detection threshold (Alvarez-Salvado et al., 2018). Here, we combine and simplify previous mathematical models that recapitulated these data to investigate the benefits of sensing both of these temporal features and how these benefits depend on the spatiotemporal statistics of the odor plume. Through agent-based simulations, we find that navigators that only use frequency or intermittency perform well in some environments - achieving maximal performance when gains are near those inferred from experiment - but fail in others. Robust performance across diverse environments requires both temporal modalities. However, we also find a steep trade-off when using both sensors simultaneously, suggesting a strong benefit to modulating how much each sensor is weighted, rather than using both in a fixed combination across plumes. Finally, we show that the circuitry of the Drosophila olfactory periphery naturally enables simultaneous intermittency and frequency sensing, enhancing robust navigation through a diversity of odor environments. Together, our results suggest that the first stage of olfactory processing selects and encodes temporal features of odor signals critical to real-world navigation tasks.
Collapse
Affiliation(s)
- Viraaj Jayaram
- Department of Physics, Yale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Quantitative Biology Institute, Yale UniversityNew HavenUnited States
| | - Nirag Kadakia
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Quantitative Biology Institute, Yale UniversityNew HavenUnited States
| | - Thierry Emonet
- Department of Physics, Yale UniversityNew HavenUnited States
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
- Quantitative Biology Institute, Yale UniversityNew HavenUnited States
| |
Collapse
|
6
|
Pannunzi M, Nowotny T. Non-synaptic interactions between olfactory receptor neurons, a possible key feature of odor processing in flies. PLoS Comput Biol 2021; 17:e1009583. [PMID: 34898600 PMCID: PMC8668107 DOI: 10.1371/journal.pcbi.1009583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
When flies explore their environment, they encounter odors in complex, highly intermittent plumes. To navigate a plume and, for example, find food, they must solve several challenges, including reliably identifying mixtures of odorants and their intensities, and discriminating odorant mixtures emanating from a single source from odorants emitted from separate sources and just mixing in the air. Lateral inhibition in the antennal lobe is commonly understood to help solving these challenges. With a computational model of the Drosophila olfactory system, we analyze the utility of an alternative mechanism for solving them: Non-synaptic ("ephaptic") interactions (NSIs) between olfactory receptor neurons that are stereotypically co-housed in the same sensilla. We find that NSIs improve mixture ratio detection and plume structure sensing and do so more efficiently than the traditionally considered mechanism of lateral inhibition in the antennal lobe. The best performance is achieved when both mechanisms work in synergy. However, we also found that NSIs decrease the dynamic range of co-housed ORNs, especially when they have similar sensitivity to an odorant. These results shed light, from a functional perspective, on the role of NSIs, which are normally avoided between neurons, for instance by myelination.
Collapse
Affiliation(s)
- Mario Pannunzi
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
7
|
Raithel CU, Gottfried JA. Using your nose to find your way: Ethological comparisons between human and non-human species. Neurosci Biobehav Rev 2021; 128:766-779. [PMID: 34214515 PMCID: PMC8359807 DOI: 10.1016/j.neubiorev.2021.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Olfaction is arguably the least valued among our sensory systems, and its significance for human behavior is often neglected. Spatial navigation represents no exception to the rule: humans are often characterized as purely visual navigators, a view that undermines the contribution of olfactory cues. Accordingly, research investigating whether and how humans use olfaction to navigate space is rare. In comparison, research on olfactory navigation in non-human species is abundant, and identifies behavioral strategies along with neural mechanisms characterizing the use of olfactory cues during spatial tasks. Using an ethological approach, our review draws from studies on olfactory navigation across species to describe the adaptation of strategies under the influence of selective pressure. Mammals interact with spatial environments by abstracting multisensory information into cognitive maps. We thus argue that olfactory cues, alongside inputs from other sensory modalities, play a crucial role in spatial navigation for mammalian species, including humans; that is, odors constitute one of the many building blocks in the formation of cognitive maps.
Collapse
Affiliation(s)
- Clara U Raithel
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA, 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA.
| | - Jay A Gottfried
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA, 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
9
|
Conchou L, Lucas P, Deisig N, Demondion E, Renou M. Effects of Multi-Component Backgrounds of Volatile Plant Compounds on Moth Pheromone Perception. INSECTS 2021; 12:insects12050409. [PMID: 34062868 PMCID: PMC8147264 DOI: 10.3390/insects12050409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary It is well acknowledged that some of the volatile plant compounds (VPC) naturally present in insect natural habitats alter the perception of their own pheromone when presented individually as a background to pheromone. However, the effects of mixing VPCs as they appear to insects in natural olfactory landscapes are poorly understood. We measured the activity of brain neurons and neurons that detect a sex pheromone component in a moth antenna, while exposed to simple or composite backgrounds of VPCs representative of the odorant variety encountered by this moth. Maps of activities were built using calcium imaging to visualize which brain areas were most affected by VPCs. In the antenna, we observed differences in VPC capacity to elicit firing response that cannot be explained by differences in stimulus intensities because we adjusted concentrations according to volatility. The neuronal network, which reformats the input from antenna neurons in the brain, did not improve pheromone salience. We postulate that moth olfactory system evolved to increase sensitivity and encode fast changes of concentration at some cost for signal extraction. Comparing blends to single compounds indicated that a blend shows the activity of its most active component, VPC salience seems more important than background complexity. Abstract The volatile plant compounds (VPC) alter pheromone perception by insects but mixture effects inside insect olfactory landscapes are poorly understood. We measured the activity of receptor neurons tuned to Z7-12Ac (Z7-ORN), a pheromone component, in the antenna and central neurons in male Agrotis ipsilon while exposed to simple or composite backgrounds of a panel of VPCs representative of the odorant variety encountered by a moth. Maps of activities were built using calcium imaging to visualize which areas in antennal lobes (AL) were affected by VPCs. We compared the VPC activity and their impact as backgrounds at antenna and AL levels, individually or in blends. At periphery, VPCs showed differences in their capacity to elicit Z7-ORN firing response that cannot be explained by differences in stimulus intensities because we adjusted concentrations according to vapor pressures. The AL neuronal network, which reformats the ORN input, did not improve pheromone salience. We postulate that the AL network evolved to increase sensitivity and to encode for fast changes of pheromone at some cost for signal extraction. Comparing blends to single compounds indicated that a blend shows the activity of its most active component. VPC salience seems to be more important than background complexity.
Collapse
|
10
|
Rospars JP, Meyer-Vernet N. How fast do mobile organisms respond to stimuli? Response times from bacteria to elephants and whales. Phys Biol 2021; 18:026002. [PMID: 33232948 DOI: 10.1088/1478-3975/abcd88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Quick responses to fast changes in the environment are crucial in animal behaviour and survival, for example to seize prey, escape predators, or negotiate obstacles. Here, we study the 'simple response time' that is the time elapsed between receptor stimulation and motor activation as typically shown in escape responses, for mobile organisms of various taxa ranging from bacteria to large vertebrates. We show that 95% of these simple response times lie within one order of magnitude of the overall geometric mean of about 25 ms, which is similar to that of a well-studied sensory time scale, the inverse of the critical flicker fusion frequency in vision, also lying within close bounds for all the organisms studied. We find that this time scale is a few times smaller than the minimum time to move by one body length, which is known to lie also within a relatively narrow range for all moving organisms. The remarkably small 102-fold range of the simple response time among so disparate life forms varying over 1020-fold in body mass suggests that it is determined by basic physicochemical constraints, independently on the structure and scale of the organism. We thus propose first-principle estimates of the simple response and sensory time scales in terms of physical constants and a few basic biological properties common to mobile organisms and constraining their responses.
Collapse
Affiliation(s)
- Jean-Pierre Rospars
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Route de Saint-Cyr, 78000 Versailles, France
| | - Nicole Meyer-Vernet
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France
| |
Collapse
|
11
|
Abstract
The olfactory system translates chemical signals into neuronal signals that inform behavioral decisions of the animal. Odors are cues for source identity, but if monitored long enough, they can also be used to localize the source. Odor representations should therefore be robust to changing conditions and flexible in order to drive an appropriate behavior. In this review, we aim at discussing the main computations that allow robust and flexible encoding of odor information in the olfactory neural pathway.
Collapse
|
12
|
Pannunzi M, Nowotny T. Non-synaptic interactions between olfactory receptor neurons, a possible key feature of odor processing in flies.. [DOI: 10.1101/2020.07.23.217216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractWhen flies explore their environment, they encounter odors in complex, highly intermittent plumes. To navigate a plume and, for example, find food, they must solve several challenges, including reliably identifying mixtures of odorants and their intensities, and discriminating odorant mixtures emanating from a single source from odorants emitted from separate sources and just mixing in the air. Lateral inhibition in the antennal lobe is commonly understood to help solving these challenges. With a computational model of the Drosophila olfactory system, we analyze the utility of an alternative mechanism for solving them: Non-synaptic (“ephaptic”) interactions (NSIs) between olfactory receptor neurons that are stereotypically co-housed in the same sensilla.We found that NSIs improve mixture ratio detection and plume structure sensing and they do so more efficiently than the traditionally considered mechanism of lateral inhibition in the antennal lobe. However, we also found that NSIs decrease the dynamic range of co-housed ORNs, especially when they have similar sensitivity to an odorant. These results shed light, from a functional perspective, on the role of NSIs, which are normally avoided between neurons, for instance by myelination.Author summaryMyelin is important to isolate neurons and avoid disruptive electrical interference between them; it can be found in almost any neural assembly. However, there are a few exceptions to this rule and it remains unclear why. One particularly interesting case is the electrical interaction between olfactory sensory neurons co-housed in the sensilla of insects. Here, we created a computational model of the early stages of the Drosophila olfactory system and observed that the electrical interference between olfactory receptor neurons can be a useful trait that can help flies, and other insects, to navigate the complex plumes of odorants in their natural environment.With the model we were able to shed new light on the trade-off of adopting this mechanism: We found that the non-synaptic interactions (NSIs) improve both the identification of the concentration ratio in mixtures of odorants and the discrimination of odorant mixtures emanating from a single source from odorants emitted from separate sources – both highly advantageous. However, they also decrease the dynamic range of the olfactory sensory neurons – a clear disadvantage.
Collapse
|
13
|
Pannunzi M, Nowotny T. Odor Stimuli: Not Just Chemical Identity. Front Physiol 2019; 10:1428. [PMID: 31827441 PMCID: PMC6890726 DOI: 10.3389/fphys.2019.01428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023] Open
Abstract
In most sensory modalities the underlying physical phenomena are well understood, and stimulus properties can be precisely controlled. In olfaction, the situation is different. The presence of specific chemical compounds in the air (or water) is the root cause for perceived odors, but it remains unknown what organizing principles, equivalent to wavelength for light, determine the dimensions of odor space. Equally important, but less in the spotlight, odor stimuli are also complex with respect to their physical properties, including concentration and time-varying spatio-temporal distribution. We still lack a complete understanding or control over these properties, in either experiments or theory. In this review, we will concentrate on two important aspects of the physical properties of odor stimuli beyond the chemical identity of the odorants: (1) The amplitude of odor stimuli and their temporal dynamics. (2) The spatio-temporal structure of odor plumes in a natural environment. Concerning these issues, we ask the following questions: (1) Given any particular experimental protocol for odor stimulation, do we have a realistic estimate of the odorant concentration in the air, and at the olfactory receptor neurons? Can we control, or at least know, the dynamics of odorant concentration at olfactory receptor neurons? (2) What do we know of the spatio-temporal structure of odor stimuli in a natural environment both from a theoretical and experimental perspective? And how does this change if we consider mixtures of odorants? For both topics, we will briefly summarize the underlying principles of physics and review the experimental and theoretical Neuroscience literature, focusing on the aspects that are relevant to animals’ physiology and behavior. We hope that by bringing the physical principles behind odor plume landscapes to the fore we can contribute to promoting a new generation of experiments and models.
Collapse
|
14
|
Levakova M, Kostal L, Monsempès C, Lucas P, Kobayashi R. Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in a moth. J R Soc Interface 2019; 16:20190246. [PMID: 31387478 PMCID: PMC6731495 DOI: 10.1098/rsif.2019.0246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In order to understand how olfactory stimuli are encoded and processed in the brain, it is important to build a computational model for olfactory receptor neurons (ORNs). Here, we present a simple and reliable mathematical model of a moth ORN generating spikes. The model incorporates a simplified description of the chemical kinetics leading to olfactory receptor activation and action potential generation. We show that an adaptive spike threshold regulated by prior spike history is an effective mechanism for reproducing the typical phasic-tonic time course of ORN responses. Our model reproduces the response dynamics of individual neurons to a fluctuating stimulus that approximates odorant fluctuations in nature. The parameters of the spike threshold are essential for reproducing the response heterogeneity in ORNs. The model provides a valuable tool for efficient simulations of olfactory circuits.
Collapse
Affiliation(s)
- Marie Levakova
- Department of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Lubomir Kostal
- Department of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Christelle Monsempès
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, 78000 Versailles, France
| | - Philippe Lucas
- Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, 78000 Versailles, France
| | - Ryota Kobayashi
- Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.,Department of Informatics, SOKENDAI (The Graduate University for Advanced Studies), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
15
|
Martelli C, Fiala A. Slow presynaptic mechanisms that mediate adaptation in the olfactory pathway of Drosophila. eLife 2019; 8:43735. [PMID: 31169499 PMCID: PMC6581506 DOI: 10.7554/elife.43735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
The olfactory system encodes odor stimuli as combinatorial activity of populations of neurons whose response depends on stimulus history. How and on which timescales previous stimuli affect these combinatorial representations remains unclear. We use in vivo optical imaging in Drosophila to analyze sensory adaptation at the first synaptic step along the olfactory pathway. We show that calcium signals in the axon terminals of olfactory receptor neurons (ORNs) do not follow the same adaptive properties as the firing activity measured at the antenna. While ORNs calcium responses are sustained on long timescales, calcium signals in the postsynaptic projection neurons (PNs) adapt within tens of seconds. We propose that this slow component of the postsynaptic response is mediated by a slow presynaptic depression of vesicle release and enables the combinatorial population activity of PNs to adjust to the mean and variance of fluctuating odor stimuli.
Collapse
Affiliation(s)
- Carlotta Martelli
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Goettingen, Germany.,Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| | - André Fiala
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
16
|
Abstract
In most sensory modalities the underlying physical phenomena are well understood, and stimulus properties can be precisely controlled. In olfaction, the situation is different. The presence of specific chemical compounds in the air (or water) is the root cause for perceived odors, but it remains unknown what organizing principles, equivalent to wavelength for light, determine the dimensions of odor space. Equally important, but less in the spotlight, odor stimuli are also complex with respect to their physical properties, including concentration and time-varying spatio-temporal distribution. We still lack a complete understanding or control over these properties, in either experiments or theory. In this review, we will concentrate on two important aspects of the physical properties of odor stimuli beyond the chemical identity of the odorants: (1) The amplitude of odor stimuli and their temporal dynamics. (2) The spatio-temporal structure of odor plumes in a natural environment. Concerning these issues, we ask the following questions: (1) Given any particular experimental protocol for odor stimulation, do we have a realistic estimate of the odorant concentration in the air, and at the olfactory receptor neurons? Can we control, or at least know, the dynamics of odorant concentration at olfactory receptor neurons? (2) What do we know of the spatio-temporal structure of odor stimuli in a natural environment both from a theoretical and experimental perspective? And how does this change if we consider mixtures of odorants? For both topics, we will briefly summarize the underlying principles of physics and review the experimental and theoretical Neuroscience literature, focusing on the aspects that are relevant to animals' physiology and behavior. We hope that by bringing the physical principles behind odor plume landscapes to the fore we can contribute to promoting a new generation of experiments and models.
Collapse
|
17
|
Levakova M, Kostal L, Monsempès C, Jacob V, Lucas P. Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations. PLoS Comput Biol 2018; 14:e1006586. [PMID: 30422975 PMCID: PMC6258558 DOI: 10.1371/journal.pcbi.1006586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 11/27/2018] [Accepted: 10/19/2018] [Indexed: 11/19/2022] Open
Abstract
The efficient coding hypothesis predicts that sensory neurons adjust their coding resources to optimally represent the stimulus statistics of their environment. To test this prediction in the moth olfactory system, we have developed a stimulation protocol that mimics the natural temporal structure within a turbulent pheromone plume. We report that responses of antennal olfactory receptor neurons to pheromone encounters follow the temporal fluctuations in such a way that the most frequent stimulus timescales are encoded with maximum accuracy. We also observe that the average coding precision of the neurons adjusted to the stimulus-timescale statistics at a given distance from the pheromone source is higher than if the same encoding model is applied at a shorter, non-matching, distance. Finally, the coding accuracy profile and the stimulus-timescale distribution are related in the manner predicted by the information theory for the many-to-one convergence scenario of the moth peripheral sensory system.
Collapse
Affiliation(s)
- Marie Levakova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lubomir Kostal
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Vincent Jacob
- Institute of Ecology and Environmental Sciences, INRA, Versailles, France
- Peuplements végétaux et bioagresseurs en milieu végétal, CIRAD, Université de la Réunion, Saint Pierre, Ile de la Réunion, France
| | - Philippe Lucas
- Institute of Ecology and Environmental Sciences, INRA, Versailles, France
| |
Collapse
|
18
|
Jacob VEJM. Current Source Density Analysis of Electroantennogram Recordings: A Tool for Mapping the Olfactory Response in an Insect Antenna. Front Cell Neurosci 2018; 12:287. [PMID: 30233325 PMCID: PMC6135050 DOI: 10.3389/fncel.2018.00287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022] Open
Abstract
The set of chemosensory receptors expressed by the olfactory receptor neurons lying in an insect's antennae and maxillary palps define the ability of this insect to perceive the volatile chemicals of its environment. The main two electrophysiological methods of antennal recordings for studying the range of chemicals that activate chemosensory receptors have limitations. Single-sensillum recording (SSR) samples a subset of olfactory receptor neurons and therefore does not reveal the full capacity of an insect to perceive an odor. Electroantennography (EAG), even if less resolutive than SSRs, is sometimes preferred since it samples the activity of a large number of the olfactory receptor neurons. But, at least in flies, the amplitude of the EAG signal is not directly correlated with the degree of sensitivity of the insect to the olfactory compound. Such dual methodology was also used to study mammalian brains, and the current source density (CSD) analysis was developed to bridge the gap between the cellular and the population recordings. This paper details the use of a similar approach adapted to the study of olfactory responses within insects with bulbous antennae. The EAG was recorded at multiple antennal positions and the CSD that generates the EAG potentials were estimated. The method measures the activation of olfactory receptor neurons (ORNs) across the antennae and thus it quantifies the olfactory sensitivity of the insect. It allows a rapid mapping of olfactory responses and thus can be used to guide further SSRs or to determine that two chemicals are detected by independent ORNs. This study further explored biases resulting from a limited number of recording positions or from an approximation of the antennal geometry that should be considered for interpreting the CSD maps. It also shows that the CSD analysis of EAGs is compatible with a gas chromatograph stimulator for analyzing the response to complex odors. Finally, I discuss the origin of the EAG signal in light of the CSD theory.
Collapse
|
19
|
Ai H, Kumaraswamy A, Kohashi T, Ikeno H, Wachtler T. Inhibitory Pathways for Processing the Temporal Structure of Sensory Signals in the Insect Brain. Front Psychol 2018; 9:1517. [PMID: 30186204 PMCID: PMC6110935 DOI: 10.3389/fpsyg.2018.01517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Insects have acquired excellent sensory information processing abilities in the process of evolution. In addition, insects have developed communication schemes based on the temporal patterns of specific sensory signals. For instance, male moths approach a female by detecting the spatiotemporal pattern of a pheromone plume released by the female. Male crickets attract a conspecific female as a mating partner using calling songs with species-specific temporal patterns. The dance communication of honeybees relies on a unique temporal pattern of vibration caused by wingbeats during the dance. Underlying these behaviors, neural circuits involving inhibitory connections play a critical common role in processing the exact timing of the signals in the primary sensory centers of the brain. Here, we discuss common mechanisms for processing the temporal patterns of sensory signals in the insect brain.
Collapse
Affiliation(s)
- Hiroyuki Ai
- Department of Earth System Science, Fukuoka University, Fukuoka, Japan
| | - Ajayrama Kumaraswamy
- Department of Biology II, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Tsunehiko Kohashi
- Neuroscience Institute, Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hidetoshi Ikeno
- School of Human Science and Environment, University of Hyogo, Himeji, Japan
| | - Thomas Wachtler
- Department of Biology II, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
20
|
Abstract
Among the insect olfactory receptors the odorant receptors (ORs) evolved in parallel to the onset of insect flight. A special property of this receptor type is the capability to adjust sensitivity of odor detection according to previous odor contacts. This article presents a current view on regulatory processes affecting the performance of ORs and proposes a model of mechanisms contributing to OR sensitization.
Collapse
Affiliation(s)
- Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology (MPG), Jena, Germany
| |
Collapse
|