1
|
Akolgo GA, Asiedu KB, Amewu RK. Exploring Mycolactone-The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential. Toxins (Basel) 2024; 16:528. [PMID: 39728786 PMCID: PMC11678992 DOI: 10.3390/toxins16120528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Mycolactone is a complex macrolide toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities. The review focuses on pioneering studies of Kishi which elaborate first-, second-, and third-generation approaches to the synthesis of mycolactones A/B. The three generations focused on the construction of the key intermediates required for the mycolactone synthesis. Synthesis of the first generation involves assignment of the relative and absolute stereochemistry of the mycolactones A and B. This was accomplished by employing a linear series of 17 chemical steps (1.3% overall yield) using the mycolactone core. The second generation significantly improved the first generation in three ways: (1) by optimizing the selection of protecting groups; (2) by removing needless protecting group adjustments; and (3) by enhancing the stereoselectivity and overall synthetic efficiency. Though the synthetic route to the mycolactone core was longer than the first generation, the overall yield was significantly higher (8.8%). The third-generation total synthesis was specifically aimed at an efficient, scalable, stereoselective, and shorter synthesis of mycolactone. The synthesis of the mycolactone core was achieved in 14 linear chemical steps with 19% overall yield. Furthermore, a modular synthetic approach where diverse analogues of mycolactone A/B were synthesized via a cascade of catalytic and/or asymmetric reactions as well as several Pd-catalyzed key steps coupled with hydroboration reactions were reviewed. In addition, the review discusses how mycolactone is employed in the diagnosis of Buruli ulcer with emphasis on detection methods of mass spectrometry, immunological assays, RNA aptamer techniques, and fluorescent-thin layer chromatography (f-TLC) methods as diagnostic tools. We examined studies of the structure-activity relationship (SAR) of various analogues of mycolactone. The paper highlights the multiple biological consequences associated with mycolactone such as skin ulceration, host immunomodulation, and analgesia. These effects are attributed to various proposed mechanisms of actions including Wiskott-Aldrich Syndrome protein (WASP)/neural Wiskott-Aldrich Syndrome protein (N-WASP) inhibition, Sec61 translocon inhibition, angiotensin II type 2 receptor (AT2R) inhibition, and inhibition of mTOR. The possible application of novel mycolactone analogues produced based on SAR investigations as therapeutic agents for the treatment of inflammatory disorders and inflammatory pain are discussed. Additionally, their therapeutic potential as anti-viral and anti-cancer agents have also been addressed.
Collapse
Affiliation(s)
| | - Kingsley Bampoe Asiedu
- Department of Neglected Tropical Diseases, World Health Organization, 1211 Geneva, Switzerland;
| | | |
Collapse
|
2
|
Kang C, Bernaldez M, Stamatis SD, Rose JP, Sun R. Interaction between Permeation Enhancers and Lipid Bilayers. J Phys Chem B 2024; 128:1668-1679. [PMID: 38232311 DOI: 10.1021/acs.jpcb.3c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Permeation enhancers (PEs) are a class of molecules that interact with the epithelial membrane and transiently increase its transcellular permeability. Although there have been few clinical trials of PE coformulated drugs, the mechanism of action of PEs remains elusive. In this paper, the interaction between two archetypes of PEs [salcaprozate sodium (SNAC) and sodium caprate (C10)] and membranes is investigated with extensive all-atom molecular dynamics simulations. The simulations show that (1) the association between the neutral PEs and membranes is favored in free energy, (2) the propensity of neutral PE aggregation is larger in aqueous solution than in lipid bilayers, (3) the equilibrium distribution of neutral PEs in membranes is fast, e.g., accessible with unbiased MD simulations, and (4) the micelle of neutral PEs formed in aqueous solution does not rupture the membranes (e.g., not forming pores or breaking up the membrane) under simulation conditions. All results combined, this study indicates that PEs insert into the membranes in an equilibrium or near equilibrium process. This study lays the foundation for future investigations of how PEs impact the free energy of permeation for small molecules.
Collapse
Affiliation(s)
- Christopher Kang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Mabel Bernaldez
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Stephen D Stamatis
- Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - John P Rose
- Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Rui Sun
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
3
|
Brown T, Chavent M, Im W. Molecular Modeling and Simulation of the Mycobacterial Cell Envelope: From Individual Components to Cell Envelope Assemblies. J Phys Chem B 2023; 127:10941-10949. [PMID: 38091517 PMCID: PMC10758119 DOI: 10.1021/acs.jpcb.3c06136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023]
Abstract
Unlike typical Gram-positive bacteria, the cell envelope of mycobacteria is unique and composed of a mycobacterial outer membrane, also known as the mycomembrane, a peptidoglycan layer, and a mycobacterial inner membrane, which is analogous to that of Gram-negative bacteria. Despite its importance, however, our understanding of this complex cell envelope is rudimentary at best. Thus, molecular modeling and simulation of such an envelope can benefit the scientific community by proposing new hypotheses about the biophysical properties of its different layers. In this Perspective, we present recent advances in molecular modeling and simulation of the mycobacterial cell envelope from individual components to cell envelope assemblies. We also show how modeling other types of cell envelopes, such as that of Escherichia coli, may help modeling part of the mycobacterial envelopes. We hope that the studies presented here are just the beginning of the road and more and more new modeling and simulation studies help us to understand crucial questions related to mycobacteria such as antibiotic resistance or bacterial survival in the host.
Collapse
Affiliation(s)
- Turner Brown
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Matthieu Chavent
- Institut
de Pharmacologie et Biologie Structurale, CNRS, Université
de Toulouse, 205 Route de Narbonne, 31400 Toulouse, France
| | - Wonpil Im
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Departments
of Biological Sciences and Chemistry, Lehigh
University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Nguyen JDM, da Hora GCA, Swanson JMJ. Mycolactone A vs. B: Multiscale Simulations Reveal the Roles of Localization and Association in Isomer-Specific Toxicity. Toxins (Basel) 2023; 15:486. [PMID: 37624243 PMCID: PMC10467071 DOI: 10.3390/toxins15080486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Mycolactone is an exotoxin produced by Mycobacterium ulcerans that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing several secretory and transmembrane proteins, resulting in cytotoxic and immunomodulatory effects. Interestingly, only one of the two dominant isoforms of mycolactone is cytotoxic. Here, we investigate the origin of this specificity by performing extensive molecular dynamics (MD) simulations with enhanced free energy sampling to query the association trends of the two isoforms with both the Sec61 translocon, using two distinct cryo-electron microscopy (cryo-EM) models as references, and the ER membrane, which serves as a toxin reservoir prior to association. Our results suggest that mycolactone B (the cytotoxic isoform) has a stronger association with the ER membrane than mycolactone A due to more favorable interactions with membrane lipids and water molecules. This could increase the reservoir of toxin proximal to the Sec61 translocon. In one model of Sec61 inhibited by mycolactone, we find that isomer B interacts more closely with residues thought to play a key role in signal peptide recognition and, thus, are essential for subsequent protein translocation. In the other model, we find that isomer B interacts more closely with the lumenal and lateral gates of the translocon, the dynamics of which are essential for protein translocation. These interactions induce a more closed conformation, which has been suggested to block signal peptide insertion and subsequent protein translocation. Collectively, these findings suggest that isomer B's unique cytotoxicity is a consequence of both increased localization to the ER membrane and channel-locking association with the Sec61 translocon, facets that could be targeted in the development of Buruli Ulcer diagnostics and Sec61-targeted therapeutics.
Collapse
Affiliation(s)
| | | | - Jessica M. J. Swanson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA; (J.D.M.N.); (G.C.A.d.H.)
| |
Collapse
|
5
|
Nguyen JDM, da Hora GCA, Swanson JMJ. Mycolactone A vs. B: Does localization or association explain isomer-specific toxicity? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541532. [PMID: 37292660 PMCID: PMC10245786 DOI: 10.1101/2023.05.19.541532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mycolactone is an exotoxin produced by Mycobacterium ulcerans that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing many secretory and transmembrane proteins, resulting in cytotoxic and immunomodulatory effects. Interestingly, only one of the two dominant isoforms of mycolactone is cytotoxic. Here, we investigate the origin of this specificity by performing extensive molecular dynamics (MD) simulations with enhanced free energy sampling to query the association trends of the two isoforms with both the Sec61 translocon and the ER membrane, which serves as a toxin reservoir prior to association. Our results suggest that mycolactone B (the cytotoxic isoform) has a stronger association with the ER membrane than mycolactone A due to more favorable interactions with membrane lipids and water molecules. This could increase the reservoir of toxin proximal to the Sec61 translocon. Isomer B also interacts more closely with the lumenal and lateral gates of the translocon, the dynamics of which are essential for protein translocation. These interactions induce a more closed conformation, which has been suggested to block signal peptide insertion and subsequent protein translocation. Collectively, these findings suggest that isomer B's unique cytotoxicity is a consequence of both increased localization to the ER membrane and channel-locking association with the Sec61 translocon, facets that could be targeted in the development of Buruli Ulcer diagnostics and Sec61-targeted therapeutics.
Collapse
Affiliation(s)
- John D M Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, UT - 84112-0850, USA
| | - Gabriel C A da Hora
- Department of Chemistry, University of Utah, Salt Lake City, UT - 84112-0850, USA
| | - Jessica M J Swanson
- Department of Chemistry, University of Utah, Salt Lake City, UT - 84112-0850, USA
| |
Collapse
|
6
|
da Hora GCA, Nguyen JDM, Swanson JMJ. Can membrane composition traffic toxins? Mycolactone and preferential membrane interactions. Biophys J 2022; 121:4260-4270. [PMID: 36258678 PMCID: PMC9703097 DOI: 10.1016/j.bpj.2022.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Mycolactone is a cytotoxic and immunosuppressive macrolide produced by Mycobacterium ulcerans and the sole causative agent of the neglected tropical skin disease Buruli ulcer. The toxin acts by invading host cells and interacting with intracellular targets to disrupt multiple fundamental cellular processes. Mycolactone's amphiphilic nature enables strong interactions with lipophilic environments, including cellular membranes; however, the specificity of these interactions and the role of membranes in the toxin's pathogenicity remain unknown. It is likely that preferential interactions with lipophilic carriers play a key role in the toxin's distribution in the host, which, if understood, could provide insights to aid in the development of needed diagnostics for Buruli ulcer disease. In this work, molecular dynamics simulations were combined with enhanced free-energy sampling to characterize mycolactone's association with and permeation through models of the mammalian endoplasmic reticulum (ER) and plasma membranes (PMs). We find that increased order in the PMs not only leads to a different permeation mechanism compared with that in the ER membrane but also an energetic driving force for ER localization. Increased hydration, membrane deformation, and preferential interactions with unsaturated lipid tails stabilize the toxin in the ER membrane, while disruption of lipid packing is a destabilizing force in the PMs.
Collapse
Affiliation(s)
| | - John D M Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
7
|
Domenger A, Choisy C, Baron L, Mayau V, Perthame E, Deriano L, Arnulf B, Bories JC, Dadaglio G, Demangel C. The Sec61 translocon is a therapeutic vulnerability in multiple myeloma. EMBO Mol Med 2022; 14:e14740. [PMID: 35014767 PMCID: PMC8899908 DOI: 10.15252/emmm.202114740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is an incurable malignancy characterized by the uncontrolled expansion of plasma cells in the bone marrow. While proteasome inhibitors like bortezomib efficiently halt MM progression, drug resistance inevitably develop, and novel therapeutic approaches are needed. Here, we used a recently discovered Sec61 inhibitor, mycolactone, to assess the interest of disrupting MM proteostasis via protein translocation blockade. In human MM cell lines, mycolactone caused rapid defects in secretion of immunoglobulins and expression of pro‐survival interleukin (IL)‐6 receptor and CD40, whose activation stimulates IL‐6 production. Mycolactone also triggered pro‐apoptotic endoplasmic reticulum stress responses synergizing with bortezomib for induction of MM cell death and overriding acquired resistance to the proteasome inhibitor. Notably, the mycolactone–bortezomib combination rapidly killed patient‐derived MM cells ex vivo, but not normal mononuclear cells. In immunodeficient mice engrafted with MM cells, it demonstrated superior therapeutic efficacy over single drug treatments, without inducing toxic side effects. Collectively, these findings establish Sec61 blockers as novel anti‐MM agents and reveal the interest of targeting both the translocon and the proteasome in proteostasis‐addicted tumors.
Collapse
Affiliation(s)
- Antoine Domenger
- Unité d'Immunobiologie de l'Infection, Institut Pasteur, INSERM U1224, Université de Paris, Paris, France.,Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Caroline Choisy
- INSERM U976, Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Ludivine Baron
- Unité d'Immunobiologie de l'Infection, Institut Pasteur, INSERM U1224, Université de Paris, Paris, France
| | - Véronique Mayau
- Unité d'Immunobiologie de l'Infection, Institut Pasteur, INSERM U1224, Université de Paris, Paris, France
| | - Emeline Perthame
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris, Paris, France
| | - Ludovic Deriano
- Unité d'Intégrité du Génome, Immunité et Cancer, Equipe Labellisée Ligue Contre Le Cancer, Institut Pasteur, INSERM U1223, Université de Paris, Paris, France
| | - Bertrand Arnulf
- INSERM U976, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,APHP Department of Immuno-Hematology, Hôpital Saint Louis, Paris, France
| | | | - Gilles Dadaglio
- Unité d'Immunobiologie de l'Infection, Institut Pasteur, INSERM U1224, Université de Paris, Paris, France
| | - Caroline Demangel
- Unité d'Immunobiologie de l'Infection, Institut Pasteur, INSERM U1224, Université de Paris, Paris, France
| |
Collapse
|
8
|
Mycolactone enhances the Ca2+ leak from endoplasmic reticulum by trapping Sec61 translocons in a Ca2+ permeable state. Biochem J 2021; 478:4005-4024. [PMID: 34726690 PMCID: PMC8650850 DOI: 10.1042/bcj20210345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023]
Abstract
The Mycobacterium ulcerans exotoxin, mycolactone, is an inhibitor of co-translational translocation via the Sec61 complex. Mycolactone has previously been shown to bind to, and alter the structure of the major translocon subunit Sec61α, and change its interaction with ribosome nascent chain complexes. In addition to its function in protein translocation into the ER, Sec61 also plays a key role in cellular Ca2+ homeostasis, acting as a leak channel between the endoplasmic reticulum (ER) and cytosol. Here, we have analysed the effect of mycolactone on cytosolic and ER Ca2+ levels using compartment-specific sensors. We also used molecular docking analysis to explore potential interaction sites for mycolactone on translocons in various states. These results show that mycolactone enhances the leak of Ca2+ ions via the Sec61 translocon, resulting in a slow but substantial depletion of ER Ca2+. This leak was dependent on mycolactone binding to Sec61α because resistance mutations in this protein completely ablated the increase. Molecular docking supports the existence of a mycolactone-binding transient inhibited state preceding translocation and suggests mycolactone may also bind Sec61α in its idle state. We propose that delayed ribosomal release after translation termination and/or translocon ‘breathing' during rapid transitions between the idle and intermediate-inhibited states allow for transient Ca2+ leak, and mycolactone's stabilisation of the latter underpins the phenotype observed.
Collapse
|
9
|
Tello Rubio B, Bugault F, Baudon B, Raynal B, Brûlé S, Morel JD, Saint-Auret S, Blanchard N, Demangel C, Guenin-Macé L. Molecular Mechanisms Underpinning the Circulation and Cellular Uptake of Mycobacterium ulcerans Toxin Mycolactone. Front Pharmacol 2021; 12:733496. [PMID: 34603049 PMCID: PMC8481864 DOI: 10.3389/fphar.2021.733496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mycolactone is a diffusible lipid toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer disease. Altough bacterially derived mycolactone has been shown to traffic from cutaneous foci of infection to the bloodstream, the mechanisms underpinning its access to systemic circulation and import by host cells remain largely unknown. Using biophysical and cell-based approaches, we demonstrate that mycolactone specific association to serum albumin and lipoproteins is necessary for its solubilization and is a major mechanism to regulate its bioavailability. We also demonstrate that Scavenger Receptor (SR)-B1 contributes to the cellular uptake of mycolactone. Overall, we suggest a new mechanism of transport and cell entry, challenging the dogma that the toxin enters host cells via passive diffusion.
Collapse
Affiliation(s)
- Bruno Tello Rubio
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Florence Bugault
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Blandine Baudon
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Bertrand Raynal
- Plateforme de Biophysique Moléculaire, UMR 3528 CNRS, Institut Pasteur, Paris, France
| | - Sébastien Brûlé
- Plateforme de Biophysique Moléculaire, UMR 3528 CNRS, Institut Pasteur, Paris, France
| | - Jean-David Morel
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Sarah Saint-Auret
- CNRS, LIMA, UMR 7042, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
| | - Nicolas Blanchard
- CNRS, LIMA, UMR 7042, Université de Haute-Alsace, Université de Strasbourg, Mulhouse, France
| | - Caroline Demangel
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| | - Laure Guenin-Macé
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| |
Collapse
|
10
|
Dhungel L, Burcham L, Park JY, Sampathkumar HD, Cudjoe A, Seo KS, Jordan H. Responses to chemical cross-talk between the Mycobacterium ulcerans toxin, mycolactone, and Staphylococcus aureus. Sci Rep 2021; 11:11746. [PMID: 34083568 PMCID: PMC8175560 DOI: 10.1038/s41598-021-89177-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 02/01/2023] Open
Abstract
Buruli ulcer is a neglected tropical disease caused by the environmental pathogen, Mycobacterium ulcerans whose major virulence factor is mycolactone, a lipid cytotoxic molecule. Buruli ulcer has high morbidity, particularly in rural West Africa where the disease is endemic. Data have shown that infected lesions of Buruli ulcer patients can be colonized by quorum sensing bacteria such as Staphylococcus aureus, S. epidermidis, and Pseudomonas aeruginosa, but without typical pathology associated with those pathogens' colonization. M. ulcerans pathogenesis may not only be an individual act but may also be dependent on synergistic or antagonistic mechanisms within a polymicrobial network. Furthermore, co-colonization by these pathogens may promote delayed wound healing, especially after the initiation of antibiotic therapy. Hence, it is important to understand the interaction of M. ulcerans with other bacteria encountered during skin infection. We added mycolactone to S. aureus and incubated for 3, 6 and 24 h. At each timepoint, S. aureus growth and hemolytic activity was measured, and RNA was isolated to measure virulence gene expression through qPCR and RNASeq analyses. Results showed that mycolactone reduced S. aureus hemolytic activity, suppressed hla promoter activity, and attenuated virulence genes, but did not affect S. aureus growth. RNASeq data showed mycolactone greatly impacted S. aureus metabolism. These data are relevant and significant as mycolactone and S. aureus sensing and response at the transcriptional, translational and regulation levels will provide insight into biological mechanisms of interspecific interactions that may play a role in regulation of responses such as effects between M. ulcerans, mycolactone, and S. aureus virulence that will be useful for treatment and prevention.
Collapse
Affiliation(s)
- Laxmi Dhungel
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Lindsey Burcham
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Joo Youn Park
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Harshini Devi Sampathkumar
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | | | - Keun Seok Seo
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA
| | - Heather Jordan
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Starkville, MS, 39762, USA.
| |
Collapse
|
11
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Demangel C. Immunity against Mycobacterium ulcerans: The subversive role of mycolactone. Immunol Rev 2021; 301:209-221. [PMID: 33607704 DOI: 10.1111/imr.12956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Mycobacterium ulcerans causes Buruli ulcer, a neglected tropical skin disease manifesting as chronic wounds that can leave victims with major, life-long deformity and disability. Differently from other mycobacterial pathogens, M ulcerans produces mycolactone, a diffusible lipid factor with unique cytotoxic and immunomodulatory properties. Both traits result from mycolactone targeting Sec61, the entry point of the secretory pathway in eukaryotic cells. By inhibiting Sec61, mycolactone prevents the host cell's production of secreted proteins, and most of its transmembrane proteins. This molecular blockade dramatically alters the functions of immune cells, thereby the generation of protective immunity. Moreover, sustained inhibition of Sec61 triggers proteotoxic stress responses leading to apoptotic cell death, which can stimulate vigorous immune responses. The dynamics of bacterial production of mycolactone and elimination by infected hosts thus critically determine the balance between its immunostimulatory and immunosuppressive effects. Following an introduction summarizing the essential information on Buruli ulcer disease, this review focuses on the current state of knowledge regarding mycolactone's regulation and biodistribution. We then detail the consequences of mycolactone-mediated Sec61 blockade on initiation and maintenance of innate and adaptive immune responses. Finally, we discuss the key questions to address in order to improve immunity to M ulcerans, and how increased knowledge of mycolactone biology may pave the way to innovative therapeutics.
Collapse
Affiliation(s)
- Caroline Demangel
- Immunobiology of Infection Unit, INSERM U1221, Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Structure of the Inhibited State of the Sec Translocon. Mol Cell 2020; 79:406-415.e7. [PMID: 32692975 PMCID: PMC7427319 DOI: 10.1016/j.molcel.2020.06.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/30/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Protein secretion in eukaryotes and prokaryotes involves a universally conserved protein translocation channel formed by the Sec61 complex. Unrelated small-molecule natural products and synthetic compounds inhibit Sec61 with differential effects for different substrates or for Sec61 from different organisms, making this a promising target for therapeutic intervention. To understand the mode of inhibition and provide insight into the molecular mechanism of this dynamic translocon, we determined the structure of mammalian Sec61 inhibited by the Mycobacterium ulcerans exotoxin mycolactone via electron cryo-microscopy. Unexpectedly, the conformation of inhibited Sec61 is optimal for substrate engagement, with mycolactone wedging open the cytosolic side of the lateral gate. The inability of mycolactone-inhibited Sec61 to effectively transport substrate proteins implies that signal peptides and transmembrane domains pass through the site occupied by mycolactone. This provides a foundation for understanding the molecular mechanism of Sec61 inhibitors and reveals novel features of translocon function and dynamics. The inhibited Sec translocon adopts a conformation optimal for substrate engagement The inhibitor mycolactone wedges open the lateral gate of Sec61α Mycolactone blocks the path taken by the signal peptide during engagement Resistance mutations are likely to operate by modulating translocon dynamics
Collapse
|
14
|
Warryn L, Dangy JP, Gersbach P, Gehringer M, Schäfer A, Ruf MT, Ruggli N, Altmann KH, Pluschke G. Development of an ELISA for the quantification of mycolactone, the cytotoxic macrolide toxin of Mycobacterium ulcerans. PLoS Negl Trop Dis 2020; 14:e0008357. [PMID: 32589646 PMCID: PMC7347236 DOI: 10.1371/journal.pntd.0008357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/09/2020] [Accepted: 05/04/2020] [Indexed: 01/04/2023] Open
Abstract
Mycolactones, macrolide cytotoxins, are key virulence factors of Mycobacterium ulcerans, the etiological agent of the chronic necrotizing skin disease Buruli ulcer. There is urgent need for a simple point-of-care laboratory test for Buruli ulcer and mycolactone represents a promising target for the development of an immunological assay. However, for a long time, all efforts to generate mycolactone-specific antibodies have failed. By using a protein conjugate of a truncated non-toxic synthetic mycolactone derivative, we recently described generation of a set of mycolactone-specific monoclonal antibodies. Using the first mycolactone-specific monoclonal antibodies that we have described before, we were able to develop an antigen competition assay that detects mycolactones. By the systematic selection of a capturing antibody and a reporter molecule, and the optimization of assay conditions, we developed an ELISA that detects common natural variants of mycolactone with a limit of detection in the low nanomolar range. The mycolactone-specific ELISA described here will be a very useful tool for research on the biology of this macrolide toxin. After conversion into a simple point-of-care test format, the competition assay may have great potential as laboratory assay for both the diagnosis of Buruli ulcer and for the monitoring of treatment efficacy.
Collapse
Affiliation(s)
- Louisa Warryn
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jean-Pierre Dangy
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Philipp Gersbach
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Matthias Gehringer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Anja Schäfer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Huy Pham DQ, Krupa P, Nguyen HL, La Penna G, Li MS. Computational Model to Unravel the Function of Amyloid-β Peptides in Contact with a Phospholipid Membrane. J Phys Chem B 2020; 124:3300-3314. [DOI: 10.1021/acs.jpcb.0c00771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dinh Quoc Huy Pham
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Hoang Linh Nguyen
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu
Duc District, 00133 Ho Chi Minh City, Vietnam
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute for Chemistry of Organometallic Compounds (ICCOM), 50019 Florence, Italy
- National Institute for Nuclear Physics (INFN), Section of Roma-Tor Vergata, 00186 Roma, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
16
|
Gehringer M, Mäder P, Gersbach P, Pfeiffer B, Scherr N, Dangy JP, Pluschke G, Altmann KH. Configurationally Stabilized Analogs of M. ulcerans Exotoxins Mycolactones A and B Reveal the Importance of Side Chain Geometry for Mycolactone Virulence. Org Lett 2019; 21:5853-5857. [PMID: 31295000 DOI: 10.1021/acs.orglett.9b01947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mycolactones A/B (1a/b) are exotoxins of Mycobacterium ulcerans that are the molecular cause of Buruli ulcer. 1a/b represent a rapidly equilibrating mixture of Z/E isomers about the C4'═C5' double bond of the C5-side chain. Here, we describe the syntheses of mycolactone analogs with configurationally stable C5-side chains (2a, E mimetic; 2b/c, Z mimetics). Based on the cytotoxicity of 2a-c, the Δ4',5'-trans isomer of mycolactones A/B (1b) appears to be the major virulence factor.
Collapse
Affiliation(s)
- Matthias Gehringer
- Swiss Federal Institute of Technology (ETH) Zürich , Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Vladimir-Prelog-Weg 4 , 8093 Zürich , Switzerland
| | - Patrick Mäder
- Swiss Federal Institute of Technology (ETH) Zürich , Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Vladimir-Prelog-Weg 4 , 8093 Zürich , Switzerland
| | - Philipp Gersbach
- Swiss Federal Institute of Technology (ETH) Zürich , Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Vladimir-Prelog-Weg 4 , 8093 Zürich , Switzerland
| | - Bernhard Pfeiffer
- Swiss Federal Institute of Technology (ETH) Zürich , Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Vladimir-Prelog-Weg 4 , 8093 Zürich , Switzerland
| | - Nicole Scherr
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , 4002 Basel , Switzerland
| | - Jean-Pierre Dangy
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , 4002 Basel , Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , 4002 Basel , Switzerland
| | - Karl-Heinz Altmann
- Swiss Federal Institute of Technology (ETH) Zürich , Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Vladimir-Prelog-Weg 4 , 8093 Zürich , Switzerland
| |
Collapse
|
17
|
Aydin F, Sun R, Swanson JMJ. Mycolactone Toxin Membrane Permeation: Atomistic versus Coarse-Grained MARTINI Simulations. Biophys J 2019; 117:87-98. [PMID: 31174850 PMCID: PMC6626831 DOI: 10.1016/j.bpj.2019.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Mycolactone, a cytotoxic and immunosuppressive macrolide produced by Mycobacterium ulcerans, is the central virulent factor in the skin disease Buruli ulcer. This multifunctional cytotoxin affects fundamental cellular processes such as cell adhesion, immune response, and cell death by targeting various cellular structures. Developing effective diagnostics that target mycolactone has been challenging, potentially because of suspected interactions with lipophilic architectures, including membranes. To better understand the pathogenesis of Buruli ulcer disease, aid in the development of diagnostics, and learn how amphiphiles in general use lipid trafficking to navigate the host environment, we seek to understand the nature of mycolactone-membrane interactions. Herein, we characterize how the two dominant isomers of mycolactone (A and B) interact with and permeate DPPC membranes with all-atom molecular dynamics simulations employing transition-tempered metadynamics and compare these results to those obtained by MARTINI coarse-grained simulations. Our all-atom simulations reveal that both isomers have a strong preference to associate with the membrane, although their mechanisms and energetics of membrane permeation differ slightly. Water molecules are found to play an important role in the permeation process. Although the MARTINI coarse-grained simulations give the correct free energy of membrane association, they fail to capture the mechanism of permeation and role of water during permeation as seen in all-atom simulations.
Collapse
Affiliation(s)
- Fikret Aydin
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
| | - Rui Sun
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
| | - Jessica M J Swanson
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois.
| |
Collapse
|
18
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 468] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
19
|
Kubicek-Sutherland JZ, Vu DM, Anderson AS, Sanchez TC, Converse PJ, Martí-Arbona R, Nuermberger EL, Swanson BI, Mukundan H. Understanding the Significance of Biochemistry in the Storage, Handling, Purification, and Sampling of Amphiphilic Mycolactone. Toxins (Basel) 2019; 11:toxins11040202. [PMID: 30987300 PMCID: PMC6520765 DOI: 10.3390/toxins11040202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022] Open
Abstract
Mycolactone, the amphiphilic macrolide toxin secreted by Mycobacterium ulcerans, plays a significant role in the pathology and manifestations of Buruli ulcer (BU). Consequently, it follows that the toxin is a suitable target for the development of diagnostics and therapeutics for this disease. Yet, several challenges have deterred such development. For one, the lipophilic nature of the toxin makes it difficult to handle and store and contributes to variability associated with laboratory experimentation and purification yields. In this manuscript, we have attempted to incorporate our understanding of the lipophilicity of mycolactone in order to define the optimal methods for the storage, handling, and purification of this toxin. We present a systematic correlation of variability associated with measurement techniques (thin-layer chromatography (TLC), mass spectrometry (MS), and UV-Vis spectrometry), storage conditions, choice of solvents, as well as the impact of each of these on toxin function as assessed by cellular cytotoxicity. We also compared natural mycolactone extracted from bacterial culture with synthesized toxins in laboratory (solvents, buffers) and physiologically relevant (serum) matrices. Our results point to the greater stability of mycolactone in organic, as well as detergent-containing, solvents, regardless of the container material (plastic, glass, or silanized tubes). They also highlight the presence of toxin in samples that may be undetectable by any one technique, suggesting that each detection approach captures different configurations of the molecule with varying specificity and sensitivity. Most importantly, our results demonstrate for the very first time that amphiphilic mycolactone associates with host lipoproteins in serum, and that this association will likely impact our ability to study, diagnose, and treat Buruli ulcers in patients.
Collapse
Affiliation(s)
| | - Dung M Vu
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Aaron S Anderson
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Timothy C Sanchez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Paul J Converse
- Department of Medicine, Johns Hopkins University Center for Tuberculosis Research, Baltimore, MD 21218, USA.
| | | | - Eric L Nuermberger
- Department of Medicine, Johns Hopkins University Center for Tuberculosis Research, Baltimore, MD 21218, USA.
| | - Basil I Swanson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Harshini Mukundan
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
20
|
Molecular Docking and Dynamics Simulation Studies Predict Munc18b as a Target of Mycolactone: A Plausible Mechanism for Granule Exocytosis Impairment in Buruli Ulcer Pathogenesis. Toxins (Basel) 2019; 11:toxins11030181. [PMID: 30934618 PMCID: PMC6468854 DOI: 10.3390/toxins11030181] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/18/2022] Open
Abstract
Ulcers due to infections with Mycobacterium ulcerans are characterized by complete lack of wound healing processes, painless, an underlying bed of host dead cells and undermined edges due to necrosis. Mycolactone, a macrolide produced by the mycobacterium, is believed to be the toxin responsible. Of interest and relevance is the knowledge that Buruli ulcer (BU) patients remember experiencing trauma previously at the site of the ulcers, suggesting an impairment of wound healing processes, the plausible effect due to the toxin. Wound healing processes involve activation of the blood platelets to release the contents of the dense granules mainly serotonin, calcium ions, and ADP/ATP by exocytosis into the bloodstream. The serotonin release results in attracting more platelets and mast cells to the wound site, with the mast cells also undergoing degranulation, releasing compounds into the bloodstream by exocytosis. Recent work has identified interference in the co-translational translocation of many secreted proteins via the endoplasmic reticulum and cell death involving Wiskott-Aldrich syndrome protein (WASP), Sec61, and angiotensin II receptors (AT2R). We hypothesized that mycolactone by being lipophilic, passively crosses cell membranes and binds to key proteins that are involved in exocytosis by platelets and mast cells, thus inhibiting the initiation of wound healing processes. Based on this, molecular docking studies were performed with mycolactone against key soluble n-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and regulators, namely Vesicle-associated membrane protein (VAMP8), Synaptosomal-associated protein (SNAP23, syntaxin 11, Munc13-4 (its isoform Munc13-1 was used), and Munc18b; and also against known mycolactone targets (Sec61, AT2R, and WASP). Munc18b was shown to be a plausible mycolactone target after the molecular docking studies with binding affinity of -8.5 kcal/mol. Structural studies and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding energy calculations of the mycolactone and Munc18b complex was done with 100 ns molecular dynamics simulations using GROMACS. Mycolactone binds strongly to Munc18b with an average binding energy of -247.571 ± 37.471 kJ/mol, and its presence elicits changes in the structural conformation of the protein. Analysis of the binding interactions also shows that mycolactone interacts with Arg405, which is an important residue of Munc18b, whose mutation could result in impaired granule exocytosis. These findings consolidate the possibility that Munc18b could be a target of mycolactone. The implication of the interaction can be experimentally evaluated to further understand its role in granule exocytosis impairment in Buruli ulcer.
Collapse
|
21
|
Demangel C, High S. Sec61 blockade by mycolactone: A central mechanism in Buruli ulcer disease. Biol Cell 2018; 110:237-248. [PMID: 30055020 DOI: 10.1111/boc.201800030] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022]
Abstract
Infection with Mycobacterium ulcerans results in a necrotising skin disease known as a Buruli ulcer, the pathology of which is directly linked to the bacterial production of the toxin mycolactone. Recent studies have identified the protein translocation machinery of the endoplasmic reticulum (ER) membrane as the primary cellular target of mycolactone, and shown that the toxin binds to the core subunit of the Sec61 complex. Mycolactone binding strongly inhibits the capacity of the Sec61 translocon to transport newly synthesised membrane and secretory proteins into and across the ER membrane. Since the ER acts as the entry point for the mammalian secretory pathway, and hence regulates initial access to the entire endomembrane system, mycolactone-treated cells have a reduced ability to produce a range of proteins including secretory cytokines and plasma membrane receptors. The global effect of this molecular blockade of protein translocation at the ER is that the host is unable to mount an effective immune response to the underlying mycobacterial infection. Prolonged exposure to mycolactone is normally cytotoxic, since it triggers stress responses activating the transcription factor ATF4 and ultimately inducing apoptosis.
Collapse
Affiliation(s)
- Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, Paris, France.,INSERM, U1221, Paris, France
| | - Stephen High
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|