1
|
Fogg LG, Isari S, Barnes JE, Patel JS, Marshall NJ, Salzburger W, Cortesi F, de Busserolles F. Deep-sea fish reveal alternative pathway for vertebrate visual development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617579. [PMID: 39416096 PMCID: PMC11483065 DOI: 10.1101/2024.10.10.617579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Vertebrate vision is accomplished by two phenotypically distinct types of photoreceptors in the retina: the saturation-resistant cones for the detection of bright light and the highly sensitive rods for dim light conditions [1]. The current dogma is that, during development, all vertebrates initially feature a cone-dominated retina, and rods are added later [2, 3]. By studying the ontogeny of vision in three species of deep-sea fishes, we show that their larvae express cone-specific genes in photoreceptors with rod-like morphologies. Through development, these fishes either retain this rod-like cone retina (Maurolicus mucronatus) or switch to a retina with true rod photoreceptors with expression of rod-specific genes and transcription factors (Vinciguerria mabahiss and Benthosema pterotum). In contrast to the larvae of most marine fishes, which inhabit the bright upper layer of the open ocean, the larvae of deep-sea fishes occur deeper, exposing them to a dimmer light environment [4-7]. Spectral maxima predictions from molecular dynamics simulations and environmental light estimations suggest that using transmuted photoreceptors that combine the characteristics of both cones and rods maximises visual performance in these dimmer light conditions. Our findings provide molecular, morphological, and functional evidence for the evolution of an alternative developmental pathway for vertebrate vision.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Zoological Institute, Department of Environment Sciences, University of Basel, Basel, 4051, Switzerland
| | - Stamatina Isari
- Institute of Marine Research, Bergen, 5005, Norway
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Jonathan E. Barnes
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, USA
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environment Sciences, University of Basel, Basel, 4051, Switzerland
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
- The School of The Environment, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
2
|
Chi LA, Pandey SK, Kolodziejczyk W, Lund-Andersen P, Barnes JE, Kapusta K, Patel JS. Molecular Mechanisms Underlying the Spectral Shift in Zebrafish Cone Opsins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614827. [PMID: 39386526 PMCID: PMC11463405 DOI: 10.1101/2024.09.24.614827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Visual pigments are essential for converting light into electrical signals during vision. Composed of an opsin protein and a retinal-based chromophore, pigments in vertebrate rods (Rh1) and cones (Rh2) have different spectral sensitivities, with distinct peak absorption wavelengths determined by the shape and composition of the chromophore binding pocket. Despite advances in understanding Rh1 pigments such as bovine rhodopsin, the molecular basis of spectral shifts in Rh2 cone opsins has been less studied, particularly the E122Q mutation, which accounts for about half of the observed spectral shift in these pigments. In this study, we employed molecular modeling and quantum mechanical techniques to investigate the molecular mechanisms behind the spectral difference in blue-shifted Rh2-1 (absorption peak = 467 nm, 122Q) and green-shifted Rh2-4 (absorption peak = 505 nm, 122E) zebrafish cone opsins. We modeled the pigments 3D structures based on their sequences and conducted all-atom molecular dynamics simulations totaling 2 microseconds. Distance analysis of the trajectories identified three key sites: E113, E181, and E122. The E122Q mutation, previously known, validates our findings, while E181 and E113 are newly identified contributors. Structural analysis revealed key features with differing values that explain the divergent spectral sensitivities of Rh2-1 and Rh2-4: 1) chromophore atom fluctuations and C5-C6 torsion angle, 2) binding pocket volume, 3) hydration patterns, and 4) E113-chromophore interaction stability. Quantum mechanics further confirms the critical role of residue E181 in Rh2-1 and E122 in Rh2-4 for their spectral behavior. Our study provides new insights into the molecular determinants of spectral shifts in cone opsins, and we anticipate that it will serve as a starting point for a broader understanding of the functional diversity of visual pigments.
Collapse
Affiliation(s)
- L América Chi
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, United States of America
| | - Shubham Kumar Pandey
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, United States of America
| | - Wojciech Kolodziejczyk
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi, United States of America
| | - Peik Lund-Andersen
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jonathan E Barnes
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - Karina Kapusta
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, Mississippi, United States of America
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
3
|
Gerwin J, Torres-Dowdall J, Brown TF, Meyer A. Expansion and Functional Diversification of Long-Wavelength-Sensitive Opsin in Anabantoid Fishes. J Mol Evol 2024; 92:432-448. [PMID: 38861038 PMCID: PMC11291592 DOI: 10.1007/s00239-024-10181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Gene duplication is one of the most important sources of novel genotypic diversity and the subsequent evolution of phenotypic diversity. Determining the evolutionary history and functional changes of duplicated genes is crucial for a comprehensive understanding of adaptive evolution. The evolutionary history of visual opsin genes is very dynamic, with repeated duplication events followed by sub- or neofunctionalization. While duplication of the green-sensitive opsins rh2 is common in teleost fish, fewer cases of multiple duplication events of the red-sensitive opsin lws are known. In this study, we investigate the visual opsin gene repertoire of the anabantoid fishes, focusing on the five lws opsin genes found in the genus Betta. We determine the evolutionary history of the lws opsin gene by taking advantage of whole-genome sequences of nine anabantoid species, including the newly assembled genome of Betta imbellis. Our results show that at least two independent duplications of lws occurred in the Betta lineage. The analysis of amino acid sequences of the lws paralogs of Betta revealed high levels of diversification in four of the seven transmembrane regions of the lws protein. Amino acid substitutions at two key-tuning sites are predicted to lead to differentiation of absorption maxima (λmax) between the paralogs within Betta. Finally, eye transcriptomics of B. splendens at different developmental stages revealed expression shifts between paralogs for all cone opsin classes. The lws genes are expressed according to their relative position in the lws opsin cluster throughout ontogeny. We conclude that temporal collinearity of lws expression might have facilitated subfunctionalization of lws in Betta and teleost opsins in general.
Collapse
Affiliation(s)
- Jan Gerwin
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Thomas F Brown
- Max Planck Institute of Molecular Cellular Biology and Genetics, Dresden, Germany
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
4
|
Frazer SA, Baghbanzadeh M, Rahnavard A, Crandall KA, Oakley TH. Discovering genotype-phenotype relationships with machine learning and the Visual Physiology Opsin Database (VPOD). Gigascience 2024; 13:giae073. [PMID: 39460934 PMCID: PMC11512451 DOI: 10.1093/gigascience/giae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 09/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Predicting phenotypes from genetic variation is foundational for fields as diverse as bioengineering and global change biology, highlighting the importance of efficient methods to predict gene functions. Linking genetic changes to phenotypic changes has been a goal of decades of experimental work, especially for some model gene families, including light-sensitive opsin proteins. Opsins can be expressed in vitro to measure light absorption parameters, including λmax-the wavelength of maximum absorbance-which strongly affects organismal phenotypes like color vision. Despite extensive research on opsins, the data remain dispersed, uncompiled, and often challenging to access, thereby precluding systematic and comprehensive analyses of the intricate relationships between genotype and phenotype. RESULTS Here, we report a newly compiled database of all heterologously expressed opsin genes with λmax phenotypes that we call the Visual Physiology Opsin Database (VPOD). VPOD_1.0 contains 864 unique opsin genotypes and corresponding λmax phenotypes collected across all animals from 73 separate publications. We use VPOD data and deepBreaks to show regression-based machine learning (ML) models often reliably predict λmax, account for nonadditive effects of mutations on function, and identify functionally critical amino acid sites. CONCLUSION The ability to reliably predict functions from gene sequences alone using ML will allow robust exploration of molecular-evolutionary patterns governing phenotype, will inform functional and evolutionary connections to an organism's ecological niche, and may be used more broadly for de novo protein design. Together, our database, phenotype predictions, and model comparisons lay the groundwork for future research applicable to families of genes with quantifiable and comparable phenotypes.
Collapse
Affiliation(s)
- Seth A Frazer
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA
| | - Mahdi Baghbanzadeh
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20012, USA
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
5
|
Corredor VH, Hauzman E, Gonçalves ADS, Ventura DF. Genetic characterization of the visual pigments of the red-eared turtle (Trachemys scripta elegans) and computational predictions of the spectral sensitivity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Liénard MA, Valencia-Montoya WA, Pierce NE. Molecular advances to study the function, evolution and spectral tuning of arthropod visual opsins. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210279. [PMID: 36058235 PMCID: PMC9450095 DOI: 10.1098/rstb.2021.0279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Visual opsins of vertebrates and invertebrates diversified independently and converged to detect ultraviolet to long wavelengths (LW) of green or red light. In both groups, colour vision largely derives from opsin number, expression patterns and changes in amino acids interacting with the chromophore. Functional insights regarding invertebrate opsin evolution have lagged behind those for vertebrates because of the disparity in genomic resources and the lack of robust in vitro systems to characterize spectral sensitivities. Here, we review bioinformatic approaches to identify and model functional variation in opsins as well as recently developed assays to measure spectral phenotypes. In particular, we discuss how transgenic lines, cAMP-spectroscopy and sensitive heterologous expression platforms are starting to decouple genotype-phenotype relationships of LW opsins to complement the classical physiological-behavioural-phylogenetic toolbox of invertebrate visual sensory studies. We illustrate the use of one heterologous method by characterizing novel LW Gq opsins from 10 species, including diurnal and nocturnal Lepidoptera, a terrestrial dragonfly and an aquatic crustacean, expressing them in HEK293T cells, and showing that their maximum absorbance spectra (λmax) range from 518 to 611 nm. We discuss the advantages of molecular approaches for arthropods with complications such as restricted availability, lateral filters, specialized photochemistry and/or electrophysiological constraints. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Marjorie A. Liénard
- Department of Biology, Lund University, 22362 Lund, Sweden
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Wendy A. Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Eilertsen M, Davies WIL, Patel D, Barnes JE, Karlsen R, Mountford JK, Stenkamp DL, Patel JS, Helvik JV. An EvoDevo Study of Salmonid Visual Opsin Dynamics and Photopigment Spectral Sensitivity. Front Neuroanat 2022; 16:945344. [PMID: 35899127 PMCID: PMC9309310 DOI: 10.3389/fnana.2022.945344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Salmonids are ideal models as many species follow a distinct developmental program from demersal eggs and a large yolk sac to hatching at an advanced developmental stage. Further, these economically important teleosts inhabit both marine- and freshwaters and experience diverse light environments during their life histories. At a genome level, salmonids have undergone a salmonid-specific fourth whole genome duplication event (Ss4R) compared to other teleosts that are already more genetically diverse compared to many non-teleost vertebrates. Thus, salmonids display phenotypically plastic visual systems that appear to be closely related to their anadromous migration patterns. This is most likely due to a complex interplay between their larger, more gene-rich genomes and broad spectrally enriched habitats; however, the molecular basis and functional consequences for such diversity is not fully understood. This study used advances in genome sequencing to identify the repertoire and genome organization of visual opsin genes (those primarily expressed in retinal photoreceptors) from six different salmonids [Atlantic salmon (Salmo salar), brown trout (Salmo trutta), Chinook salmon (Oncorhynchus tshawytcha), coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhynchus mykiss), and sockeye salmon (Oncorhynchus nerka)] compared to the northern pike (Esox lucius), a closely related non-salmonid species. Results identified multiple orthologues for all five visual opsin classes, except for presence of a single short-wavelength-sensitive-2 opsin gene. Several visual opsin genes were not retained after the Ss4R duplication event, which is consistent with the concept of salmonid rediploidization. Developmentally, transcriptomic analyzes of Atlantic salmon revealed differential expression within each opsin class, with two of the long-wavelength-sensitive opsins not being expressed before first feeding. Also, early opsin expression in the retina was located centrally, expanding dorsally and ventrally as eye development progressed, with rod opsin being the dominant visual opsin post-hatching. Modeling by spectral tuning analysis and atomistic molecular simulation, predicted the greatest variation in the spectral peak of absorbance to be within the Rh2 class, with a ∼40 nm difference in λ max values between the four medium-wavelength-sensitive photopigments. Overall, it appears that opsin duplication and expression, and their respective spectral tuning profiles, evolved to maximize specialist color vision throughout an anadromous lifecycle, with some visual opsin genes being lost to tailor marine-based vision.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Wayne Iwan Lee Davies
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Dharmeshkumar Patel
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States
| | - Jonathan E. Barnes
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States
| | - Rita Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jessica Kate Mountford
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
- Lions Eye Institute, University of Western Australia, Perth, WA, Australia
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
9
|
Lee MD, Creagh JW, Fredericks LR, Crabtree AM, Patel JS, Rowley PA. The Characterization of a Novel Virus Discovered in the Yeast Pichia membranifaciens. Viruses 2022; 14:v14030594. [PMID: 35337001 PMCID: PMC8951182 DOI: 10.3390/v14030594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
Mycoviruses are widely distributed across fungi, including the yeasts of the Saccharomycotina subphylum. This manuscript reports the first double-stranded RNA (dsRNA) virus isolated from Pichia membranifaciens. This novel virus has been named Pichia membranifaciens virus L-A (PmV-L-A) and is a member of the Totiviridae. PmV-L-A is 4579 bp in length, with RNA secondary structures similar to the packaging, replication, and frameshift signals of totiviruses that infect Saccharomycotina yeasts. PmV-L-A was found to be part of a monophyletic group within the I-A totiviruses, implying a shared ancestry between mycoviruses isolated from the Pichiaceae and Saccharomycetaceae yeasts. Energy-minimized AlphaFold2 molecular models of the PmV-L-A Gag protein revealed structural conservation with the Gag protein of Saccharomyces cerevisiae virus L-A (ScV-L-A). The predicted tertiary structure of the PmV-L-A Pol and other homologs provided a possible mechanism for totivirus RNA replication due to structural similarities with the RNA-dependent RNA polymerases of mammalian dsRNA viruses. Insights into the structure, function, and evolution of totiviruses gained from yeasts are essential because of their emerging role in animal disease and their parallels with mammalian viruses.
Collapse
Affiliation(s)
- Mark D. Lee
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Jack W. Creagh
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Lance R. Fredericks
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Angela M. Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
| | - Jagdish Suresh Patel
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (M.D.L.); (J.W.C.); (L.R.F.); (A.M.C.); (J.S.P.)
- Correspondence:
| |
Collapse
|
10
|
Connaughton VP, Nelson R. Ganglion cells in larval zebrafish retina integrate inputs from multiple cone types. J Neurophysiol 2021; 126:1440-1454. [PMID: 34550015 DOI: 10.1152/jn.00082.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We recently showed the presence of seven physiological cone opsins-R1 (575 nm), R2 (556 nm), G1 (460 nm), G3 (480 nm), B1 (415 nm), B2 (440 nm), and UV (358 nm)-in electroretinogram (ERG) recordings of larval zebrafish (Danio rerio) retina. Larval ganglion cells (GCs) are generally thought to integrate only four cone opsin signals (red, green, blue, and UV). We address the question as to whether they may integrate seven cone spectral signals. Here we examined the 127 possible combinations of seven cone signals to find the optimal representation, as based on impulse discharge data sets from GC axons in the larval optic nerve. We recorded four varieties of light-response waveform, sustained-ON, transient-ON, ON-OFF, and OFF, based on the time course of mean discharge rates to all stimulus wavelengths combined. Modeling of GC responses revealed that each received 1-6 cone opsin signals, with a mean of 3.8 ± 1.3 cone signals/GC. Most onset or offset responses were opponent (ON, 80%; OFF, 100%). The most common cone signals were UV (93%), R2 (50%), G3 (55%), and G1 (60%). Seventy-three percent of cone opsin signals were excitatory, and 27% were inhibitory. UV signals favored excitation, whereas G3 and B2 signals favored inhibition. R1/R2, G1/G3, and B1/B2 opsin signals were selectively associated along a nonsynergistic/opponent axis. Overall, these results suggest that larval zebrafish GC spectral responses are complex and use inputs from the seven expressed opsins.NEW & NOTEWORTHY Ganglion cells in larval zebrafish retina have complex spectral responses driven by seven different cone opsin types. UV cone inputs are significant and excitatory to ganglion cells, whereas green and blue cone inputs favor inhibition. Most dramatic are the pentachromatic cells. These responses were identified at 5-6 days after fertilization, reflecting an impressive level of color processing not seen in older fish or mammals.
Collapse
Affiliation(s)
- V P Connaughton
- Department of Biology, American University, Washington, District of Columbia
| | - R Nelson
- Neural Circuits Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Wang B, Tsakiridis EE, Zhang S, Llanos A, Desjardins EM, Yabut JM, Green AE, Day EA, Smith BK, Lally JSV, Wu J, Raphenya AR, Srinivasan KA, McArthur AG, Kajimura S, Patel JS, Wade MG, Morrison KM, Holloway AC, Steinberg GR. The pesticide chlorpyrifos promotes obesity by inhibiting diet-induced thermogenesis in brown adipose tissue. Nat Commun 2021; 12:5163. [PMID: 34453052 PMCID: PMC8397754 DOI: 10.1038/s41467-021-25384-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity results from a caloric imbalance between energy intake, absorption and expenditure. In both rodents and humans, diet-induced thermogenesis contributes to energy expenditure and involves the activation of brown adipose tissue (BAT). We hypothesize that environmental toxicants commonly used as food additives or pesticides might reduce BAT thermogenesis through suppression of uncoupling protein 1 (UCP1) and this may contribute to the development of obesity. Using a step-wise screening approach, we discover that the organophosphate insecticide chlorpyrifos suppresses UCP1 and mitochondrial respiration in BAT at concentrations as low as 1 pM. In mice housed at thermoneutrality and fed a high-fat diet, chlorpyrifos impairs BAT mitochondrial function and diet-induced thermogenesis, promoting greater obesity, non-alcoholic fatty liver disease (NAFLD) and insulin resistance. This is associated with reductions in cAMP; activation of p38MAPK and AMPK; protein kinases critical for maintaining UCP1 and mitophagy, respectively in BAT. These data indicate that the commonly used pesticide chlorpyrifos, suppresses diet-induced thermogenesis and the activation of BAT, suggesting its use may contribute to the obesity epidemic.
Collapse
Affiliation(s)
- Bo Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Shuman Zhang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrea Llanos
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Eric M Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Julian M Yabut
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexander E Green
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Brennan K Smith
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - James S V Lally
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amogelang R Raphenya
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Krishna A Srinivasan
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew G McArthur
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Shingo Kajimura
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
12
|
Musilova Z, Salzburger W, Cortesi F. The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function. Annu Rev Cell Dev Biol 2021; 37:441-468. [PMID: 34351785 DOI: 10.1146/annurev-cellbio-120219-024915] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Department of Zoology, Charles University, Prague 128 44, Czech Republic;
| | | | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Queensland, Australia;
| |
Collapse
|
13
|
Matsumoto Y, Oda S, Mitani H, Kawamura S. Orthologous Divergence and Paralogous Anticonvergence in Molecular Evolution of Triplicated Green Opsin Genes in Medaka Fish, Genus Oryzias. Genome Biol Evol 2021; 12:911-923. [PMID: 32467976 PMCID: PMC7337190 DOI: 10.1093/gbe/evaa111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 11/30/2022] Open
Abstract
Gene duplication of green (RH2) opsin genes and their spectral differentiation are well documented in many teleost fish. However, their evolutionary divergence or conservation patterns among phylogenetically close but ecologically diverse species is not well explored. Medaka fish (genus Oryzias) are broadly distributed in fresh and brackish waters of Asia, with many species being laboratory-housed and feasible for genetic studies. We previously showed that a Japan strain (HNI) of medaka (Oryzias latipes) possessed three RH2 opsin genes (RH2-A, RH2-B, and RH2-C) encoding spectrally divergent photopigments. Here, we examined the three RH2 opsin genes from six Oryzias species representing three species groups: the latipes, the celebensis, and the javanicus. Photopigment reconstitution revealed that the peak absorption spectra (λmax) of RH2-A were divergent among the species (447–469 nm), whereas those of RH2-B and RH2-C were conservative (516–519 and 486–493 nm, respectively). For the RH2-A opsins, the largest spectral shift was detected in the phylogenetic branch leading to the latipes group. A single amino acid replacement T94C explained most of the spectral shift. For RH2-B and -C opsins, we detected tracts of gene conversion between the two genes homogenizing them. Nevertheless, several amino acid differences were maintained. We showed that the spectral difference between the two opsins was attributed to largely the E/Q amino acid difference at the site 122 and to several sites with individually small spectral effects. These results depict dynamism of spectral divergence of orthologous and paralogous green opsin genes in phylogenetically close but ecologically diverse species exemplified by medaka.
Collapse
Affiliation(s)
- Yoshifumi Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Live Imaging Center, Central Institute for Experimental Animals (CIEA), Kawasaki, Kanagawa, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
14
|
The Chemosensory Repertoire of the Eastern Diamondback Rattlesnake (Crotalus adamanteus) Reveals Complementary Genetics of Olfactory and Vomeronasal-Type Receptors. J Mol Evol 2021; 89:313-328. [PMID: 33881604 DOI: 10.1007/s00239-021-10007-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 01/14/2023]
Abstract
Pitviper sensory perception incorporates diverse stimuli through the integration of trichromatic color vision, bifocal heat-sensing, and dual-system chemoperception. Chemoperception, or olfaction, is mediated by chemoreceptors in the olfactory bulb and the vomeronasal organ, but the true genomic complexity of the gene families and their relative contributions is unknown. A full genomic accounting of pitviper chemoperception directly complements our current understanding of their venoms by generating a more complete polyphenic representation of their predatory arsenal. To characterize the genetic repertoire of pitviper chemoperception, we analyzed a full-genome assembly for Crotalus adamanteus, the eastern diamondback rattlesnake. We identified hundreds of genes encoding both olfactory receptors (ORs; 362 full-length genes) and type-2 vomeronasal receptors (V2Rs; 430 full-length genes). Many chemoreceptor genes are organized into large tandem repeat arrays. Comparative analysis of V2R orthologs across squamates demonstrates how gene array expansion and contraction underlies the evolution of the chemoreceptor repertoire, which likely reflects shifts in life history traits. Chromosomal assignments of chemosensory genes identified sex chromosome specific chemoreceptor genes, providing gene candidates underlying observed sex-specific chemosensory-based behaviors. We detected widespread episodic evolution in the extracellular, ligand-binding domains of both ORs and V2Rs, suggesting the diversification of chemoreceptors is driven by transient periods of positive selection. We provide a robust genetic framework for studying pitviper chemosensory ecology and evolution.
Collapse
|
15
|
Patel D, Barnes JE, Davies WIL, Stenkamp DL, Patel JS. Short-wavelength-sensitive 2 (Sws2) visual photopigment models combined with atomistic molecular simulations to predict spectral peaks of absorbance. PLoS Comput Biol 2020; 16:e1008212. [PMID: 33085657 PMCID: PMC7605715 DOI: 10.1371/journal.pcbi.1008212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 09/21/2020] [Indexed: 12/02/2022] Open
Abstract
For many species, vision is one of the most important sensory modalities for mediating essential tasks that include navigation, predation and foraging, predator avoidance, and numerous social behaviors. The vertebrate visual process begins when photons of the light interact with rod and cone photoreceptors that are present in the neural retina. Vertebrate visual photopigments are housed within these photoreceptor cells and are sensitive to a wide range of wavelengths that peak within the light spectrum, the latter of which is a function of the type of chromophore used and how it interacts with specific amino acid residues found within the opsin protein sequence. Minor differences in the amino acid sequences of the opsins are known to lead to large differences in the spectral peak of absorbance (i.e. the λmax value). In our prior studies, we developed a new approach that combined homology modeling and molecular dynamics simulations to gather structural information associated with chromophore conformation, then used it to generate statistical models for the accurate prediction of λmax values for photopigments derived from Rh1 and Rh2 amino acid sequences. In the present study, we test our novel approach to predict the λmax of phylogenetically distant Sws2 cone opsins. To build a model that can predict the λmax using our approach presented in our prior studies, we selected a spectrally-diverse set of 11 teleost Sws2 photopigments for which both amino acid sequence information and experimentally measured λmax values are known. The final first-order regression model, consisting of three terms associated with chromophore conformation, was sufficient to predict the λmax of Sws2 photopigments with high accuracy. This study further highlights the breadth of our approach in reliably predicting λmax values of Sws2 cone photopigments, evolutionary-more distant from template bovine RH1, and provided mechanistic insights into the role of known spectral tuning sites.
Collapse
Affiliation(s)
- Dharmeshkumar Patel
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States of America
| | - Jonathan E. Barnes
- Department of Physics, University of Idaho, Moscow, ID, United States of America
| | - Wayne I. L. Davies
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- The Oceans Graduate School, University of Western Australia, Perth, WA, Australia
- The Oceans Institute, University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, University of Western Australia, Perth, WA, Australia
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- Institute for Bioinformatics and Evolutionary Biology, University of Idaho, Moscow, ID, United States of America
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation (IMCI), University of Idaho, Moscow, ID, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
| |
Collapse
|
16
|
Abstract
The jawless fish that were ancestral to all living vertebrates had four spectral cone types that were probably served by chromatic-opponent retinal circuits. Subsequent evolution of photoreceptor spectral sensitivities is documented for many vertebrate lineages, giving insight into the ecological adaptation of color vision. Beyond the photoreceptors, retinal color processing is best understood in mammals, especially the blueON system, which opposes short- against long-wavelength receptor responses. For other vertebrates that often have three or four types of cone pigment, new findings from zebrafish are extending older work on teleost fish and reptiles to reveal rich color circuitry. Here, horizontal cells establish diverse and complex spectral responses even in photoreceptor outputs. Cone-selective connections to bipolar cells then set up color-opponent synaptic layers in the inner retina, which lead to a large variety of color-opponent channels for transmission to the brain via retinal ganglion cells.
Collapse
Affiliation(s)
- T Baden
- School of Life Sciences, University of Sussex, BN1 9QG Brighton, United Kingdom; ,
- Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - D Osorio
- School of Life Sciences, University of Sussex, BN1 9QG Brighton, United Kingdom; ,
| |
Collapse
|
17
|
Musilova Z, Cortesi F, Matschiner M, Davies WIL, Patel JS, Stieb SM, de Busserolles F, Malmstrøm M, Tørresen OK, Brown CJ, Mountford JK, Hanel R, Stenkamp DL, Jakobsen KS, Carleton KL, Jentoft S, Marshall J, Salzburger W. Vision using multiple distinct rod opsins in deep-sea fishes. Science 2019; 364:588-592. [PMID: 31073066 PMCID: PMC6628886 DOI: 10.1126/science.aav4632] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/16/2019] [Indexed: 02/01/2023]
Abstract
Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fabio Cortesi
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Matschiner
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Palaeontology and Museum, University of Zurich, Zurich, Switzerland
| | - Wayne I L Davies
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, The University of Western Australia, Perth, WA, Australia
- Oceans Graduate School, The University of Western Australia, Perth, WA, Australia
| | - Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Sara M Stieb
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Center for Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Martin Malmstrøm
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Jessica K Mountford
- UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, The University of Western Australia, Perth, WA, Australia
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Bremerhaven, Germany
| | | | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|