1
|
Wright ES. Tandem Repeats Provide Evidence for Convergent Evolution to Similar Protein Structures. Genome Biol Evol 2025; 17:evaf013. [PMID: 39852593 PMCID: PMC11812678 DOI: 10.1093/gbe/evaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Homology is a key concept underpinning the comparison of sequences across organisms. Sequence-level homology is based on a statistical framework optimized over decades of work. Recently, computational protein structure prediction has enabled large-scale homology inference beyond the limits of accurate sequence alignment. In this regime, it is possible to observe nearly identical protein structures lacking detectable sequence similarity. In the absence of a robust statistical framework for structure comparison, it is largely assumed similar structures are homologous. However, it is conceivable that matching structures could arise through convergent evolution, resulting in analogous proteins without shared ancestry. Large databases of predicted structures offer a means of determining whether analogs are present among structure matches. Here, I find that a small subset (∼2.6%) of Foldseek clusters lack sequence-level support for homology, including ∼1% of strong structure matches with template modeling score ≥ 0.5. This result by itself does not imply these structure pairs are nonhomologous, since their sequences could have diverged beyond the limits of recognition. Yet, strong matches without sequence-level support for homology are enriched in structures with predicted repeats that could induce spurious matches. Some of these structural repeats are underpinned by sequence-level tandem repeats in both matching structures. I show that many of these tandem repeat units have genealogies inconsistent with their corresponding structures sharing a common ancestor, implying these highly similar structure pairs are analogous rather than homologous. This result suggests caution is warranted when inferring homology from structural resemblance alone in the absence of sequence-level support for homology.
Collapse
Affiliation(s)
- Erik S Wright
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Center for Evolutionary Biology and Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
2
|
Goldford JE, Smith HB, Longo LM, Wing BA, McGlynn SE. Primitive purine biosynthesis connects ancient geochemistry to modern metabolism. Nat Ecol Evol 2024; 8:999-1009. [PMID: 38519634 DOI: 10.1038/s41559-024-02361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2024] [Indexed: 03/25/2024]
Abstract
An unresolved question in the origin and evolution of life is whether a continuous path from geochemical precursors to the majority of molecules in the biosphere can be reconstructed from modern-day biochemistry. Here we identified a feasible path by simulating the evolution of biosphere-scale metabolism, using only known biochemical reactions and models of primitive coenzymes. We find that purine synthesis constitutes a bottleneck for metabolic expansion, which can be alleviated by non-autocatalytic phosphoryl coupling agents. Early phases of the expansion are enriched with enzymes that are metal dependent and structurally symmetric, supporting models of early biochemical evolution. This expansion trajectory suggests distinct hypotheses regarding the tempo, mode and timing of metabolic pathway evolution, including a late appearance of methane metabolisms and oxygenic photosynthesis consistent with the geochemical record. The concordance between biological and geological analyses suggests that this trajectory provides a plausible evolutionary history for the vast majority of core biochemistry.
Collapse
Affiliation(s)
- Joshua E Goldford
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Seattle, WA, USA.
| | - Harrison B Smith
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Liam M Longo
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
| | - Shawn Erin McGlynn
- Blue Marble Space Institute of Science, Seattle, WA, USA.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan.
| |
Collapse
|
3
|
Aleksandrova AA, Sarti E, Forrest LR. EncoMPASS: An encyclopedia of membrane proteins analyzed by structure and symmetry. Structure 2024; 32:492-504.e4. [PMID: 38367624 PMCID: PMC11251422 DOI: 10.1016/j.str.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Protein structure determination and prediction, active site detection, and protein sequence alignment techniques all exploit information about protein structure and structural relationships. For membrane proteins, however, there is limited agreement among available online tools for highlighting and mapping such structural similarities. Moreover, no available resource provides a systematic overview of quaternary and internal symmetries, and their orientation relative to the membrane, despite the fact that these properties can provide key insights into membrane protein function and evolution. Here, we describe the Encyclopedia of Membrane Proteins Analyzed by Structure and Symmetry (EncoMPASS), a database for relating integral membrane proteins of known structure from the points of view of sequence, structure, and symmetry. EncoMPASS is accessible through a web interface, and its contents can be easily downloaded. This allows the user not only to focus on specific proteins, but also to study general properties of the structure and evolution of membrane proteins.
Collapse
Affiliation(s)
- Antoniya A Aleksandrova
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edoardo Sarti
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Mac Donagh J, Marchesini A, Spiga A, Fallico MJ, Arrías PN, Monzon AM, Vagiona AC, Gonçalves-Kulik M, Mier P, Andrade-Navarro MA. Structured Tandem Repeats in Protein Interactions. Int J Mol Sci 2024; 25:2994. [PMID: 38474241 DOI: 10.3390/ijms25052994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Tandem repeats (TRs) in protein sequences are consecutive, highly similar sequence motifs. Some types of TRs fold into structural units that pack together in ensembles, forming either an (open) elongated domain or a (closed) propeller, where the last unit of the ensemble packs against the first one. Here, we examine TR proteins (TRPs) to see how their sequence, structure, and evolutionary properties favor them for a function as mediators of protein interactions. Our observations suggest that TRPs bind other proteins using large, structured surfaces like globular domains; in particular, open-structured TR ensembles are favored by flexible termini and the possibility to tightly coil against their targets. While, intuitively, open ensembles of TRs seem prone to evolve due to their potential to accommodate insertions and deletions of units, these evolutionary events are unexpectedly rare, suggesting that they are advantageous for the emergence of the ancestral sequence but are early fixed. We hypothesize that their flexibility makes it easier for further proteins to adapt to interact with them, which would explain their large number of protein interactions. We provide insight into the properties of open TR ensembles, which make them scaffolds for alternative protein complexes to organize genes, RNA and proteins.
Collapse
Affiliation(s)
- Juan Mac Donagh
- Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Abril Marchesini
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
- Biotechnology and Molecular Biology Institute (IBBM, UNLP-CONICET), Faculty of Exact Sciences, University of La Plata, La Plata 1900, Argentina
| | - Agostina Spiga
- Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maximiliano José Fallico
- Laboratory of Bioactive Compound Research and Development, Faculty of Exact Sciences, University of La Plata, La Plata 1900, Argentina
| | - Paula Nazarena Arrías
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Alexander Miguel Monzon
- Department of Information Engineering, University of Padova, Via Giovanni Gradenigo 6/B, 35131 Padova, Italy
| | - Aimilia-Christina Vagiona
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Mariane Gonçalves-Kulik
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| |
Collapse
|
5
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Diversity and features of proteins with structural repeats. Biophys Rev 2023; 15:1159-1169. [PMID: 37974986 PMCID: PMC10643770 DOI: 10.1007/s12551-023-01130-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023] Open
Abstract
The review provides information on proteins with structural repeats, including their classification, characteristics, functions, and relevance in disease development. It explores methods for identifying structural repeats and specialized databases. The review also highlights the potential use of repeat proteins as drug design scaffolds and discusses their evolutionary mechanisms.
Collapse
Affiliation(s)
- Evgeniya I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
6
|
Ormazábal A, Carletti MS, Saldaño TE, Gonzalez Buitron M, Marchetti J, Palopoli N, Bateman A. Expanding the repertoire of human tandem repeat RNA-binding proteins. PLoS One 2023; 18:e0290890. [PMID: 37729217 PMCID: PMC10511089 DOI: 10.1371/journal.pone.0290890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Protein regions consisting of arrays of tandem repeats are known to bind other molecular partners, including nucleic acid molecules. Although the interactions between repeat proteins and DNA are already widely explored, studies characterising tandem repeat RNA-binding proteins are lacking. We performed a large-scale analysis of human proteins devoted to expanding the knowledge about tandem repeat proteins experimentally reported as RNA-binding molecules. This work is timely because of the release of a full set of accurate structural models for the human proteome amenable to repeat detection using structural methods. The main goal of our analysis was to build a comprehensive set of human RNA-binding proteins that contain repeats at the sequence or structure level. Our results showed that the combination of sequence and structural methods finds significantly more tandem repeat proteins than either method alone. We identified 219 tandem repeat proteins that bind RNA molecules and characterised the overlap between repeat regions and RNA-binding regions as a first step towards assessing their functional relationship. We observed differences in the characteristics of repeat regions predicted by sequence-based or structure-based methods in terms of their sequence composition, their functions and their protein domains.
Collapse
Affiliation(s)
- Agustín Ormazábal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Matías Sebastián Carletti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Tadeo Enrique Saldaño
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, Azul, Buenos Aires, Argentina
| | - Martín Gonzalez Buitron
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Julia Marchetti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, Buenos Aires, Argentina
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
7
|
Manasra S, Kajava AV. Why does the first protein repeat often become the only one? J Struct Biol 2023; 215:108014. [PMID: 37567371 DOI: 10.1016/j.jsb.2023.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Proteins with two similar motifs in tandem are one of the most common cases of tandem repeat proteins. The question arises: why is the first emerged repeat frequently fixed in the process of evolution, despite the ample opportunities to continue its multiplication at the DNA level? To answer this question, we systematically analyzed the structure and function of these proteins. Our analysis showed that, in the vast majority of cases, the structural repetitive units have a two-fold (C2) internal symmetry. These closed structures provide an internal structural limitation for the subsequent growth of the repeat number. Frequently, the units "swap" their secondary structure elements with each other. Moreover, the duplicated domains, in contrast to other tandem repeat proteins, form binding sites for small molecules around the axis of C2 symmetry. Thus, the closure of the C2 structures and the emergence of new functional sites around the axis of C2 symmetry provide plausible explanations for why a repeat, once appeared, becomes fixed in the evolutionary process. We have placed these structures within the general structural classification of tandem repeat proteins, classifying them as either Class IV or V depending on the size of the repetitive unit.
Collapse
Affiliation(s)
- Simona Manasra
- Institute of Bioengineering, ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, 34293 Montpellier, France.
| |
Collapse
|
8
|
Abramov VM, Kosarev IV, Machulin AV, Priputnevich TV, Deryusheva EI, Nemashkalova EL, Chikileva IO, Abashina TN, Panin AN, Melnikov VG, Suzina NE, Nikonov IN, Selina MV, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Limosilactobacillus fermentum 3872 That Produces Class III Bacteriocin Forms Co-Aggregates with the Antibiotic-Resistant Staphylococcus aureus Strains and Induces Their Lethal Damage. Antibiotics (Basel) 2023; 12:antibiotics12030471. [PMID: 36978338 PMCID: PMC10044573 DOI: 10.3390/antibiotics12030471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
LF3872 was isolated from the milk of a healthy lactating and breastfeeding woman. Earlier, the genome of LF3872 was sequenced, and a gene encoding unique bacteriocin was discovered. We have shown here that the LF3872 strain produces a novel thermolabile class III bacteriolysin (BLF3872), exhibiting antimicrobial activity against antibiotic-resistant Staphylococcus aureus strains. Sequence analysis revealed the two-domain structural (lysozyme-like domain and peptidase M23 domain) organization of BLF3872. At least 25% residues of this protein are expected to be intrinsically disordered. Furthermore, BLF3872 is predicted to have a very high liquid-liquid phase separation. According to the electron microscopy data, the bacterial cells of LF3872 strain form co-aggregates with the S. aureus 8325-4 bacterial cells. LF3872 produced bacteriolysin BLF3872 that lyses the cells of the S. aureus 8325-4 mastitis-inducing strain. The sensitivity of the antibiotic-resistant S. aureus collection strains and freshly isolated antibiotic-resistant strains was tested using samples from women with lactation mastitis; the human nasopharynx and oral cavity; the oropharynx of pigs; and the cows with a diagnosis of clinical mastitis sensitive to the lytic action of the LF3872 strain producing BLF3872. The co-cultivation of LF3872 strain with various antibiotic-resistant S. aureus strains for 24 h reduced the level of living cells of these pathogens by six log. The LF3872 strain was found to be able to co-aggregate with all studied S. aureus strains. The cell-free culture supernatant of LF3872 (CSLF3872) induced S. aureus cell damage and ATP leakage. The effectiveness of the bacteriolytic action of LF3872 strain did not depend on the origin of the S. aureus strains. The results reported here are important for the creation of new effective drugs against antibiotic-resistant strains of S. aureus circulating in humans and animals.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
- Correspondence:
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Irina O. Chikileva
- Laboratory of Cell Immunity, Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, 109472 Moscow, Russia
| | - Marina V. Selina
- Federal State Educational Institution of Higher Professional Education, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, 109472 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
9
|
Pereira J, Lupas AN. New β-Propellers Are Continuously Amplified From Single Blades in all Major Lineages of the β-Propeller Superfamily. Front Mol Biosci 2022; 9:895496. [PMID: 35755816 PMCID: PMC9218822 DOI: 10.3389/fmolb.2022.895496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
β-Propellers are toroidal folds, in which consecutive supersecondary structure units of four anti-parallel β-strands-called blades-are arranged radially around a central axis. Uniquely among toroidal folds, blades span the full range of sequence symmetry, from near identity to complete divergence, indicating an ongoing process of amplification and differentiation. We have proposed that the major lineages of β-propellers arose through this mechanism and that therefore their last common ancestor was a single blade, not a fully formed β-propeller. Here we show that this process of amplification and differentiation is also widespread within individual lineages, yielding β-propellers with blades of more than 60% pairwise sequence identity in most major β-propeller families. In some cases, the blades are nearly identical, indicating a very recent amplification event, but even in cases where such recently amplified β-propellers have more than 80% overall sequence identity to each other, comparison of their DNA sequence shows that the amplification occurred independently.
Collapse
Affiliation(s)
- Joana Pereira
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
10
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Mylemans B, Lee XY, Laier I, Helsen C, Voet ARD. Structure and stability of the designer protein WRAP-T and its permutants. Sci Rep 2021; 11:18867. [PMID: 34552189 PMCID: PMC8458387 DOI: 10.1038/s41598-021-98391-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-Propeller proteins are common natural disc-like pseudo-symmetric proteins that contain multiple repeats (‘blades’) each consisting of a 4-stranded anti-parallel \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-sheet. So far, 4- to 12-bladed \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-propellers have been discovered in nature showing large functional and sequential variation. Using computational design approaches, we created perfectly symmetric \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-propellers out of natural pseudo-symmetric templates. These proteins are useful tools to study protein evolution of this very diverse fold. While the 7-bladed architecture is the most common, no symmetric 7-bladed monomer has been created and characterized so far. Here we describe such a engineered protein, based on a highly symmetric natural template, and test the effects of circular permutation on its stability. Geometrical analysis of this protein and other artificial symmetrical proteins reveals no systematic constraint that could be used to help in engineering of this fold, and suggests sequence constraints unique to each \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-propeller sub-family.
Collapse
Affiliation(s)
- Bram Mylemans
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Xiao Yin Lee
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Ina Laier
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Christine Helsen
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Arnout R D Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
12
|
Gaur RK. Frequency distribution of space groups in soluble and membrane proteins and their complexes. Acta Crystallogr F Struct Biol Commun 2021; 77:187-191. [PMID: 34100777 PMCID: PMC8186414 DOI: 10.1107/s2053230x21005719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022] Open
Abstract
The space-group frequency distributions for two types of proteins and their complexes are explored. Based on the incremental availability of data in the Protein Data Bank, an analytical assessment shows a preferential distribution of three space groups, i.e. P212121 > P1211 > C121, in soluble and membrane proteins as well as in their complexes. In membrane proteins, the order of the three space groups is P212121 > C121 > P1211. The distribution of these space groups also shows the same pattern whether a protein crystallizes with a monomer or an oligomer in the asymmetric unit. The results also indicate that the sizes of the two entities in the structures of soluble proteins crystallized as complexes do not influence the frequency distribution of space groups. In general, it can be concluded that the space-group frequency distribution is homogenous across different types of proteins and their complexes.
Collapse
Affiliation(s)
- Rajneesh K. Gaur
- Department of Biotechnology, Ministry of Science and Technology, CGO Complex, Lodhi Road, New Delhi 110 003, India
| |
Collapse
|
13
|
Staritzbichler R, Sarti E, Yaklich E, Aleksandrova A, Stamm M, Khafizov K, Forrest LR. Refining pairwise sequence alignments of membrane proteins by the incorporation of anchors. PLoS One 2021; 16:e0239881. [PMID: 33930031 PMCID: PMC8087094 DOI: 10.1371/journal.pone.0239881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/15/2021] [Indexed: 01/08/2023] Open
Abstract
The alignment of primary sequences is a fundamental step in the analysis of protein structure, function, and evolution, and in the generation of homology-based models. Integral membrane proteins pose a significant challenge for such sequence alignment approaches, because their evolutionary relationships can be very remote, and because a high content of hydrophobic amino acids reduces their complexity. Frequently, biochemical or biophysical data is available that informs the optimum alignment, for example, indicating specific positions that share common functional or structural roles. Currently, if those positions are not correctly matched by a standard pairwise sequence alignment procedure, the incorporation of such information into the alignment is typically addressed in an ad hoc manner, with manual adjustments. However, such modifications are problematic because they reduce the robustness and reproducibility of the aligned regions either side of the newly matched positions. Previous studies have introduced restraints as a means to impose the matching of positions during sequence alignments, originally in the context of genome assembly. Here we introduce position restraints, or "anchors" as a feature in our alignment tool AlignMe, providing an aid to pairwise global sequence alignment of alpha-helical membrane proteins. Applying this approach to realistic scenarios involving distantly-related and low complexity sequences, we illustrate how the addition of anchors can be used to modify alignments, while still maintaining the reproducibility and rigor of the rest of the alignment. Anchored alignments can be generated using the online version of AlignMe available at www.bioinfo.mpg.de/AlignMe/.
Collapse
Affiliation(s)
- René Staritzbichler
- ProteinFormatics Group, Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Edoardo Sarti
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Emily Yaklich
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Antoniya Aleksandrova
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Marcus Stamm
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Kamil Khafizov
- Moscow Institute of Physics and Technology, National Research University, Moscow, Russia
| | - Lucy R. Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
14
|
Paladin L, Bevilacqua M, Errigo S, Piovesan D, Mičetić I, Necci M, Monzon AM, Fabre ML, Lopez JL, Nilsson JF, Rios J, Menna PL, Cabrera M, Buitron MG, Kulik MG, Fernandez-Alberti S, Fornasari MS, Parisi G, Lagares A, Hirsh L, Andrade-Navarro MA, Kajava AV, Tosatto SCE. RepeatsDB in 2021: improved data and extended classification for protein tandem repeat structures. Nucleic Acids Res 2021; 49:D452-D457. [PMID: 33237313 PMCID: PMC7778985 DOI: 10.1093/nar/gkaa1097] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 11/21/2022] Open
Abstract
The RepeatsDB database (URL: https://repeatsdb.org/) provides annotations and classification for protein tandem repeat structures from the Protein Data Bank (PDB). Protein tandem repeats are ubiquitous in all branches of the tree of life. The accumulation of solved repeat structures provides new possibilities for classification and detection, but also increasing the need for annotation. Here we present RepeatsDB 3.0, which addresses these challenges and presents an extended classification scheme. The major conceptual change compared to the previous version is the hierarchical classification combining top levels based solely on structural similarity (Class > Topology > Fold) with two new levels (Clan > Family) requiring sequence similarity and describing repeat motifs in collaboration with Pfam. Data growth has been addressed with improved mechanisms for browsing the classification hierarchy. A new UniProt-centric view unifies the increasingly frequent annotation of structures from identical or similar sequences. This update of RepeatsDB aligns with our commitment to develop a resource that extracts, organizes and distributes specialized information on tandem repeat protein structures.
Collapse
Affiliation(s)
- Lisanna Paladin
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Martina Bevilacqua
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Sara Errigo
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Damiano Piovesan
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Ivan Mičetić
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Marco Necci
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | | | - Maria Laura Fabre
- IBBM-CONICET, Dept. of Biological Sciences, La Plata National University, 49 y 115, 1900 La Plata, Argentina
| | - Jose Luis Lopez
- IBBM-CONICET, Dept. of Biological Sciences, La Plata National University, 49 y 115, 1900 La Plata, Argentina
| | - Juliet F Nilsson
- IBBM-CONICET, Dept. of Biological Sciences, La Plata National University, 49 y 115, 1900 La Plata, Argentina
| | - Javier Rios
- Dept. of Science and Technology, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Pablo Lorenzano Menna
- Dept. of Science and Technology, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Maia Cabrera
- Dept. of Science and Technology, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Martin Gonzalez Buitron
- Dept. of Science and Technology, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Mariane Gonçalves Kulik
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Sebastian Fernandez-Alberti
- Dept. of Science and Technology, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Maria Silvina Fornasari
- Dept. of Science and Technology, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Gustavo Parisi
- Dept. of Science and Technology, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Antonio Lagares
- IBBM-CONICET, Dept. of Biological Sciences, La Plata National University, 49 y 115, 1900 La Plata, Argentina
| | - Layla Hirsh
- Dept. of Engineering, Faculty of Science and Engineering, Pontifical Catholic University of Peru, Av. Universitaria 1801 San Miguel, Lima 32, Lima, Peru
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University of Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Univ. Montpellier, Montpellier, France
| | - Silvio C E Tosatto
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| |
Collapse
|
15
|
Vrancken JPM, Tame JRH, Voet ARD. Development and applications of artificial symmetrical proteins. Comput Struct Biotechnol J 2020; 18:3959-3968. [PMID: 33335692 PMCID: PMC7734218 DOI: 10.1016/j.csbj.2020.10.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/28/2022] Open
Abstract
Since the determination of the first molecular models of proteins there has been interest in creating proteins artificially, but such methods have only become widely successful in the last decade. Gradual improvements over a long period of time have now yielded numerous examples of non-natural proteins, many of which are built from repeated elements. In this review we discuss the design of such symmetrical proteins and their various applications in chemistry and medicine.
Collapse
Affiliation(s)
- Jeroen P M Vrancken
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Arnout R D Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| |
Collapse
|
16
|
Real time structural search of the Protein Data Bank. PLoS Comput Biol 2020; 16:e1007970. [PMID: 32639954 PMCID: PMC7371193 DOI: 10.1371/journal.pcbi.1007970] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/20/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022] Open
Abstract
Detection of protein structure similarity is a central challenge in structural bioinformatics. Comparisons are usually performed at the polypeptide chain level, however the functional form of a protein within the cell is often an oligomer. This fact, together with recent growth of oligomeric structures in the Protein Data Bank (PDB), demands more efficient approaches to oligomeric assembly alignment/retrieval. Traditional methods use atom level information, which can be complicated by the presence of topological permutations within a polypeptide chain and/or subunit rearrangements. These challenges can be overcome by comparing electron density volumes directly. But, brute force alignment of 3D data is a compute intensive search problem. We developed a 3D Zernike moment normalization procedure to orient electron density volumes and assess similarity with unprecedented speed. Similarity searching with this approach enables real-time retrieval of proteins/protein assemblies resembling a target, from PDB or user input, together with resulting alignments (http://shape.rcsb.org).
Collapse
|
17
|
Alvarez-Carreño C, Coello G, Arciniega M. FiRES: A computational method for the de novo identification of internal structure similarity in proteins. Proteins 2020; 88:1169-1179. [PMID: 32112578 DOI: 10.1002/prot.25886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/12/2019] [Accepted: 02/24/2020] [Indexed: 11/08/2022]
Abstract
Internal structure similarity in proteins can be observed at the domain and subdomain levels. From an evolutionary perspective, structurally similar elements may arise divergently by gene duplication and fusion events but may also be the product of convergent evolution under physicochemical constraints. The characterization of proteins that contain repeated structural elements has implications for many fields of protein science including protein domain evolution, structure classification, structure prediction, and protein engineering. FiRES (Find Repeated Elements in Structure) is an algorithm that relies on a topology-independent structure alignment method to identify repeating elements in protein structure. FiRES was tested against two hand curated databases of protein repeats: MALIDUP, for very divergent duplicated domains; and RepeatsDB for short tandem repeats. The performance of FiRES was compared to that of lalign, RADAR, HHrepID, CE-symm, ReUPred, and Swelfe. FiRES was the method that most accurately detected proteins either with duplicated domains (accuracy = 0.86) or with multiple repeated units (accuracy = 0.92). FiRES is a new methodology for the discovery of proteins containing structurally similar elements. The FiRES web server is publicly available at http://fires.ifc.unam.mx. The scripts, results, and benchmarks from this study can be downloaded from https://github.com/Claualvarez/fires.
Collapse
Affiliation(s)
- Claudia Alvarez-Carreño
- Department of Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gerardo Coello
- Unidad de Cómputo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcelino Arciniega
- Department of Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
18
|
Milner-White EJ. Protein three-dimensional structures at the origin of life. Interface Focus 2019; 9:20190057. [PMID: 31641431 DOI: 10.1098/rsfs.2019.0057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Proteins are relatively easy to synthesize, compared to nucleic acids and it is likely that there existed a stage prior to the RNA world which can be called the protein world. Some of the three-dimensional (3D) peptide structures in these proteins have, we argue, been conserved since then and may constitute the oldest biological relics in existence. We focus on 3D peptide motifs consisting of up to eight or so amino acid residues. The best known of these is the 'nest', a three- to seven-residue protein motif, which has the function of binding anionic atoms or groups of atoms. Ten per cent of amino acids in typical proteins belong to a nest, so it is a common motif. A five-residue nest is found as part of the well-known P-loop that is a recurring feature of many ATP or GTP-binding proteins and it has the function of binding the phosphate part of these ligands. A synthetic hexapeptide, ser-gly-ala-gly-lys-thr, designed to resemble the P-loop, has been shown to bind inorganic phosphate. Another type of nest binds iron-sulfur centres. A range of other simple motifs occur with various intriguing 3D structures; others bind cations or form channels that transport potassium ions; other peptides form catalytically active haem-like or sheet structures with certain transition metals. Amyloid peptides are also discussed. It now seems that the earliest polypeptides were far from being functionless stretches, and had many of the properties, both binding and catalytic, that might be expected to encourage and stabilize simple life forms in the hydrothermal vents of ocean depths.
Collapse
Affiliation(s)
- E James Milner-White
- Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| |
Collapse
|
19
|
Aleksandrova AA, Sarti E, Forrest LR. MemSTATS: A Benchmark Set of Membrane Protein Symmetries and Pseudosymmetries. J Mol Biol 2019; 432:597-604. [PMID: 31628944 DOI: 10.1016/j.jmb.2019.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/30/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
In membrane proteins, symmetry and pseudosymmetry often have functional or evolutionary implications. However, available symmetry detection methods have not been tested systematically on this class of proteins because of the lack of an appropriate benchmark set. Here we present MemSTATS, a publicly available benchmark set of both quaternary- and internal-symmetries in membrane protein structures. The symmetries are described in terms of order, repeated elements, and orientation of the axis with respect to the membrane plane. Moreover, using MemSTATS, we compare the performance of four widely used symmetry detection algorithms and highlight specific challenges and areas for improvement in the future.
Collapse
Affiliation(s)
- Antoniya A Aleksandrova
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edoardo Sarti
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|