1
|
Wu T, Cai Y, Zhang R, Wang Z, Tao L, Xiao ZC. Multi-band oscillations emerge from a simple spiking network. CHAOS (WOODBURY, N.Y.) 2023; 33:043121. [PMID: 37097932 DOI: 10.1063/5.0106884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the brain, coherent neuronal activities often appear simultaneously in multiple frequency bands, e.g., as combinations of alpha (8-12 Hz), beta (12.5-30 Hz), and gamma (30-120 Hz) oscillations, among others. These rhythms are believed to underlie information processing and cognitive functions and have been subjected to intense experimental and theoretical scrutiny. Computational modeling has provided a framework for the emergence of network-level oscillatory behavior from the interaction of spiking neurons. However, due to the strong nonlinear interactions between highly recurrent spiking populations, the interplay between cortical rhythms in multiple frequency bands has rarely been theoretically investigated. Many studies invoke multiple physiological timescales (e.g., various ion channels or multiple types of inhibitory neurons) or oscillatory inputs to produce rhythms in multi-bands. Here, we demonstrate the emergence of multi-band oscillations in a simple network consisting of one excitatory and one inhibitory neuronal population driven by constant input. First, we construct a data-driven, Poincaré section theory for robust numerical observations of single-frequency oscillations bifurcating into multiple bands. Then, we develop model reductions of the stochastic, nonlinear, high-dimensional neuronal network to capture the appearance of multi-band dynamics and the underlying bifurcations theoretically. Furthermore, when viewed within the reduced state space, our analysis reveals conserved geometrical features of the bifurcations on low-dimensional dynamical manifolds. These results suggest a simple geometric mechanism behind the emergence of multi-band oscillations without appealing to oscillatory inputs or multiple synaptic or neuronal timescales. Thus, our work points to unexplored regimes of stochastic competition between excitation and inhibition behind the generation of dynamic, patterned neuronal activities.
Collapse
Affiliation(s)
- Tianyi Wu
- School of Mathematical Sciences, Peking University, Beijing 100871, China
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10003, USA
| | - Yuhang Cai
- Department of Mathematics, University of California, Berkeley, Berkeley, California 94720, USA
| | - Ruilin Zhang
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
| | - Zhongyi Wang
- School of Mathematical Sciences, Peking University, Beijing 100871, China
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
| | - Louis Tao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhuo-Cheng Xiao
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10003, USA
| |
Collapse
|
2
|
Xiao ZC, Lin KK, Young LS. A data-informed mean-field approach to mapping of cortical parameter landscapes. PLoS Comput Biol 2021; 17:e1009718. [PMID: 34941863 PMCID: PMC8741023 DOI: 10.1371/journal.pcbi.1009718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/07/2022] [Accepted: 12/02/2021] [Indexed: 11/19/2022] Open
Abstract
Constraining the many biological parameters that govern cortical dynamics is computationally and conceptually difficult because of the curse of dimensionality. This paper addresses these challenges by proposing (1) a novel data-informed mean-field (MF) approach to efficiently map the parameter space of network models; and (2) an organizing principle for studying parameter space that enables the extraction biologically meaningful relations from this high-dimensional data. We illustrate these ideas using a large-scale network model of the Macaque primary visual cortex. Of the 10-20 model parameters, we identify 7 that are especially poorly constrained, and use the MF algorithm in (1) to discover the firing rate contours in this 7D parameter cube. Defining a "biologically plausible" region to consist of parameters that exhibit spontaneous Excitatory and Inhibitory firing rates compatible with experimental values, we find that this region is a slightly thickened codimension-1 submanifold. An implication of this finding is that while plausible regimes depend sensitively on parameters, they are also robust and flexible provided one compensates appropriately when parameters are varied. Our organizing principle for conceptualizing parameter dependence is to focus on certain 2D parameter planes that govern lateral inhibition: Intersecting these planes with the biologically plausible region leads to very simple geometric structures which, when suitably scaled, have a universal character independent of where the intersections are taken. In addition to elucidating the geometry of the plausible region, this invariance suggests useful approximate scaling relations. Our study offers, for the first time, a complete characterization of the set of all biologically plausible parameters for a detailed cortical model, which has been out of reach due to the high dimensionality of parameter space.
Collapse
Affiliation(s)
- Zhuo-Cheng Xiao
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| | - Kevin K. Lin
- Department of Mathematics, University of Arizona, Tucson, Arizona, United States of America
| | - Lai-Sang Young
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
- Institute for Advanced Study, Princeton, New Jersey, United States of America
| |
Collapse
|