1
|
Zheng W, Wuyun Q, Li Y, Liu Q, Zhou X, Peng C, Zhu Y, Freddolino L, Zhang Y. Deep-learning-based single-domain and multidomain protein structure prediction with D-I-TASSER. Nat Biotechnol 2025:10.1038/s41587-025-02654-4. [PMID: 40410405 DOI: 10.1038/s41587-025-02654-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 03/26/2025] [Indexed: 05/25/2025]
Abstract
The dominant success of deep learning techniques on protein structure prediction has challenged the necessity and usefulness of traditional force field-based folding simulations. We proposed a hybrid approach, deep-learning-based iterative threading assembly refinement (D-I-TASSER), which constructs atomic-level protein structural models by integrating multisource deep learning potentials with iterative threading fragment assembly simulations. D-I-TASSER introduces a domain splitting and assembly protocol for the automated modeling of large multidomain protein structures. Benchmark tests and the most recent critical assessment of protein structure prediction, 15 experiments demonstrate that D-I-TASSER outperforms AlphaFold2 and AlphaFold3 on both single-domain and multidomain proteins. Large-scale folding experiments further show that D-I-TASSER could fold 81% of protein domains and 73% of full-chain sequences in the human proteome with results highly complementary to recently released models by AlphaFold2. These results highlight a new avenue to integrate deep learning with classical physics-based folding simulations for high-accuracy protein structure and function predictions that are usable in genome-wide applications.
Collapse
Affiliation(s)
- Wei Zheng
- NITFID, School of Statistics and Data Science, AAIS, LPMC and KLMDASR, Nankai University, Tianjin, China
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Yang Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Quancheng Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chunxiang Peng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yiheng Zhu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lydia Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Yang Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Harihar B, Saravanan KM, Gromiha MM, Selvaraj S. Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design. Mol Biotechnol 2025; 67:862-884. [PMID: 38498284 DOI: 10.1007/s12033-024-01119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Inter-residue interactions in protein structures provide valuable insights into protein folding and stability. Understanding these interactions can be helpful in many crucial applications, including rational design of therapeutic small molecules and biologics, locating functional protein sites, and predicting protein-protein and protein-ligand interactions. The process of developing machine learning models incorporating inter-residue interactions has been improved recently. This review highlights the theoretical models incorporating inter-residue interactions in predicting folding and unfolding rates of proteins. Utilizing contact maps to depict inter-residue interactions aids researchers in developing computer models for detecting remote homologs and interface residues within protein-protein complexes which, in turn, enhances our knowledge of the relationship between sequence and structure of proteins. Further, the application of contact maps derived from inter-residue interactions is highlighted in the field of drug discovery. Overall, this review presents an extensive assessment of the significant models that use inter-residue interactions to investigate folding rates, unfolding rates, remote homology, and drug development, providing potential future advancements in constructing efficient computational models in structural biology.
Collapse
Affiliation(s)
- Balasubramanian Harihar
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Konda Mani Saravanan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Michael M Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Samuel Selvaraj
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
3
|
Elrashedy A, Nayel M, Salama A, Salama MM, Hasan ME. Bioinformatics approach for structure modeling, vaccine design, and molecular docking of Brucella candidate proteins BvrR, OMP25, and OMP31. Sci Rep 2024; 14:11951. [PMID: 38789443 PMCID: PMC11126717 DOI: 10.1038/s41598-024-61991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Brucellosis is a zoonotic disease with significant economic and healthcare costs. Despite the eradication efforts, the disease persists. Vaccines prevent disease in animals while antibiotics cure humans with limitations. This study aims to design vaccines and drugs for brucellosis in animals and humans, using protein modeling, epitope prediction, and molecular docking of the target proteins (BvrR, OMP25, and OMP31). Tertiary structure models of three target proteins were constructed and assessed using RMSD, TM-score, C-score, Z-score, and ERRAT. The best models selected from AlphaFold and I-TASSER due to their superior performance according to CASP 12 - CASP 15 were chosen for further analysis. The motif analysis of best models using MotifFinder revealed two, five, and five protein binding motifs, however, the Motif Scan identified seven, six, and eight Post-Translational Modification sites (PTMs) in the BvrR, OMP25, and OMP31 proteins, respectively. Dominant B cell epitopes were predicted at (44-63, 85-93, 126-137, 193-205, and 208-237), (26-46, 52-71, 98-114, 142-155, and 183-200), and (29-45, 58-82, 119-142, 177-198, and 222-251) for the three target proteins. Additionally, cytotoxic T lymphocyte epitopes were detected at (173-181, 189-197, and 202-210), (61-69, 91-99, 159-167, and 181-189), and (3-11, 24-32, 167-175, and 216-224), while T helper lymphocyte epitopes were displayed at (39-53, 57-65, 150-158, 163-171), (79-87, 95-108, 115-123, 128-142, and 189-197), and (39-47, 109-123, 216-224, and 245-253), for the respective target protein. Furthermore, structure-based virtual screening of the ZINC and DrugBank databases using the docking MOE program was followed by ADMET analysis. The best five compounds of the ZINC database revealed docking scores ranged from (- 16.8744 to - 15.1922), (- 16.0424 to - 14.1645), and (- 14.7566 to - 13.3222) for the BvrR, OMP25, and OMP31, respectively. These compounds had good ADMET parameters and no cytotoxicity, while DrugBank compounds didn't meet Lipinski's rule criteria. Therefore, the five selected compounds from the ZINC20 databases may fulfill the pharmacokinetics and could be considered lead molecules for potentially inhibiting Brucella's proteins.
Collapse
Affiliation(s)
- Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohammed M Salama
- Physics Department, Medical Biophysics Division, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed E Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
4
|
Baker K, Hughes N, Bhattacharya S. An interactive visualization tool for educational outreach in protein contact map overlap analysis. FRONTIERS IN BIOINFORMATICS 2024; 4:1358550. [PMID: 38562910 PMCID: PMC10982686 DOI: 10.3389/fbinf.2024.1358550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Recent advancements in contact map-based protein three-dimensional (3D) structure prediction have been driven by the evolution of deep learning algorithms. However, the gap in accessible software tools for novices in this domain remains a significant challenge. This study introduces GoFold, a novel, standalone graphical user interface (GUI) designed for beginners to perform contact map overlap (CMO) problems for better template selection. Unlike existing tools that cater more to research needs or assume foundational knowledge, GoFold offers an intuitive, user-friendly platform with comprehensive tutorials. It stands out in its ability to visually represent the CMO problem, allowing users to input proteins in various formats and explore the CMO problem. The educational value of GoFold is demonstrated through benchmarking against the state-of-the-art contact map overlap method, map_align, using two datasets: PSICOV and CAMEO. GoFold exhibits superior performance in terms of TM-score and Z-score metrics across diverse qualities of contact maps and target difficulties. Notably, GoFold runs efficiently on personal computers without any third-party dependencies, thereby making it accessible to the general public for promoting citizen science. The tool is freely available for download for macOS, Linux, and Windows.
Collapse
Affiliation(s)
- Kevan Baker
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Nathaniel Hughes
- Department of Computer Science and Computer Information Systems, Auburn University at Montgomery, Montgomery, AL, United States
| | - Sutanu Bhattacharya
- Department of Computer Science and Computer Information Systems, Auburn University at Montgomery, Montgomery, AL, United States
| |
Collapse
|
5
|
Wuyun Q, Chen Y, Shen Y, Cao Y, Hu G, Cui W, Gao J, Zheng W. Recent Progress of Protein Tertiary Structure Prediction. Molecules 2024; 29:832. [PMID: 38398585 PMCID: PMC10893003 DOI: 10.3390/molecules29040832] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The prediction of three-dimensional (3D) protein structure from amino acid sequences has stood as a significant challenge in computational and structural bioinformatics for decades. Recently, the widespread integration of artificial intelligence (AI) algorithms has substantially expedited advancements in protein structure prediction, yielding numerous significant milestones. In particular, the end-to-end deep learning method AlphaFold2 has facilitated the rise of structure prediction performance to new heights, regularly competitive with experimental structures in the 14th Critical Assessment of Protein Structure Prediction (CASP14). To provide a comprehensive understanding and guide future research in the field of protein structure prediction for researchers, this review describes various methodologies, assessments, and databases in protein structure prediction, including traditionally used protein structure prediction methods, such as template-based modeling (TBM) and template-free modeling (FM) approaches; recently developed deep learning-based methods, such as contact/distance-guided methods, end-to-end folding methods, and protein language model (PLM)-based methods; multi-domain protein structure prediction methods; the CASP experiments and related assessments; and the recently released AlphaFold Protein Structure Database (AlphaFold DB). We discuss their advantages, disadvantages, and application scopes, aiming to provide researchers with insights through which to understand the limitations, contexts, and effective selections of protein structure prediction methods in protein-related fields.
Collapse
Affiliation(s)
- Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yihan Chen
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China;
| | - Yifeng Shen
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0882, Kanagawa, Japan;
| | - Yang Cao
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Gang Hu
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China
| | - Wei Cui
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China;
| | - Jianzhao Gao
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China;
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Li J, Wang L, Zhu Z, Song C. Exploring the Alternative Conformation of a Known Protein Structure Based on Contact Map Prediction. J Chem Inf Model 2024; 64:301-315. [PMID: 38117138 PMCID: PMC10777399 DOI: 10.1021/acs.jcim.3c01381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
The rapid development of deep learning-based methods has considerably advanced the field of protein structure prediction. The accuracy of predicting the 3D structures of simple proteins is comparable to that of experimentally determined structures, providing broad possibilities for structure-based biological studies. Another critical question is whether and how multistate structures can be predicted from a given protein sequence. In this study, analysis of tens of two-state proteins demonstrated that deep learning-based contact map predictions contain structural information on both states, which suggests that it is probably appropriate to change the target of deep learning-based protein structure prediction from one specific structure to multiple likely structures. Furthermore, by combining deep learning- and physics-based computational methods, we developed a protocol for exploring alternative conformations from a known structure of a given protein, by which we successfully approached the holo-state conformations of multiple representative proteins from their apo-state structures.
Collapse
Affiliation(s)
- Jiaxuan Li
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lei Wang
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zefeng Zhu
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chen Song
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Zheng W, Wuyun Q, Freddolino PL, Zhang Y. Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15. Proteins 2023; 91:1684-1703. [PMID: 37650367 PMCID: PMC10840719 DOI: 10.1002/prot.26585] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
We report the results of the "UM-TBM" and "Zheng" groups in CASP15 for protein monomer and complex structure prediction. These prediction sets were obtained using the D-I-TASSER and DMFold-Multimer algorithms, respectively. For monomer structure prediction, D-I-TASSER introduced four new features during CASP15: (i) a multiple sequence alignment (MSA) generation protocol that combines multi-source MSA searching and a structural modeling-based MSA ranker; (ii) attention-network based spatial restraints; (iii) a multi-domain module containing domain partition and arrangement for domain-level templates and spatial restraints; (iv) an optimized I-TASSER-based folding simulation system for full-length model creation guided by a combination of deep learning restraints, threading alignments, and knowledge-based potentials. For 47 free modeling targets in CASP15, the final models predicted by D-I-TASSER showed average TM-score 19% higher than the standard AlphaFold2 program. We thus showed that traditional Monte Carlo-based folding simulations, when appropriately coupled with deep learning algorithms, can generate models with improved accuracy over end-to-end deep learning methods alone. For protein complex structure prediction, DMFold-Multimer generated models by integrating a new MSA generation algorithm (DeepMSA2) with the end-to-end modeling module from AlphaFold2-Multimer. For the 38 complex targets, DMFold-Multimer generated models with an average TM-score of 0.83 and Interface Contact Score of 0.60, both significantly higher than those of competing complex prediction tools. Our analyses on complexes highlighted the critical role played by MSA generating, ranking, and pairing in protein complex structure prediction. We also discuss future room for improvement in the areas of viral protein modeling and complex model ranking.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Peter L Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Computer Science, School of Computing, National University of Singapore, 117417 Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore
| |
Collapse
|
8
|
Kaminski K, Ludwiczak J, Pawlicki K, Alva V, Dunin-Horkawicz S. pLM-BLAST: distant homology detection based on direct comparison of sequence representations from protein language models. Bioinformatics 2023; 39:btad579. [PMID: 37725369 PMCID: PMC10576641 DOI: 10.1093/bioinformatics/btad579] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
MOTIVATION The detection of homology through sequence comparison is a typical first step in the study of protein function and evolution. In this work, we explore the applicability of protein language models to this task. RESULTS We introduce pLM-BLAST, a tool inspired by BLAST, that detects distant homology by comparing single-sequence representations (embeddings) derived from a protein language model, ProtT5. Our benchmarks reveal that pLM-BLAST maintains a level of accuracy on par with HHsearch for both highly similar sequences (with >50% identity) and markedly divergent sequences (with <30% identity), while being significantly faster. Additionally, pLM-BLAST stands out among other embedding-based tools due to its ability to compute local alignments. We show that these local alignments, produced by pLM-BLAST, often connect highly divergent proteins, thereby highlighting its potential to uncover previously undiscovered homologous relationships and improve protein annotation. AVAILABILITY AND IMPLEMENTATION pLM-BLAST is accessible via the MPI Bioinformatics Toolkit as a web server for searching precomputed databases (https://toolkit.tuebingen.mpg.de/tools/plmblast). It is also available as a standalone tool for building custom databases and performing batch searches (https://github.com/labstructbioinf/pLM-BLAST).
Collapse
Affiliation(s)
- Kamil Kaminski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-089, Poland
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
| | - Jan Ludwiczak
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-089, Poland
| | - Kamil Pawlicki
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-089, Poland
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen 72076, Germany
| | - Stanislaw Dunin-Horkawicz
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-089, Poland
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen 72076, Germany
| |
Collapse
|
9
|
Zhao K, Xia Y, Zhang F, Zhou X, Li SZ, Zhang G. Protein structure and folding pathway prediction based on remote homologs recognition using PAthreader. Commun Biol 2023; 6:243. [PMID: 36871126 PMCID: PMC9985440 DOI: 10.1038/s42003-023-04605-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Recognition of remote homologous structures is a necessary module in AlphaFold2 and is also essential for the exploration of protein folding pathways. Here, we propose a method, PAthreader, to recognize remote templates and explore folding pathways. Firstly, we design a three-track alignment between predicted distance profiles and structure profiles extracted from PDB and AlphaFold DB, to improve the recognition accuracy of remote templates. Secondly, we improve the performance of AlphaFold2 using the templates identified by PAthreader. Thirdly, we explore protein folding pathways based on our conjecture that dynamic folding information of protein is implicitly contained in its remote homologs. The results show that the average accuracy of PAthreader templates is 11.6% higher than that of HHsearch. In terms of structure modelling, PAthreader outperform AlphaFold2 and ranks first on the CAMEO blind test for the latest three months. Furthermore, we predict protein folding pathways for 37 proteins, in which the results of 7 proteins are almost consistent with those of biological experiments, and the other 30 human proteins have yet to be verified by biological experiments, revealing that folding information can be exploited from remote homologous structures.
Collapse
Affiliation(s)
- Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Yuhao Xia
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Fujin Zhang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Xiaogen Zhou
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Stan Z Li
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, Zhejiang, China.
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China.
| |
Collapse
|
10
|
Bhattacharya S, Roche R, Shuvo MH, Moussad B, Bhattacharya D. Contact-Assisted Threading in Low-Homology Protein Modeling. Methods Mol Biol 2023; 2627:41-59. [PMID: 36959441 DOI: 10.1007/978-1-0716-2974-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The ability to successfully predict the three-dimensional structure of a protein from its amino acid sequence has made considerable progress in the recent past. The progress is propelled by the improved accuracy of deep learning-based inter-residue contact map predictors coupled with the rising growth of protein sequence databases. Contact map encodes interatomic interaction information that can be exploited for highly accurate prediction of protein structures via contact map threading even for the query proteins that are not amenable to direct homology modeling. As such, contact-assisted threading has garnered considerable research effort. In this chapter, we provide an overview of existing contact-assisted threading methods while highlighting the recent advances and discussing some of the current limitations and future prospects in the application of contact-assisted threading for improving the accuracy of low-homology protein modeling.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
| | | | - Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Bernard Moussad
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
11
|
Sarkar M, Saha S. Modeling of SARS-CoV-2 Virus Proteins: Implications on Its Proteome. Methods Mol Biol 2023; 2627:265-299. [PMID: 36959453 DOI: 10.1007/978-1-0716-2974-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
COronaVIrus Disease 19 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a group of beta coronaviruses, SARS-CoV-2. The SARS-CoV-2 virus is similar to previous SARS- and MERS-causing strains and has infected nearly six hundred and fifty million people all over the globe, while the death toll has crossed the six million mark (as of December, 2022). In this chapter, we look at how computational modeling approaches of the viral proteins could help us understand the various processes in the viral life cycle inside the host, an understanding of which might provide key insights in mitigating this and future threats. This understanding helps us identify key targets for the purpose of drug discovery and vaccine development.
Collapse
Affiliation(s)
- Manish Sarkar
- Hochschule für Technik und Wirtschaft (HTW) Berlin, Berlin, Germany
- MedInsights SAS, Paris, France
| | - Soham Saha
- MedInsights, Veuilly la Poterie, France.
- MedInsights SAS, Paris, France.
| |
Collapse
|
12
|
Wu F, Jing X, Luo X, Xu J. Improving protein structure prediction using templates and sequence embedding. Bioinformatics 2023; 39:6820926. [PMID: 36355462 PMCID: PMC9805584 DOI: 10.1093/bioinformatics/btac723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Protein structure prediction has been greatly improved by deep learning, but the contribution of different information is yet to be fully understood. This article studies the impacts of two kinds of information for structure prediction: template and multiple sequence alignment (MSA) embedding. Templates have been used by some methods before, such as AlphaFold2, RoseTTAFold and RaptorX. AlphaFold2 and RosetTTAFold only used templates detected by HHsearch, which may not perform very well on some targets. In addition, sequence embedding generated by pre-trained protein language models has not been fully explored for structure prediction. In this article, we study the impact of templates (including the number of templates, the template quality and how the templates are generated) on protein structure prediction accuracy, especially when the templates are detected by methods other than HHsearch. We also study the impact of sequence embedding (generated by MSATransformer and ESM-1b) on structure prediction. RESULTS We have implemented a deep learning method for protein structure prediction that may take templates and MSA embedding as extra inputs. We study the contribution of templates and MSA embedding to structure prediction accuracy. Our experimental results show that templates can improve structure prediction on 71 of 110 CASP13 (13th Critical Assessment of Structure Prediction) targets and 47 of 91 CASP14 targets, and templates are particularly useful for targets with similar templates. MSA embedding can improve structure prediction on 63 of 91 CASP14 (14th Critical Assessment of Structure Prediction) targets and 87 of 183 CAMEO targets and is particularly useful for proteins with shallow MSAs. When both templates and MSA embedding are used, our method can predict correct folds (TMscore > 0.5) for 16 of 23 CASP14 FM targets and 14 of 18 Continuous Automated Model Evaluation (CAMEO) targets, outperforming RoseTTAFold by 5% and 7%, respectively. AVAILABILITY AND IMPLEMENTATION Available at https://github.com/xluo233/RaptorXFold. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Xiao Luo
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Jinbo Xu
- To whom correspondence should be addressed.
| |
Collapse
|
13
|
Roche R, Bhattacharya S, Shuvo MH, Bhattacharya D. rrQNet: Protein contact map quality estimation by deep evolutionary reconciliation. Proteins 2022; 90:2023-2034. [PMID: 35751651 PMCID: PMC9633355 DOI: 10.1002/prot.26394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022]
Abstract
Protein contact maps have proven to be a valuable tool in the deep learning revolution of protein structure prediction, ushering in the recent breakthrough by AlphaFold2. However, self-assessment of the quality of predicted structures are typically performed at the granularity of three-dimensional coordinates as opposed to directly exploiting the rotation- and translation-invariant two-dimensional (2D) contact maps. Here, we present rrQNet, a deep learning method for self-assessment in 2D by contact map quality estimation. Our approach is based on the intuition that for a contact map to be of high quality, the residue pairs predicted to be in contact should be mutually consistent with the evolutionary context of the protein. The deep neural network architecture of rrQNet implements this intuition by cascading two deep modules-one encoding the evolutionary context and the other performing evolutionary reconciliation. The penultimate stage of rrQNet estimates the quality scores at the interacting residue-pair level, which are then aggregated for estimating the quality of a contact map. This design choice offers versatility at varied resolutions from individual residue pairs to full-fledged contact maps. Trained on multiple complementary sources of contact predictors, rrQNet facilitates generalizability across various contact maps. By rigorously testing using publicly available datasets and comparing against several in-house baseline approaches, we show that rrQNet accurately reproduces the true quality score of a predicted contact map and successfully distinguishes between accurate and inaccurate contact maps predicted by a wide variety of contact predictors. The open-source rrQNet software package is freely available at https://github.com/Bhattacharya-Lab/rrQNet.
Collapse
Affiliation(s)
- Rahmatullah Roche
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sutanu Bhattacharya
- Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
14
|
Foley S, Vlasova A, Marcet-Houben M, Gabaldón T, Hinman VF. Evolutionary analyses of genes in Echinodermata offer insights towards the origin of metazoan phyla. Genomics 2022; 114:110431. [PMID: 35835427 PMCID: PMC9552553 DOI: 10.1016/j.ygeno.2022.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Despite recent studies discussing the evolutionary impacts of gene duplications and losses among metazoans, the genomic basis for the evolution of phyla remains enigmatic. Here, we employ phylogenomic approaches to search for orthologous genes without known functions among echinoderms, and subsequently use them to guide the identification of their homologs across other metazoans. Our final set of 14 genes was obtained via a suite of homology prediction tools, gene expression data, gene ontology, and generating the Strongylocentrotus purpuratus phylome. The gene set was subjected to selection pressure analyses, which indicated that they are highly conserved and under negative selection. Their presence across broad taxonomic depths suggests that genes required to form a phylum are ancestral to that phylum. Therefore, rather than de novo gene genesis, we posit that evolutionary forces such as selection on existing genomic elements over large timescales may drive divergence and contribute to the emergence of phyla.
Collapse
Affiliation(s)
- Saoirse Foley
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA; Echinobase #6-46, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, USA.
| | - Anna Vlasova
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA; Echinobase #6-46, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Villegas-Morcillo A, Gomez AM, Sanchez V. An analysis of protein language model embeddings for fold prediction. Brief Bioinform 2022; 23:6571527. [PMID: 35443054 DOI: 10.1093/bib/bbac142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The identification of the protein fold class is a challenging problem in structural biology. Recent computational methods for fold prediction leverage deep learning techniques to extract protein fold-representative embeddings mainly using evolutionary information in the form of multiple sequence alignment (MSA) as input source. In contrast, protein language models (LM) have reshaped the field thanks to their ability to learn efficient protein representations (protein-LM embeddings) from purely sequential information in a self-supervised manner. In this paper, we analyze a framework for protein fold prediction using pre-trained protein-LM embeddings as input to several fine-tuning neural network models, which are supervisedly trained with fold labels. In particular, we compare the performance of six protein-LM embeddings: the long short-term memory-based UniRep and SeqVec, and the transformer-based ESM-1b, ESM-MSA, ProtBERT and ProtT5; as well as three neural networks: Multi-Layer Perceptron, ResCNN-BGRU (RBG) and Light-Attention (LAT). We separately evaluated the pairwise fold recognition (PFR) and direct fold classification (DFC) tasks on well-known benchmark datasets. The results indicate that the combination of transformer-based embeddings, particularly those obtained at amino acid level, with the RBG and LAT fine-tuning models performs remarkably well in both tasks. To further increase prediction accuracy, we propose several ensemble strategies for PFR and DFC, which provide a significant performance boost over the current state-of-the-art results. All this suggests that moving from traditional protein representations to protein-LM embeddings is a very promising approach to protein fold-related tasks.
Collapse
Affiliation(s)
- Amelia Villegas-Morcillo
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| | - Angel M Gomez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| | - Victoria Sanchez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| |
Collapse
|
16
|
Zheng W, Wuyun Q, Zhou X, Li Y, Freddolino PL, Zhang Y. LOMETS3: integrating deep learning and profile alignment for advanced protein template recognition and function annotation. Nucleic Acids Res 2022; 50:W454-W464. [PMID: 35420129 PMCID: PMC9252734 DOI: 10.1093/nar/gkac248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Deep learning techniques have significantly advanced the field of protein structure prediction. LOMETS3 (https://zhanglab.ccmb.med.umich.edu/LOMETS/) is a new generation meta-server approach to template-based protein structure prediction and function annotation, which integrates newly developed deep learning threading methods. For the first time, we have extended LOMETS3 to handle multi-domain proteins and to construct full-length models with gradient-based optimizations. Starting from a FASTA-formatted sequence, LOMETS3 performs four steps of domain boundary prediction, domain-level template identification, full-length template/model assembly and structure-based function prediction. The output of LOMETS3 contains (i) top-ranked templates from LOMETS3 and its component threading programs, (ii) up to 5 full-length structure models constructed by L-BFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm) optimization, (iii) the 10 closest Protein Data Bank (PDB) structures to the target, (iv) structure-based functional predictions, (v) domain partition and assembly results, and (vi) the domain-level threading results, including items (i)–(iii) for each identified domain. LOMETS3 was tested in large-scale benchmarks and the blind CASP14 (14th Critical Assessment of Structure Prediction) experiment, where the overall template recognition and function prediction accuracy is significantly beyond its predecessors and other state-of-the-art threading approaches, especially for hard targets without homologous templates in the PDB. Based on the improved developments, LOMETS3 should help significantly advance the capability of broader biomedical community for template-based protein structure and function modelling.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Bhattacharya S, Roche R, Moussad B, Bhattacharya D. DisCovER: distance- and orientation-based covariational threading for weakly homologous proteins. Proteins 2022; 90:579-588. [PMID: 34599831 PMCID: PMC8738102 DOI: 10.1002/prot.26254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023]
Abstract
Threading a query protein sequence onto a library of weakly homologous structural templates remains challenging, even when sequence-based predicted contact or distance information is used. Contact-assisted or distance-assisted threading methods utilize only the spatial proximity of the interacting residue pairs for template selection and alignment, ignoring their orientation. Moreover, existing threading methods fail to consider the neighborhood effect induced by the query-template alignment. We present a new distance- and orientation-based covariational threading method called DisCovER by effectively integrating information from inter-residue distance and orientation along with the topological network neighborhood of a query-template alignment. Our method first selects a subset of templates using standard profile-based threading coupled with topological network similarity terms to account for the neighborhood effect and subsequently performs distance- and orientation-based query-template alignment using an iterative double dynamic programming framework. Multiple large-scale benchmarking results on query proteins classified as weakly homologous from the continuous automated model evaluation experiment and from the current literature show that our method outperforms several existing state-of-the-art threading approaches, and that the integration of the neighborhood effect with the inter-residue distance and orientation information synergistically contributes to the improved performance of DisCovER. DisCovER is freely available at https://github.com/Bhattacharya-Lab/DisCovER.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Rahmatullah Roche
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bernard Moussad
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
18
|
Decoding the link of microbiome niches with homologous sequences enables accurately targeted protein structure prediction. Proc Natl Acad Sci U S A 2021; 118:2110828118. [PMID: 34873061 DOI: 10.1073/pnas.2110828118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Information derived from metagenome sequences through deep-learning techniques has significantly improved the accuracy of template free protein structure modeling. However, most of the deep learning-based modeling studies are based on blind sequence database searches and suffer from low efficiency in computational resource utilization and model construction, especially when the sequence library becomes prohibitively large. We proposed a MetaSource model built on 4.25 billion microbiome sequences from four major biomes (Gut, Lake, Soil, and Fermentor) to decode the inherent linkage of microbial niches with protein homologous families. Large-scale protein family folding experiments on 8,700 unknown Pfam families showed that a microbiome targeted approach with multiple sequence alignment constructed from individual MetaSource biomes requires more than threefold less computer memory and CPU (central processing unit) time but generates contact-map and three-dimensional structure models with a significantly higher accuracy, compared with that using combined metagenome datasets. These results demonstrate an avenue to bridge the gap between the rapidly increasing metagenome databases and the limited computing resources for efficient genome-wide database mining, which provides a useful bluebook to guide future microbiome sequence database and modeling development for high-accuracy protein structure and function prediction.
Collapse
|
19
|
Zheng W, Li Y, Zhang C, Zhou X, Pearce R, Bell EW, Huang X, Zhang Y. Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14. Proteins 2021; 89:1734-1751. [PMID: 34331351 PMCID: PMC8616857 DOI: 10.1002/prot.26193] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 11/10/2022]
Abstract
In this article, we report 3D structure prediction results by two of our best server groups ("Zhang-Server" and "QUARK") in CASP14. These two servers were built based on the D-I-TASSER and D-QUARK algorithms, which integrated four newly developed components into the classical protein folding pipelines, I-TASSER and QUARK, respectively. The new components include: (a) a new multiple sequence alignment (MSA) collection tool, DeepMSA2, which is extended from the DeepMSA program; (b) a contact-based domain boundary prediction algorithm, FUpred, to detect protein domain boundaries; (c) a residual convolutional neural network-based method, DeepPotential, to predict multiple spatial restraints by co-evolutionary features derived from the MSA; and (d) optimized spatial restraint energy potentials to guide the structure assembly simulations. For 37 FM targets, the average TM-scores of the first models produced by D-I-TASSER and D-QUARK were 96% and 112% higher than those constructed by I-TASSER and QUARK, respectively. The data analysis indicates noticeable improvements produced by each of the four new components, especially for the newly added spatial restraints from DeepPotential and the well-tuned force field that combines spatial restraints, threading templates, and generic knowledge-based potentials. However, challenges still exist in the current pipelines. These include difficulties in modeling multi-domain proteins due to low accuracy in inter-domain distance prediction and modeling protein domains from oligomer complexes, as the co-evolutionary analysis cannot distinguish inter-chain and intra-chain distances. Specifically tuning the deep learning-based predictors for multi-domain targets and protein complexes may be helpful to address these issues.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eric W. Bell
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoqiang Huang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
20
|
Su H, Wang W, Du Z, Peng Z, Gao S, Cheng M, Yang J. Improved Protein Structure Prediction Using a New Multi-Scale Network and Homologous Templates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102592. [PMID: 34719864 PMCID: PMC8693034 DOI: 10.1002/advs.202102592] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/12/2021] [Indexed: 06/04/2023]
Abstract
The accuracy of de novo protein structure prediction has been improved considerably in recent years, mostly due to the introduction of deep learning techniques. In this work, trRosettaX, an improved version of trRosetta for protein structure prediction is presented. The major improvement over trRosetta consists of two folds. The first is the application of a new multi-scale network, i.e., Res2Net, for improved prediction of inter-residue geometries, including distance and orientations. The second is an attention-based module to exploit multiple homologous templates to increase the accuracy further. Compared with trRosetta, trRosettaX improves the contact precision by 6% and 8% on the free modeling targets of CASP13 and CASP14, respectively. A preliminary version of trRosettaX is ranked as one of the top server groups in CASP14's blind test. Additional benchmark test on 161 targets from CAMEO (between Jun and Sep 2020) shows that trRosettaX achieves an average TM-score ≈0.8, outperforming the top groups in CAMEO. These data suggest the effectiveness of using the multi-scale network and the benefit of incorporating homologous templates into the network. The trRosettaX algorithm is incorporated into the trRosetta server since Nov 2020. The web server, the training and inference codes are available at: https://yanglab.nankai.edu.cn/trRosetta/.
Collapse
Affiliation(s)
- Hong Su
- School of Mathematical SciencesNankai UniversityTianjin300071China
| | - Wenkai Wang
- School of Mathematical SciencesNankai UniversityTianjin300071China
| | - Zongyang Du
- School of Mathematical SciencesNankai UniversityTianjin300071China
| | - Zhenling Peng
- Research Center for Mathematics and Interdisciplinary SciencesShandong UniversityQingdao266237China
| | - Shang‐Hua Gao
- College of Computer ScienceNankai UniversityTianjin300071China
| | - Ming‐Ming Cheng
- College of Computer ScienceNankai UniversityTianjin300071China
| | - Jianyi Yang
- Research Center for Mathematics and Interdisciplinary SciencesShandong UniversityQingdao266237China
| |
Collapse
|
21
|
Rudnev VR, Kulikova LI, Nikolsky KS, Malsagova KA, Kopylov AT, Kaysheva AL. Current Approaches in Supersecondary Structures Investigation. Int J Mol Sci 2021; 22:11879. [PMID: 34769310 PMCID: PMC8584461 DOI: 10.3390/ijms222111879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Proteins expressed during the cell cycle determine cell function, topology, and responses to environmental influences. The development and improvement of experimental methods in the field of structural biology provide valuable information about the structure and functions of individual proteins. This work is devoted to the study of supersecondary structures of proteins and determination of their structural motifs, description of experimental methods for their detection, databases, and repositories for storage, as well as methods of molecular dynamics research. The interest in the study of supersecondary structures in proteins is due to their autonomous stability outside the protein globule, which makes it possible to study folding processes, conformational changes in protein isoforms, and aberrant proteins with high productivity.
Collapse
Affiliation(s)
- Vladimir R. Rudnev
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Liudmila I. Kulikova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kirill S. Nikolsky
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| | - Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| | - Arthur T. Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (V.R.R.); (L.I.K.); (K.S.N.); (A.T.K.); (A.L.K.)
| |
Collapse
|
22
|
Villegas-Morcillo A, Gomez AM, Morales-Cordovilla JA, Sanchez V. Protein Fold Recognition From Sequences Using Convolutional and Recurrent Neural Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2848-2854. [PMID: 32750896 DOI: 10.1109/tcbb.2020.3012732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The identification of a protein fold type from its amino acid sequence provides important insights about the protein 3D structure. In this paper, we propose a deep learning architecture that can process protein residue-level features to address the protein fold recognition task. Our neural network model combines 1D-convolutional layers with gated recurrent unit (GRU) layers. The GRU cells, as recurrent layers, cope with the processing issues associated to the highly variable protein sequence lengths and so extract a fold-related embedding of fixed size for each protein domain. These embeddings are then used to perform the pairwise fold recognition task, which is based on transferring the fold type of the most similar template structure. We compare our model with several template-based and deep learning-based methods from the state-of-the-art. The evaluation results over the well-known LINDAHL and SCOP_TEST sets, along with a proposed LINDAHL test set updated to SCOP 1.75, show that our embeddings perform significantly better than these methods, specially at the fold level. Supplementary material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TCBB.2020.3012732, source code and trained models are available at http://sigmat.ugr.es/~amelia/CNN-GRU-RF+/.
Collapse
|
23
|
Villegas-Morcillo A, Sanchez V, Gomez AM. FoldHSphere: deep hyperspherical embeddings for protein fold recognition. BMC Bioinformatics 2021; 22:490. [PMID: 34641786 PMCID: PMC8507389 DOI: 10.1186/s12859-021-04419-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/29/2021] [Indexed: 12/01/2022] Open
Abstract
Background Current state-of-the-art deep learning approaches for protein fold recognition learn protein embeddings that improve prediction performance at the fold level. However, there still exists aperformance gap at the fold level and the (relatively easier) family level, suggesting that it might be possible to learn an embedding space that better represents the protein folds. Results In this paper, we propose the FoldHSphere method to learn a better fold embedding space through a two-stage training procedure. We first obtain prototype vectors for each fold class that are maximally separated in hyperspherical space. We then train a neural network by minimizing the angular large margin cosine loss to learn protein embeddings clustered around the corresponding hyperspherical fold prototypes. Our network architectures, ResCNN-GRU and ResCNN-BGRU, process the input protein sequences by applying several residual-convolutional blocks followed by a gated recurrent unit-based recurrent layer. Evaluation results on the LINDAHL dataset indicate that the use of our hyperspherical embeddings effectively bridges the performance gap at the family and fold levels. Furthermore, our FoldHSpherePro ensemble method yields an accuracy of 81.3% at the fold level, outperforming all the state-of-the-art methods. Conclusions Our methodology is efficient in learning discriminative and fold-representative embeddings for the protein domains. The proposed hyperspherical embeddings are effective at identifying the protein fold class by pairwise comparison, even when amino acid sequence similarities are low. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04419-7.
Collapse
Affiliation(s)
- Amelia Villegas-Morcillo
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071, Granada, Spain.
| | - Victoria Sanchez
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071, Granada, Spain
| | - Angel M Gomez
- Department of Signal Theory, Telematics and Communications, University of Granada, Periodista Daniel Saucedo Aranda, 18071, Granada, Spain
| |
Collapse
|
24
|
Laine E, Eismann S, Elofsson A, Grudinin S. Protein sequence-to-structure learning: Is this the end(-to-end revolution)? Proteins 2021; 89:1770-1786. [PMID: 34519095 DOI: 10.1002/prot.26235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023]
Abstract
The potential of deep learning has been recognized in the protein structure prediction community for some time, and became indisputable after CASP13. In CASP14, deep learning has boosted the field to unanticipated levels reaching near-experimental accuracy. This success comes from advances transferred from other machine learning areas, as well as methods specifically designed to deal with protein sequences and structures, and their abstractions. Novel emerging approaches include (i) geometric learning, that is, learning on representations such as graphs, three-dimensional (3D) Voronoi tessellations, and point clouds; (ii) pretrained protein language models leveraging attention; (iii) equivariant architectures preserving the symmetry of 3D space; (iv) use of large meta-genome databases; (v) combinations of protein representations; and (vi) finally truly end-to-end architectures, that is, differentiable models starting from a sequence and returning a 3D structure. Here, we provide an overview and our opinion of the novel deep learning approaches developed in the last 2 years and widely used in CASP14.
Collapse
Affiliation(s)
- Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Stephan Eismann
- Department of Computer Science and Applied Physics, Stanford University, Stanford, California, USA
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sergei Grudinin
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
| |
Collapse
|
25
|
Zheng W, Zhang C, Li Y, Pearce R, Bell EW, Zhang Y. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. CELL REPORTS METHODS 2021; 1:100014. [PMID: 34355210 PMCID: PMC8336924 DOI: 10.1016/j.crmeth.2021.100014] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
Structure prediction for proteins lacking homologous templates in the Protein Data Bank (PDB) remains a significant unsolved problem. We developed a protocol, C-I-TASSER, to integrate interresidue contact maps from deep neural-network learning with the cutting-edge I-TASSER fragment assembly simulations. Large-scale benchmark tests showed that C-I-TASSER can fold more than twice the number of non-homologous proteins than the I-TASSER, which does not use contacts. When applied to a folding experiment on 8,266 unsolved Pfam families, C-I-TASSER successfully folded 4,162 domain families, including 504 folds that are not found in the PDB. Furthermore, it created correct folds for 85% of proteins in the SARS-CoV-2 genome, despite the quick mutation rate of the virus and sparse sequence profiles. The results demonstrated the critical importance of coupling whole-genome and metagenome-based evolutionary information with optimal structure assembly simulations for solving the problem of non-homologous protein structure prediction.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric W. Bell
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Pearce R, Zhang Y. Toward the solution of the protein structure prediction problem. J Biol Chem 2021; 297:100870. [PMID: 34119522 PMCID: PMC8254035 DOI: 10.1016/j.jbc.2021.100870] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Since Anfinsen demonstrated that the information encoded in a protein's amino acid sequence determines its structure in 1973, solving the protein structure prediction problem has been the Holy Grail of structural biology. The goal of protein structure prediction approaches is to utilize computational modeling to determine the spatial location of every atom in a protein molecule starting from only its amino acid sequence. Depending on whether homologous structures can be found in the Protein Data Bank (PDB), structure prediction methods have been historically categorized as template-based modeling (TBM) or template-free modeling (FM) approaches. Until recently, TBM has been the most reliable approach to predicting protein structures, and in the absence of reliable templates, the modeling accuracy sharply declines. Nevertheless, the results of the most recent community-wide assessment of protein structure prediction experiment (CASP14) have demonstrated that the protein structure prediction problem can be largely solved through the use of end-to-end deep machine learning techniques, where correct folds could be built for nearly all single-domain proteins without using the PDB templates. Critically, the model quality exhibited little correlation with the quality of available template structures, as well as the number of sequence homologs detected for a given target protein. Thus, the implementation of deep-learning techniques has essentially broken through the 50-year-old modeling border between TBM and FM approaches and has made the success of high-resolution structure prediction significantly less dependent on template availability in the PDB library.
Collapse
Affiliation(s)
- Robin Pearce
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
27
|
Sahoo A, Swain SS, Behera A, Sahoo G, Mahapatra PK, Panda SK. Antimicrobial Peptides Derived From Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review. Front Microbiol 2021; 12:661195. [PMID: 34248873 PMCID: PMC8265172 DOI: 10.3389/fmicb.2021.661195] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Biofilms form a complex layer with defined structures, that attach on biotic or abiotic surfaces, are tough to eradicate and tend to cause some resistance against most antibiotics. Several studies confirmed that biofilm-producing bacteria exhibit higher resistance compared to the planktonic form of the same species. Antibiotic resistance factors are well understood in planktonic bacteria which is not so in case of biofilm producing forms. This may be due to the lack of available drugs with known resistance mechanisms for biofilms. Existing antibiotics cannot eradicate most biofilms, especially of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). Insects produce complex and diverse set of chemicals for survival and defense. Antimicrobial peptides (AMPs), produced by most insects, generally have a broad spectrum of activity and the potential to bypass the resistance mechanisms of classical antibiotics. Besides, AMPs may well act synergistically with classical antibiotics for a double-pronged attack on infections. Thus, AMPs could be promising alternatives to overcome medically important biofilms, decrease the possibility of acquired resistance and treatment of multidrug-resistant pathogens including ESKAPE. The present review focuses on insect-derived AMPs with special reference to anti-biofilm-based strategies. It covers the AMP composition, pathways and mechanisms of action, the formation of biofilms, impact of biofilms on human diseases, current strategies as well as therapeutic options to combat biofilm with antimicrobial peptides from insects. In addition, the review also illustrates the importance of bioinformatics tools and molecular docking studies to boost the importance of select bioactive peptides those can be developed as drugs, as well as suggestions for further basic and clinical research.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences, SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, India
| | - Shasank Sekhar Swain
- Division of Microbiology & NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Ayusman Behera
- Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, India
| | | | - Sujogya Kumar Panda
- Centre of Environment, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, India
| |
Collapse
|
28
|
Bhattacharya S, Roche R, Shuvo MH, Bhattacharya D. Recent Advances in Protein Homology Detection Propelled by Inter-Residue Interaction Map Threading. Front Mol Biosci 2021; 8:643752. [PMID: 34046429 PMCID: PMC8148041 DOI: 10.3389/fmolb.2021.643752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Sequence-based protein homology detection has emerged as one of the most sensitive and accurate approaches to protein structure prediction. Despite the success, homology detection remains very challenging for weakly homologous proteins with divergent evolutionary profile. Very recently, deep neural network architectures have shown promising progress in mining the coevolutionary signal encoded in multiple sequence alignments, leading to reasonably accurate estimation of inter-residue interaction maps, which serve as a rich source of additional information for improved homology detection. Here, we summarize the latest developments in protein homology detection driven by inter-residue interaction map threading. We highlight the emerging trends in distant-homology protein threading through the alignment of predicted interaction maps at various granularities ranging from binary contact maps to finer-grained distance and orientation maps as well as their combination. We also discuss some of the current limitations and possible future avenues to further enhance the sensitivity of protein homology detection.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Rahmatullah Roche
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Md Hossain Shuvo
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Debswapna Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
29
|
Computational Design of Novel Allosteric Inhibitors for Plasmodium falciparum DegP. Molecules 2021; 26:molecules26092742. [PMID: 34066964 PMCID: PMC8141111 DOI: 10.3390/molecules26092742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Abstract
The serine protease, DegP exhibits proteolytic and chaperone activities, essential for cellular protein quality control and normal cell development in eukaryotes. The P. falciparum DegP is essential for the parasite survival and required to combat the oscillating thermal stress conditions during the infection, protein quality checks and protein homeostasis in the extra-cytoplasmic compartments, thereby establishing it as a potential target for drug development against malaria. Previous studies have shown that diisopropyl fluorophosphate (DFP) and the peptide SPMFKGV inhibit E. coli DegP protease activity. To identify novel potential inhibitors specific to PfDegP allosteric and the catalytic binding sites, we performed a high throughput in silico screening using Malaria Box, Pathogen Box, Maybridge library, ChEMBL library and the library of FDA approved compounds. The screening helped identify five best binders that showed high affinity to PfDegP allosteric (T0873, T2823, T2801, RJC02337, CD00811) and the catalytic binding site (T0078L, T1524, T2328, BTB11534 and 552691). Further, molecular dynamics simulation analysis revealed RJC02337, BTB11534 as the best hits forming a stable complex. WaterMap and electrostatic complementarity were used to evaluate the novel bio-isosteric chemotypes of RJC02337, that led to the identification of 231 chemotypes that exhibited better binding affinity. Further analysis of the top 5 chemotypes, based on better binding affinity, revealed that the addition of electron donors like nitrogen and sulphur to the side chains of butanoate group are more favoured than the backbone of butanoate group. In a nutshell, the present study helps identify novel, potent and Plasmodium specific inhibitors, using high throughput in silico screening and bio-isosteric replacement, which may be experimentally validated.
Collapse
|
30
|
Ju F, Zhu J, Shao B, Kong L, Liu TY, Zheng WM, Bu D. CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction. Nat Commun 2021; 12:2535. [PMID: 33953201 PMCID: PMC8100175 DOI: 10.1038/s41467-021-22869-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/28/2021] [Indexed: 11/29/2022] Open
Abstract
Residue co-evolution has become the primary principle for estimating inter-residue distances of a protein, which are crucially important for predicting protein structure. Most existing approaches adopt an indirect strategy, i.e., inferring residue co-evolution based on some hand-crafted features, say, a covariance matrix, calculated from multiple sequence alignment (MSA) of target protein. This indirect strategy, however, cannot fully exploit the information carried by MSA. Here, we report an end-to-end deep neural network, CopulaNet, to estimate residue co-evolution directly from MSA. The key elements of CopulaNet include: (i) an encoder to model context-specific mutation for each residue; (ii) an aggregator to model residue co-evolution, and thereafter estimate inter-residue distances. Using CASP13 (the 13th Critical Assessment of Protein Structure Prediction) target proteins as representatives, we demonstrate that CopulaNet can predict protein structure with improved accuracy and efficiency. This study represents a step toward improved end-to-end prediction of inter-residue distances and protein tertiary structures.
Collapse
Affiliation(s)
- Fusong Ju
- Key Lab of Intelligent Information Processing, State Key Lab of Computer Architecture, Big-data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Bin Shao
- Microsoft Research Asia, Beijing, China
| | - Lupeng Kong
- Key Lab of Intelligent Information Processing, State Key Lab of Computer Architecture, Big-data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Wei-Mou Zheng
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Dongbo Bu
- Key Lab of Intelligent Information Processing, State Key Lab of Computer Architecture, Big-data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Wu F, Xu J. Deep template-based protein structure prediction. PLoS Comput Biol 2021; 17:e1008954. [PMID: 33939695 PMCID: PMC8118551 DOI: 10.1371/journal.pcbi.1008954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/13/2021] [Accepted: 04/11/2021] [Indexed: 11/19/2022] Open
Abstract
MOTIVATION Protein structure prediction has been greatly improved by deep learning, but most efforts are devoted to template-free modeling. But very few deep learning methods are developed for TBM (template-based modeling), a popular technique for protein structure prediction. TBM has been studied extensively in the past, but its accuracy is not satisfactory when highly similar templates are not available. RESULTS This paper presents a new method NDThreader (New Deep-learning Threader) to address the challenges of TBM. NDThreader first employs DRNF (deep convolutional residual neural fields), which is an integration of deep ResNet (convolutional residue neural networks) and CRF (conditional random fields), to align a query protein to templates without using any distance information. Then NDThreader uses ADMM (alternating direction method of multipliers) and DRNF to further improve sequence-template alignments by making use of predicted distance potential. Finally, NDThreader builds 3D models from a sequence-template alignment by feeding it and sequence coevolution information into a deep ResNet to predict inter-atom distance distribution, which is then fed into PyRosetta for 3D model construction. Our experimental results show that NDThreader greatly outperforms existing methods such as CNFpred, HHpred, DeepThreader and CEthreader. NDThreader was blindly tested in CASP14 as a part of RaptorX server, which obtained the best average GDT score among all CASP14 servers on the 58 TBM targets.
Collapse
Affiliation(s)
- Fandi Wu
- Toyota Technological Institute at Chicago, Chicago, IL, United States of America
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, United States of America
| |
Collapse
|
32
|
Villegas-Morcillo A, Makrodimitris S, van Ham RCHJ, Gomez AM, Sanchez V, Reinders MJT. Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function. Bioinformatics 2021; 37:162-170. [PMID: 32797179 PMCID: PMC8055213 DOI: 10.1093/bioinformatics/btaa701] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/10/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION Protein function prediction is a difficult bioinformatics problem. Many recent methods use deep neural networks to learn complex sequence representations and predict function from these. Deep supervised models require a lot of labeled training data which are not available for this task. However, a very large amount of protein sequences without functional labels is available. RESULTS We applied an existing deep sequence model that had been pretrained in an unsupervised setting on the supervised task of protein molecular function prediction. We found that this complex feature representation is effective for this task, outperforming hand-crafted features such as one-hot encoding of amino acids, k-mer counts, secondary structure and backbone angles. Also, it partly negates the need for complex prediction models, as a two-layer perceptron was enough to achieve competitive performance in the third Critical Assessment of Functional Annotation benchmark. We also show that combining this sequence representation with protein 3D structure information does not lead to performance improvement, hinting that 3D structure is also potentially learned during the unsupervised pretraining. AVAILABILITY AND IMPLEMENTATION Implementations of all used models can be found at https://github.com/stamakro/GCN-for-Structure-and-Function. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Amelia Villegas-Morcillo
- Department of Signal Theory, Telematics and Communications, University of Granada, 18071 Granada, Spain
| | - Stavros Makrodimitris
- Delft Bioinformatics Lab, Delft University of Technology, 2628XE Delft, The Netherlands
- Keygene N.V., 6708PW Wageningen, The Netherlands
| | - Roeland C H J van Ham
- Delft Bioinformatics Lab, Delft University of Technology, 2628XE Delft, The Netherlands
- Keygene N.V., 6708PW Wageningen, The Netherlands
| | - Angel M Gomez
- Department of Signal Theory, Telematics and Communications, University of Granada, 18071 Granada, Spain
| | - Victoria Sanchez
- Department of Signal Theory, Telematics and Communications, University of Granada, 18071 Granada, Spain
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, 2628XE Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| |
Collapse
|
33
|
Zhang H, Shen Y. Template-based prediction of protein structure with deep learning. BMC Genomics 2020; 21:878. [PMID: 33372607 PMCID: PMC7771081 DOI: 10.1186/s12864-020-07249-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate prediction of protein structure is fundamentally important to understand biological function of proteins. Template-based modeling, including protein threading and homology modeling, is a popular method for protein tertiary structure prediction. However, accurate template-query alignment and template selection are still very challenging, especially for the proteins with only distant homologs available. RESULTS We propose a new template-based modelling method called ThreaderAI to improve protein tertiary structure prediction. ThreaderAI formulates the task of aligning query sequence with template as the classical pixel classification problem in computer vision and naturally applies deep residual neural network in prediction. ThreaderAI first employs deep learning to predict residue-residue aligning probability matrix by integrating sequence profile, predicted sequential structural features, and predicted residue-residue contacts, and then builds template-query alignment by applying a dynamic programming algorithm on the probability matrix. We evaluated our methods both in generating accurate template-query alignment and protein threading. Experimental results show that ThreaderAI outperforms currently popular template-based modelling methods HHpred, CNFpred, and the latest contact-assisted method CEthreader, especially on the proteins that do not have close homologs with known structures. In particular, in terms of alignment accuracy measured with TM-score, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 56, 13, and 11%, respectively, on template-query pairs at the similarity of fold level from SCOPe data. And on CASP13's TBM-hard data, ThreaderAI outperforms HHpred, CNFpred, and CEthreader by 16, 9 and 8% in terms of TM-score, respectively. CONCLUSIONS These results demonstrate that with the help of deep learning, ThreaderAI can significantly improve the accuracy of template-based structure prediction, especially for distant-homology proteins.
Collapse
Affiliation(s)
- Haicang Zhang
- Department of Systems Biology, Columbia University, New York, NY, USA.
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA.
- Program in Mathematical Genomics, Columbia University, New York, NY, USA.
| |
Collapse
|
34
|
Mahmood MS, Bin-T-Abid D, Irshad S, Batool H. Analysis of Putative Epitope Candidates of Mycobacterium tuberculosis Against Pakistani Human Leukocyte Antigen Background: An Immunoinformatic Study for the Development of Future Vaccine. Int J Pept Res Ther 2020; 27:597-614. [PMID: 32922244 PMCID: PMC7472948 DOI: 10.1007/s10989-020-10111-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2020] [Indexed: 11/25/2022]
Abstract
Tuberculosis (TB), a chronic disease caused by Mycobacterium tuberculosis (Mtb), is a global health issue across the world. Pakistan ranks fifth among the countries, which are facing, a significantly great number of mortalities and morbidities due to TB. Unfortunately, all previously reported treatments are not successful for the eradication of TB. Here in this study, we report an emerging treatment option for this disease. We have applied immunoinformatics to predict highly conserved B and T-cell epitopes from Mtb, showing significant binding affinities to the frequent HLA alleles in the Pakistani population. A total of ten highly referenced and experimentally validated epitopes were selected from the Immune Epitope Database (IEDB), followed by their conservancy analysis using weblogos. The consensus sequences and variants derived from these sequences were examined, for their binding affinities, with prevalent HLA alleles of Pakistan. Moreover, the antigenic and allergenic natures of these peptides were also evaluated via Vaxijen and AllerTOP, respectively. Consequently, all potentially allergenic and non-antigenic, peptide fragments, were excluded from the analysis. Among all putative epitopes, three CD8 + T-cell epitopes were selected, as ideal vaccine candidates and, population coverage analysis revealed that the combination of these three peptides was covering, 67.28% Pakistani Asian and 57.15% mixed Pakistani populations. Likewise, eleven linear and six conformational or discontinuous B-cell epitopes were also marked as potential vaccine candidates based on their prediction score, non-allergenic nature, and antigenic properties. These epitopes, however, need the final validation via wet-lab studies. After their approval, these epitopes would be effective candidates for the future designing of epitope-based vaccines against Mtb infections in Pakistan.
Collapse
Affiliation(s)
- Malik Siddique Mahmood
- Institute of Biochemistry and Biotechnology, University of the Punjab, P. O box No. 54590, Lahore, Pakistan
| | - Duaa Bin-T-Abid
- Institute of Biochemistry and Biotechnology, University of the Punjab, P. O box No. 54590, Lahore, Pakistan
| | - Saba Irshad
- Institute of Biochemistry and Biotechnology, University of the Punjab, P. O box No. 54590, Lahore, Pakistan
| | - Hina Batool
- Department of Life Science, School of Science, University of Management Technology, Lahore, Pakistan
| |
Collapse
|
35
|
Weiss AKH, Albertini E, Holzknecht M, Cappuccio E, Dorigatti I, Krahbichler A, Damisch E, Gstach H, Jansen-Dürr P. Regulation of cellular senescence by eukaryotic members of the FAH superfamily - A role in calcium homeostasis? Mech Ageing Dev 2020; 190:111284. [PMID: 32574647 PMCID: PMC7116474 DOI: 10.1016/j.mad.2020.111284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023]
Abstract
Fumarylacetoacetate hydrolase (FAH) superfamily members are commonly expressed in the prokaryotic kingdom, where they take part in the committing steps of degradation pathways of complex carbon sources. Besides FAH itself, the only described FAH superfamily members in the eukaryotic kingdom are fumarylacetoacetate hydrolase domain containing proteins (FAHD) 1 and 2, that have been a focus of recent work in aging research. Here, we provide a review of current knowledge on FAHD proteins. Of those, FAHD1 has recently been described as a regulator of mitochondrial function and senescence, in the context of mitochondrial dysfunction associated senescence (MiDAS). This work further describes data based on bioinformatics analysis, 3D structure comparison and sequence alignment, that suggests a putative role of FAHD proteins as calcium binding proteins.
Collapse
Affiliation(s)
- Alexander K H Weiss
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria.
| | - Eva Albertini
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Max Holzknecht
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Elia Cappuccio
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Ilaria Dorigatti
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Anna Krahbichler
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Elisabeth Damisch
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Hubert Gstach
- University of Vienna, UZ2 E349, Department of Pharmaceutical Chemistry, Faculty of Life Sciences, Althanstrasse 14, 1090, Vienna, Austria
| | - Pidder Jansen-Dürr
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| |
Collapse
|
36
|
Kim DN, Gront D, Sanbonmatsu KY. Practical Considerations for Atomistic Structure Modeling with Cryo-EM Maps. J Chem Inf Model 2020; 60:2436-2442. [PMID: 32422044 PMCID: PMC7891309 DOI: 10.1021/acs.jcim.0c00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe common approaches to atomistic structure modeling with single particle analysis derived cryo-EM maps. Several strategies for atomistic model building and atomistic model fitting methods are discussed, including selection criteria and implementation procedures. In covering basic concepts and caveats, this short perspective aims to help facilitate active discussion between scientists at different levels with diverse backgrounds.
Collapse
Affiliation(s)
- Doo Nam Kim
- Computational Biology Team, Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Dominik Gront
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Karissa Y. Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
- New Mexico Consortium, Los Alamos, New Mexico, 87544, United States
| |
Collapse
|