1
|
Wu H, Diao H, Zhang F, Jiang W, Pan T, Bian Y. Organelle interplay in cardiovascular diseases: Mechanisms, pathogenesis, and therapeutic perspectives. Biomed Pharmacother 2025; 185:117978. [PMID: 40073746 DOI: 10.1016/j.biopha.2025.117978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/16/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of rising morbidity and mortality among humans worldwide; however, our approach to the pathogenesis, exploration, and management of CVDs still remains limited. As the heart consists of cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, and several types of cells, different types of dysfunction in the interplay between organelles play an important damaging role, resulting in cardiac pathologies. The interplay between cellular organelles is intricate and vital for maintaining cellular homeostasis, as highlighted by multiple diseases linked to the dysfunction of both organelles. Many studies have revealed the potential mechanisms by which organelles communicate with each other and regulate the pathological processes of CVDs together. However, gaps remain in fully understanding the complexity of these interactions and translating these insights into therapeutic approaches. In this review, we summarized how the interplay between cellular organelles in the cardiomyocytes alters in various heart diseases. We find underexplored areas, such as the crucial signaling pathways governing organelle communication, and discuss their implications for disease future progression. Furthermore, we evaluate emerging potential medicines aimed at restoring organelle interactions. Finally, we propose future directions for researching to advance the development of novel medicines and therapies, addressing current gaps and providing a theoretical basis for improved clinical outcomes in CVDs.
Collapse
Affiliation(s)
- Han Wu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weitao Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tengfei Pan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Hirakis SP, Bartol TM, Autin L, Amaro RE, Sejnowski TJ. Electrophysical cardiac remodeling at the molecular level: Insights into ryanodine receptor activation and calcium-induced calcium release from a stochastic explicit-particle model. Biophys J 2024; 123:3812-3831. [PMID: 39369273 PMCID: PMC11560313 DOI: 10.1016/j.bpj.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
We present the first-ever, fully discrete, stochastic model of triggered cardiac Ca2+ dynamics. Using anatomically accurate subcellular cardiac myocyte geometries, we simulate the molecular players involved in Ca2+ handling using high-resolution stochastic and explicit-particle methods at the level of an individual cardiac dyadic junction. Integrating data from multiple experimental sources, the model not only replicates the findings of traditional in silico studies and complements in vitro experimental data but also reveals new insights into the molecular mechanisms driving cardiac dysfunction under stress and disease conditions. We improve upon older, nondiscrete models using the same realistic geometry by incorporating molecular mechanisms for spontaneous, as well as triggered calcium-induced calcium release (CICR). Action potentials are used to activate L-type calcium channels (LTCC), triggering CICR through ryanodine receptors (RyRs) on the surface of the sarcoplasmic reticulum. These improvements allow for the specific focus on the couplon: the structure-function relationship between LTCC and RyR. We investigate the electrophysical effects of normal and diseased action potentials on CICR and interrogate the effects of dyadic junction deformation through detubulation and orphaning of RyR. Our work demonstrates the importance of the electrophysical integrity of the calcium release unit on CICR fidelity, giving insights into the molecular basis of heart disease. Finally, we provide a unique, detailed, molecular view of the CICR process using advanced rendering techniques. This easy-to-use model comes complete with tutorials and the necessary software for use and analysis to maximize usability and reproducibility. Our work focuses on quantifying, qualifying, and visualizing the behavior of the molecular species that underlie the function and dysfunction of subcellular cardiomyocyte systems.
Collapse
Affiliation(s)
- Sophia P Hirakis
- Computational Neurobiology Lab, The Salk Institute of Biological Studies, La Jolla, California; Department of Chemistry and Biochemistry, The University of California San Diego, La Jolla, California
| | - Thomas M Bartol
- Computational Neurobiology Lab, The Salk Institute of Biological Studies, La Jolla, California
| | - Ludovic Autin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, The University of California San Diego, La Jolla, California.
| | - Terrence J Sejnowski
- Computational Neurobiology Lab, The Salk Institute of Biological Studies, La Jolla, California; Department of Chemistry and Biochemistry, The University of California San Diego, La Jolla, California.
| |
Collapse
|
3
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Dorgans K, Guo D, Kurima K, Wickens J, Uusisaari MY. Designing AAV Vectors for Monitoring the Subtle Calcium Fluctuations of Inferior Olive Network in vivo. Front Cell Neurosci 2022; 16:825056. [PMID: 35573836 PMCID: PMC9093741 DOI: 10.3389/fncel.2022.825056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated viral (AAV) vectors, used as vehicles for gene transfer into the brain, are a versatile and powerful tool of modern neuroscience that allow identifying specific neuronal populations, monitoring and modulating their activity. For consistent and reproducible results, the AAV vectors must be engineered so that they reliably and accurately target cell populations. Furthermore, transgene expression must be adjusted to sufficient and safe levels compatible with the physiology of studied cells. We undertook the effort to identify and validate an AAV vector that could be utilized for researching the inferior olivary (IO) nucleus, a structure gating critical timing-related signals to the cerebellum. By means of systematic construct generation and quantitative expression profiling, we succeeded in creating a viral tool for specific and strong transfection of the IO neurons without adverse effects on their physiology. The potential of these tools is demonstrated by expressing the calcium sensor GCaMP6s in adult mouse IO neurons. We could monitor subtle calcium fluctuations underlying two signatures of intrinsic IO activity: the subthreshold oscillations (STOs) and the variable-duration action potential waveforms both in-vitro and in-vivo. Further, we show that the expression levels of GCaMP6s allowing such recordings are compatible with the delicate calcium-based dynamics of IO neurons, inviting future work into the network dynamics of the olivo-cerebellar system in behaving animals.
Collapse
Affiliation(s)
- Kevin Dorgans
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Da Guo
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kiyoto Kurima
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jeff Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Marylka Yoe Uusisaari
| |
Collapse
|