1
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Rinaldi C, D’Angelo R, Sidoti A. Epitranscriptome Analysis of Oxidative Stressed Retinal Epithelial Cells Depicted a Possible RNA Editing Landscape of Retinal Degeneration. Antioxidants (Basel) 2022; 11:antiox11101967. [PMID: 36290689 PMCID: PMC9598096 DOI: 10.3390/antiox11101967] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress represents one of the principal causes of inherited retinal dystrophies, with many related molecular mechanisms still unknown. We investigated the posttranscriptional RNA editing landscape of human retinal pigment epithelium cells (RPE) exposed to the oxidant agent N-retinylidene-N-retinyl ethanolamine (A2E) for 1 h, 2 h, 3 h and 6 h. Using a transcriptomic approach, refined with a specific multialgorithm pipeline, 62,880 already annotated and de novo RNA editing sites within about 3000 genes were identified among all samples. Approximately 19% of these RNA editing sites were found within 3' UTR, including sites common to all time points that were predicted to change the binding capacity of 359 miRNAs towards 9654 target genes. A2E exposure also determined significant gene expression differences in deaminase family ADAR, APOBEC and ADAT members, involved in canonical and tRNA editing events. On GO and KEGG enrichment analyses, genes that showed different RNA editing levels are mainly involved in pathways strongly linked to a possible neovascularization of retinal tissue, with induced apoptosis mediated by the ECM and surface protein altered signaling. Collectively, this work demonstrated dynamic RNA editome profiles in RPE cells for the first time and shed more light on new mechanisms at the basis of retinal degeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-221-3136
| | - Sergio Zaccaria Scalinci
- DIMEC (Department of Medical and Surgical Sciences), University of Bologna, 40121 Bologna, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
2
|
Xi E, Bai J, Zhang K, Yu H, Guo Y. Genomic variants disrupt miRNA-mRNA regulation. Chem Biodivers 2022; 19:e202200623. [PMID: 35985010 DOI: 10.1002/cbdv.202200623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Micro RNA (miRNA) and its regulatory effect on messenger RNA (mRNA) gene expression are a major focus in cancer research. Disruption in the normal miRNA-mRNA regulation network can result in serious cascading biological repercussions. In this study, we curated miRNA-related variants from major genomic consortiums and thoroughly evaluated how these variants could exert their effects by cross-validating with independent functional knowledge bases. Nearly all known variants (more than 664 million) categorized by type (germline, somatic, epigenetic) were mapped to the genomic regions involved in miRNA-mRNA binding (miRNA seeds and miRNA-mRNA 3'-UTR binding sequence). Subsets of miRNA-related variants supported by additional functional evidence, such as expression Quantitative Trait Loci (eQTL) and Genome-Wide Association Study (GWAS), were identified and scrutinized. Our results show that variants in miRNA seeds can substantially alter the composition of an miRNA's target mRNA set. Various functional analyses converged to reveal a post-transcriptional complex regulatory network where miRNA, eQTL, and RNA-binding protein intertwined to disseminate the impact of genomic variants. These results may potentially explain how certain variants affect disease/trait risks in genome wide association studies.
Collapse
Affiliation(s)
- Ellie Xi
- University of New Mexico - Albuquerque: The University of New Mexico, Internal Medicine, 100A Cancer Research Facility, 100A Cancer Research Facility, 87131, Albuquerque, UNITED STATES
| | - Judy Bai
- University of New Mexico - Albuquerque: The University of New Mexico, Internal Medicine, 100A Cancer Research Facility, 100A Cancer Research Facility, 87131, Albuquerque, UNITED STATES
| | - Klaira Zhang
- University of New Mexico - Albuquerque: The University of New Mexico, Internal Medicine, 100A Cancer Research Facility, 100A Cancer Research Facility, 87131, Albuquerque, UNITED STATES
| | - Hui Yu
- University of New Mexico - Albuquerque: The University of New Mexico, Internal Medicine, 100A Cancer Research Facility, Albuquerque, UNITED STATES
| | - Yan Guo
- University of New Mexico, Cancer Research Facility 100A, 87131, Albuquerque, UNITED STATES
| |
Collapse
|
3
|
Samuels DC, Yu H, Guo Y. Is it time to reassess variant annotation? Trends Genet 2022; 38:521-523. [DOI: 10.1016/j.tig.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
|
4
|
A streamlined solution for processing, elucidating and quality control of cyclobutane pyrimidine dimer sequencing data. Nat Protoc 2021; 16:2190-2212. [PMID: 33731963 DOI: 10.1038/s41596-021-00496-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/06/2021] [Indexed: 01/13/2023]
Abstract
UV radiation may lead to melanoma and nonmelanoma skin cancers by causing helix-distorting DNA damage such as cyclobutane pyrimidine dimers (CPDs). These DNA lesions, if located in important genes and not repaired promptly, are mutagenic and may eventually result in carcinogenesis. Examining CPD formation and repair processes across the genome can shed light on the mutagenesis mechanisms associated with UV damage in relevant cancers. We recently developed CPD-Seq, a high-throughput and single-nucleotide resolution sequencing technique that can specifically capture UV-induced CPD lesions across the genome. This novel technique has been increasingly used in studies of UV damage and can be adapted to sequence other clinically relevant DNA lesions. Although the library preparation protocol has been established, a systematic protocol to analyze CPD-Seq data has not been described yet. To streamline the various general or specific analysis steps, we developed a protocol named CPDSeqer to assist researchers with CPD-Seq data processing. CPDSeqer can accommodate both a single- and multiple-sample experimental design, and it allows both genome-wide analyses and regional scrutiny (such as of suspected UV damage hotspots). The runtime of CPDSeqer scales with raw data size and takes roughly 4 h per sample with the possibility of acceleration by parallel computing. Various guiding graphics are generated to help diagnose the performance of the experiment and inform regional enrichment of CPD formation. UV damage comparison analyses are set forth in three analysis scenarios, and the resulting HTML pages report damage directional trends and statistical significance. CPDSeqer can be accessed at https://github.com/shengqh/cpdseqer .
Collapse
|