1
|
Popova M, Hilgetag CC, Hütt MT. Perturbation therapies for neurodegenerative disorders: How attractors of excitable networks can help. Phys Rev E 2024; 110:054406. [PMID: 39690652 DOI: 10.1103/physreve.110.054406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/02/2024] [Indexed: 12/19/2024]
Abstract
We investigate the influence of the network topology on the asymptotic dynamical patterns, attractors, in a general model of excitable dynamics on signed directed graphs. In this framework, network topology manifests itself as an interplay of positive and negative feedback loops. A small change in a feedback loop, by addition or removal of edges in the graph, can drastically change the dynamical patterns in the network, characterized by the appearance and disappearance of attractors from the attractor space of the network. We identify the determinants of such events via a systematic set of numerical experiments. As application examples, we discuss the basal ganglia network that is relevant in the context of Parkinson's disease and the two-compartment cortico-thalamic network thought to be related to generating epileptic seizures, showing that a given attractor in the attractor space of a network can be induced or destroyed via a specific set of topological manipulations. Thus, we propose a systematic way to alter the dynamical landscape of the system via changes in its topology and hence for perturbation therapies like deep brain stimulation.
Collapse
|
2
|
Azilinon M, Wang HE, Makhalova J, Zaaraoui W, Ranjeva JP, Bartolomei F, Guye M, Jirsa V. Brain sodium MRI-derived priors support the estimation of epileptogenic zones using personalized model-based methods in epilepsy. Netw Neurosci 2024; 8:673-696. [PMID: 39355432 PMCID: PMC11340996 DOI: 10.1162/netn_a_00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2024] [Indexed: 10/03/2024] Open
Abstract
Patients presenting with drug-resistant epilepsy are eligible for surgery aiming to remove the regions involved in the production of seizure activities, the so-called epileptogenic zone network (EZN). Thus the accurate estimation of the EZN is crucial. Data-driven, personalized virtual brain models derived from patient-specific anatomical and functional data are used in Virtual Epileptic Patient (VEP) to estimate the EZN via optimization methods from Bayesian inference. The Bayesian inference approach used in previous VEP integrates priors, based on the features of stereotactic-electroencephalography (SEEG) seizures' recordings. Here, we propose new priors, based on quantitative 23Na-MRI. The 23Na-MRI data were acquired at 7T and provided several features characterizing the sodium signal decay. The hypothesis is that the sodium features are biomarkers of neuronal excitability related to the EZN and will add additional information to VEP estimation. In this paper, we first proposed the mapping from 23Na-MRI features to predict the EZN via a machine learning approach. Then, we exploited these predictions as priors in the VEP pipeline. The statistical results demonstrated that compared with the results from current VEP, the result from VEP based on 23Na-MRI prior has better balanced accuracy, and the similar weighted harmonic mean of the precision and recall.
Collapse
Affiliation(s)
- Mikhael Azilinon
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Huifang E Wang
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| | - Julia Makhalova
- APHM, Timone University Hospital, CEMEREM, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Maxime Guye
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| |
Collapse
|
3
|
Fang C, Li X, Na M, Jiang W, He Y, Wei A, Huang J, Zhou M. Epilepsy lesion localization method based on brain function network. Front Hum Neurosci 2024; 18:1431153. [PMID: 39050383 PMCID: PMC11266299 DOI: 10.3389/fnhum.2024.1431153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Objective In the past, the localization of seizure onset zone (SOZ) primarily relied on traditional EEG signal analysis methods. However, due to their limited spatial and temporal resolution, accurately pinpointing neural activity was challenging, thereby restricting their clinical applicability. Compared with traditional EEG signals, SEEG signals have superior spatial and temporal resolution, and can more accurately record neural activity near epileptic foci, making them better suited for studying SOZ. In addition, the traditional EEG signal analysis methods still have limitations, mainly focusing on the analysis of local signal features, while ignoring the complexity and interconnection of the overall brain network. How to more accurately locate SOZ is still not well resolved. The purpose of this study is to develop an effective positioning method for more accurate positioning. Method To overcome these limitations, this study proposed a model integrating brain functional network analysis with nonlinear dynamics. We utilized weighted phase lag index (WPLI) to construct brain functional network, epilepic network connectivity strength (ENCS) as the feature, and introduced persistence entropy (PE) for feature fusion, subsequently employing support vector machine (SVM) classification. Results The proposed method was verified on the HUP-iEEG dataset, our solution identified the SOZ with 0.9440 accuracy, 0.9848 precision, 0.8974 recall rate, 0.9340 F1 score and 0.9697 area under the ROC curve across patients, which outperforms the existing approaches. It exhibits a 2.30 percentage point enhancement in localisation accuracy along with a 2.97 percentage points in AUC compared to others. Conclusion Our method consider the interactions between nodes in brain network connections, as well as the inherent nonlinear and non-stationary properties of neural signals, to be more robust.
Collapse
Affiliation(s)
- Chunying Fang
- School of Computer and Information Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Xingyu Li
- School of Computer and Information Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Meng Na
- Department of Neurosurgery, The First Hospital of Harbin Medical University, Harbin, China
| | - Wenhao Jiang
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Yuankun He
- School of Computer and Information Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Aowei Wei
- School of Computer and Information Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Jie Huang
- School of Computer and Information Engineering, Heilongjiang University of Science and Technology, Harbin, China
| | - Ming Zhou
- School of Computer and Information Engineering, Heilongjiang University of Science and Technology, Harbin, China
| |
Collapse
|
4
|
Penas DR, Hashemi M, Jirsa VK, Banga JR. Parameter estimation in a whole-brain network model of epilepsy: Comparison of parallel global optimization solvers. PLoS Comput Biol 2024; 20:e1011642. [PMID: 38990984 PMCID: PMC11265693 DOI: 10.1371/journal.pcbi.1011642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/23/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
The Virtual Epileptic Patient (VEP) refers to a computer-based representation of a patient with epilepsy that combines personalized anatomical data with dynamical models of abnormal brain activities. It is capable of generating spatio-temporal seizure patterns that resemble those recorded with invasive methods such as stereoelectro EEG data, allowing for the evaluation of clinical hypotheses before planning surgery. This study highlights the effectiveness of calibrating VEP models using a global optimization approach. The approach utilizes SaCeSS, a cooperative metaheuristic algorithm capable of parallel computation, to yield high-quality solutions without requiring excessive computational time. Through extensive benchmarking on synthetic data, our proposal successfully solved a set of different configurations of VEP models, demonstrating better scalability and superior performance against other parallel solvers. These results were further enhanced using a Bayesian optimization framework for hyperparameter tuning, with significant gains in terms of both accuracy and computational cost. Additionally, we added a scalable uncertainty quantification phase after model calibration, and used it to assess the variability in estimated parameters across different problems. Overall, this study has the potential to improve the estimation of pathological brain areas in drug-resistant epilepsy, thereby to inform the clinical decision-making process.
Collapse
Affiliation(s)
- David R. Penas
- Computational Biology Lab, MBG-CSIC (Spanish National Research Council), Pontevedra, Spain
| | - Meysam Hashemi
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Viktor K. Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Julio R. Banga
- Computational Biology Lab, MBG-CSIC (Spanish National Research Council), Pontevedra, Spain
| |
Collapse
|
5
|
Millán AP, van Straaten ECW, Stam CJ, Nissen IA, Idema S, Van Mieghem P, Hillebrand A. Individualized epidemic spreading models predict epilepsy surgery outcomes: A pseudo-prospective study. Netw Neurosci 2024; 8:437-465. [PMID: 38952815 PMCID: PMC11142635 DOI: 10.1162/netn_a_00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/18/2024] [Indexed: 07/03/2024] Open
Abstract
Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but up to 50% of patients continue to have seizures one year after the resection. In order to aid presurgical planning and predict postsurgical outcome on a patient-by-patient basis, we developed a framework of individualized computational models that combines epidemic spreading with patient-specific connectivity and epileptogeneity maps: the Epidemic Spreading Seizure and Epilepsy Surgery framework (ESSES). ESSES parameters were fitted in a retrospective study (N = 15) to reproduce invasive electroencephalography (iEEG)-recorded seizures. ESSES reproduced the iEEG-recorded seizures, and significantly better so for patients with good (seizure-free, SF) than bad (nonseizure-free, NSF) outcome. We illustrate here the clinical applicability of ESSES with a pseudo-prospective study (N = 34) with a blind setting (to the resection strategy and surgical outcome) that emulated presurgical conditions. By setting the model parameters in the retrospective study, ESSES could be applied also to patients without iEEG data. ESSES could predict the chances of good outcome after any resection by finding patient-specific model-based optimal resection strategies, which we found to be smaller for SF than NSF patients, suggesting an intrinsic difference in the network organization or presurgical evaluation results of NSF patients. The actual surgical plan overlapped more with the model-based optimal resection, and had a larger effect in decreasing modeled seizure propagation, for SF patients than for NSF patients. Overall, ESSES could correctly predict 75% of NSF and 80.8% of SF cases pseudo-prospectively. Our results show that individualised computational models may inform surgical planning by suggesting alternative resections and providing information on the likelihood of a good outcome after a proposed resection. This is the first time that such a model is validated with a fully independent cohort and without the need for iEEG recordings.
Collapse
Affiliation(s)
- Ana P. Millán
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Institute “Carlos I” for Theoretical and Computational Physics, and Electromagnetism and Matter Physics Department, University of Granada, Granada, Spain
| | - Elisabeth C. W. van Straaten
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Ida A. Nissen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
| | - Sander Idema
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cancer Biology and Immonology, Amsterdam, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Arjan Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Saggio ML, Jirsa V. Bifurcations and bursting in the Epileptor. PLoS Comput Biol 2024; 20:e1011903. [PMID: 38446814 PMCID: PMC10947678 DOI: 10.1371/journal.pcbi.1011903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
The Epileptor is a phenomenological model for seizure activity that is used in a personalized large-scale brain modeling framework, the Virtual Epileptic Patient, with the aim of improving surgery outcomes for drug-resistant epileptic patients. Transitions between interictal and ictal states are modeled as bifurcations, enabling the definition of seizure classes in terms of onset/offset bifurcations. This establishes a taxonomy of seizures grounded in their essential underlying dynamics and the Epileptor replicates the activity of the most common class, as observed in patients with focal epilepsy, which is characterized by square-wave bursting properties. The Epileptor also encodes an additional mechanism to account for interictal spikes and spike and wave discharges. Here we use insights from a more generic model for square-wave bursting, based on the Unfolding Theory approach, to guide the bifurcation analysis of the Epileptor and gain a deeper understanding of the model and the role of its parameters. We show how the Epileptor's parameters can be modified to produce activities for other seizures classes of the taxonomy, as observed in patients, so that the large-scale brain models could be further personalized. Some of these classes have already been described in the literature in the Epileptor, others, predicted by the generic model, are new. Finally, we unveil how the interaction with the additional mechanism for spike and wave discharges alters the bifurcation structure of the main burster.
Collapse
Affiliation(s)
- Maria Luisa Saggio
- Institut de Neurosciences des Systemes INS UMR1106, AMU, INSERM, Marseille, France
| | - Viktor Jirsa
- Institut de Neurosciences des Systemes INS UMR1106, AMU, INSERM, Marseille, France
| |
Collapse
|
7
|
Dallmer-Zerbe I, Jiruska P, Hlinka J. Personalized dynamic network models of the human brain as a future tool for planning and optimizing epilepsy therapy. Epilepsia 2023; 64:2221-2238. [PMID: 37340565 DOI: 10.1111/epi.17690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Epilepsy is a common neurological disorder, with one third of patients not responding to currently available antiepileptic drugs. The proportion of pharmacoresistant epilepsies has remained unchanged for many decades. To cure epilepsy and control seizures requires a paradigm shift in the development of new approaches to epilepsy diagnosis and treatment. Contemporary medicine has benefited from the exponential growth of computational modeling, and the application of network dynamics theory to understanding and treating human brain disorders. In epilepsy, the introduction of these approaches has led to personalized epileptic network modeling that can explore the patient's seizure genesis and predict the functional impact of resection on its individual network's propensity to seize. The application of the dynamic systems approach to neurostimulation therapy of epilepsy allows designing stimulation strategies that consider the patient's seizure dynamics and long-term fluctuations in the stability of their epileptic networks. In this article, we review, in a nontechnical fashion suitable for a broad neuroscientific audience, recent progress in personalized dynamic brain network modeling that is shaping the future approach to the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Isa Dallmer-Zerbe
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
8
|
Lopes MA, Hamandi K, Zhang J, Creaser JL. The role of additive and diffusive coupling on the dynamics of neural populations. Sci Rep 2023; 13:4115. [PMID: 36914685 PMCID: PMC10011566 DOI: 10.1038/s41598-023-30172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Dynamical models consisting of networks of neural masses commonly assume that the interactions between neural populations are via additive or diffusive coupling. When using the additive coupling, a population's activity is affected by the sum of the activities of neighbouring populations. In contrast, when using the diffusive coupling a neural population is affected by the sum of the differences between its activity and the activity of its neighbours. These two coupling functions have been used interchangeably for similar applications. In this study, we show that the choice of coupling can lead to strikingly different brain network dynamics. We focus on a phenomenological model of seizure transitions that has been used both with additive and diffusive coupling in the literature. We consider small networks with two and three nodes, as well as large random and scale-free networks with 64 nodes. We further assess resting-state functional networks inferred from magnetoencephalography (MEG) from people with juvenile myoclonic epilepsy (JME) and healthy controls. To characterize the seizure dynamics on these networks, we use the escape time, the brain network ictogenicity (BNI) and the node ictogenicity (NI), which are measures of the network's global and local ability to generate seizure activity. Our main result is that the level of ictogenicity of a network is strongly dependent on the coupling function. Overall, we show that networks with additive coupling have a higher propensity to generate seizures than those with diffusive coupling. We find that people with JME have higher additive BNI than controls, which is the hypothesized BNI deviation between groups, while the diffusive BNI provides opposite results. Moreover, we find that the nodes that are more likely to drive seizures in the additive coupling case are more likely to prevent seizures in the diffusive coupling case, and that these features correlate to the node's number of connections. Consequently, previous results in the literature involving such models to interrogate functional or structural brain networks could be highly dependent on the choice of coupling. Our results on the MEG functional networks and evidence from the literature suggest that the additive coupling may be a better modeling choice than the diffusive coupling, at least for BNI and NI studies. Thus, we highlight the need to motivate and validate the choice of coupling in future studies involving network models of brain activity.
Collapse
Affiliation(s)
- Marinho A Lopes
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom.
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff, CF14 4XW, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
- Department of Computer Science, Swansea University, Swansea, SA1 8EN, United Kingdom
| | - Jennifer L Creaser
- Department of Mathematics, University of Exeter, Exeter, EX4 4QJ, United Kingdom
| |
Collapse
|
9
|
Hashemi M, Vattikonda AN, Jha J, Sip V, Woodman MM, Bartolomei F, Jirsa VK. Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators. Neural Netw 2023; 163:178-194. [PMID: 37060871 DOI: 10.1016/j.neunet.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Whole-brain modeling of epilepsy combines personalized anatomical data with dynamical models of abnormal activities to generate spatio-temporal seizure patterns as observed in brain imaging data. Such a parametric simulator is equipped with a stochastic generative process, which itself provides the basis for inference and prediction of the local and global brain dynamics affected by disorders. However, the calculation of likelihood function at whole-brain scale is often intractable. Thus, likelihood-free algorithms are required to efficiently estimate the parameters pertaining to the hypothetical areas, ideally including the uncertainty. In this study, we introduce the simulation-based inference for the virtual epileptic patient model (SBI-VEP), enabling us to amortize the approximate posterior of the generative process from a low-dimensional representation of whole-brain epileptic patterns. The state-of-the-art deep learning algorithms for conditional density estimation are used to readily retrieve the statistical relationships between parameters and observations through a sequence of invertible transformations. We show that the SBI-VEP is able to efficiently estimate the posterior distribution of parameters linked to the extent of the epileptogenic and propagation zones from sparse intracranial electroencephalography recordings. The presented Bayesian methodology can deal with non-linear latent dynamics and parameter degeneracy, paving the way for fast and reliable inference on brain disorders from neuroimaging modalities.
Collapse
|
10
|
Lehnertz K, Bröhl T, Wrede RV. Epileptic-network-based prediction and control of seizures in humans. Neurobiol Dis 2023; 181:106098. [PMID: 36997129 DOI: 10.1016/j.nbd.2023.106098] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Epilepsy is now conceptualized as a network disease. The epileptic brain network comprises structurally and functionally connected cortical and subcortical brain regions - spanning lobes and hemispheres -, whose connections and dynamics evolve in time. With this concept, focal and generalized seizures as well as other related pathophysiological phenomena are thought to emerge from, spread via, and be terminated by network vertices and edges that also generate and sustain normal, physiological brain dynamics. Research over the last years has advanced concepts and techniques to identify and characterize the evolving epileptic brain network and its constituents on various spatial and temporal scales. Network-based approaches further our understanding of how seizures emerge from the evolving epileptic brain network, and they provide both novel insights into pre-seizure dynamics and important clues for success or failure of measures for network-based seizure control and prevention. In this review, we summarize the current state of knowledge and address several important challenges that would need to be addressed to move network-based prediction and control of seizures closer to clinical translation.
Collapse
Affiliation(s)
- Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany; Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany.
| | - Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany; Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany
| |
Collapse
|
11
|
Wang HE, Woodman M, Triebkorn P, Lemarechal JD, Jha J, Dollomaja B, Vattikonda AN, Sip V, Medina Villalon S, Hashemi M, Guye M, Makhalova J, Bartolomei F, Jirsa V. Delineating epileptogenic networks using brain imaging data and personalized modeling in drug-resistant epilepsy. Sci Transl Med 2023; 15:eabp8982. [PMID: 36696482 DOI: 10.1126/scitranslmed.abp8982] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Precise estimates of epileptogenic zone networks (EZNs) are crucial for planning intervention strategies to treat drug-resistant focal epilepsy. Here, we present the virtual epileptic patient (VEP), a workflow that uses personalized brain models and machine learning methods to estimate EZNs and to aid surgical strategies. The structural scaffold of the patient-specific whole-brain network model is constructed from anatomical T1 and diffusion-weighted magnetic resonance imaging. Each network node is equipped with a mathematical dynamical model to simulate seizure activity. Bayesian inference methods sample and optimize key parameters of the personalized model using functional stereoelectroencephalography recordings of patients' seizures. These key parameters together with their personalized model determine a given patient's EZN. Personalized models were further used to predict the outcome of surgical intervention using virtual surgeries. We evaluated the VEP workflow retrospectively using 53 patients with drug-resistant focal epilepsy. VEPs reproduced the clinically defined EZNs with a precision of 0.6, where the physical distance between epileptogenic regions identified by VEP and the clinically defined EZNs was small. Compared with the resected brain regions of 25 patients who underwent surgery, VEP showed lower false discovery rates in seizure-free patients (mean, 0.028) than in non-seizure-free patients (mean, 0.407). VEP is now being evaluated in an ongoing clinical trial (EPINOV) with an expected 356 prospective patients with epilepsy.
Collapse
Affiliation(s)
- Huifang E Wang
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Marmaduke Woodman
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Paul Triebkorn
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Jean-Didier Lemarechal
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.,Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Centre MEG-EEG and Experimental Neurosurgery team, Paris F-75013, France
| | - Jayant Jha
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Borana Dollomaja
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Anirudh Nihalani Vattikonda
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Viktor Sip
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Samuel Medina Villalon
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.,APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille 13005, France
| | - Meysam Hashemi
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM, Marseille 13005, France.,APHM, Timone University Hospital, CEMEREM, Marseille 13005, France
| | - Julia Makhalova
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille 13005, France.,Aix-Marseille Université, CNRS, CRMBM, Marseille 13005, France.,APHM, Timone University Hospital, CEMEREM, Marseille 13005, France
| | - Fabrice Bartolomei
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.,APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille 13005, France
| | - Viktor Jirsa
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| |
Collapse
|
12
|
Combining the neural mass model and Hodgkin–Huxley formalism: Neuronal dynamics modelling. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Jha J, Hashemi M, Vattikonda AN, Wang H, Jirsa V. Fully Bayesian estimation of virtual brain parameters with self-tuning Hamiltonian Monte Carlo. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac9037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Virtual brain models are data-driven patient-specific brain models integrating individual brain imaging data with neural mass modeling in a single computational framework, capable of autonomously generating brain activity and its associated brain imaging signals. Along the example of epilepsy, we develop an efficient and accurate Bayesian methodology estimating the parameters linked to the extent of the epileptogenic zone. State-of-the-art advances in Bayesian inference using Hamiltonian Monte Carlo (HMC) algorithms have remained elusive for large-scale differential-equations based models due to their slow convergence. We propose appropriate priors and a novel reparameterization to facilitate efficient exploration of the posterior distribution in terms of computational time and convergence diagnostics. The methodology is illustrated for in-silico dataset and then, applied to infer the personalized model parameters based on the empirical stereotactic electroencephalography (SEEG) recordings of retrospective patients. This improved methodology may pave the way to render HMC methods sufficiently easy and efficient to use, thus applicable in personalized medicine.
Collapse
|
14
|
Moosavi SA, Jirsa VK, Truccolo W. Critical dynamics in the spread of focal epileptic seizures: Network connectivity, neural excitability and phase transitions. PLoS One 2022; 17:e0272902. [PMID: 35998146 PMCID: PMC9397939 DOI: 10.1371/journal.pone.0272902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Focal epileptic seizures can remain localized or, alternatively, spread across brain areas, often resulting in impairment of cognitive function and loss of consciousness. Understanding the factors that promote spread is important for developing better therapeutic approaches. Here, we show that: (1) seizure spread undergoes “critical” phase transitions in models (epileptor-networks) that capture the neural dynamics of spontaneous seizures while incorporating patient-specific brain network connectivity, axonal delays and identified epileptogenic zones (EZs). We define a collective variable for the spreading dynamics as the spread size, i.e. the number of areas or nodes in the network to which a seizure has spread. Global connectivity strength and excitability in the surrounding non-epileptic areas work as phase-transition control parameters for this collective variable. (2) Phase diagrams are predicted by stability analysis of the network dynamics. (3) In addition, the components of the Jacobian’s leading eigenvector, which tend to reflect the connectivity strength and path lengths from the EZ to surrounding areas, predict the temporal order of network-node recruitment into seizure. (4) However, stochastic fluctuations in spread size in a near-criticality region make predictability more challenging. Overall, our findings support the view that within-patient seizure-spread variability can be characterized by phase-transition dynamics under transient variations in network connectivity strength and excitability across brain areas. Furthermore, they point to the potential use and limitations of model-based prediction of seizure spread in closed-loop interventions for seizure control.
Collapse
Affiliation(s)
- S. Amin Moosavi
- Department of Neuroscience, Brown University, Providence, RI, United States of America
| | - Viktor K. Jirsa
- Aix Marseille University, INSERM, INS, Institut de Neurosciences de Système, Marseille, France
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
15
|
Batista Tsukahara VH, de Oliveira Júnior JN, de Oliveira Barth VB, de Oliveira JC, Rosa Cota V, Maciel CD. Data-Driven Network Dynamical Model of Rat Brains During Acute Ictogenesis. Front Neural Circuits 2022; 16:747910. [PMID: 36034337 PMCID: PMC9399918 DOI: 10.3389/fncir.2022.747910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders worldwide. Recent findings suggest that the brain is a complex system composed of a network of neurons, and seizure is considered an emergent property resulting from its interactions. Based on this perspective, network physiology has emerged as a promising approach to explore how brain areas coordinate, synchronize and integrate their dynamics, both under perfect health and critical illness conditions. Therefore, the objective of this paper is to present an application of (Dynamic) Bayesian Networks (DBN) to model Local Field Potentials (LFP) data on rats induced to epileptic seizures based on the number of arcs found using threshold analytics. Results showed that DBN analysis captured the dynamic nature of brain connectivity across ictogenesis and a significant correlation with neurobiology derived from pioneering studies employing techniques of pharmacological manipulation, lesion, and modern optogenetics. The arcs evaluated under the proposed approach achieved consistent results based on previous literature, in addition to demonstrating robustness regarding functional connectivity analysis. Moreover, it provided fascinating and novel insights, such as discontinuity between forelimb clonus and generalized tonic-clonic seizure (GTCS) dynamics. Thus, DBN coupled with threshold analytics may be an excellent tool for investigating brain circuitry and their dynamical interplay, both in homeostasis and dysfunction conditions.
Collapse
Affiliation(s)
- Victor Hugo Batista Tsukahara
- Signal Processing Laboratory, School of Engineering of São Carlos, Department of Electrical Engineering, University of São Paulo, São Carlos, Brazil
| | - Jordão Natal de Oliveira Júnior
- Signal Processing Laboratory, School of Engineering of São Carlos, Department of Electrical Engineering, University of São Paulo, São Carlos, Brazil
| | - Vitor Bruno de Oliveira Barth
- Signal Processing Laboratory, School of Engineering of São Carlos, Department of Electrical Engineering, University of São Paulo, São Carlos, Brazil
| | - Jasiara Carla de Oliveira
- Laboratory of Neuroengineering and Neuroscience, Department of Electrical Engineering, Federal University of São João Del-Rei, São João Del Rei, Brazil
| | - Vinicius Rosa Cota
- Laboratory of Neuroengineering and Neuroscience, Department of Electrical Engineering, Federal University of São João Del-Rei, São João Del Rei, Brazil
| | - Carlos Dias Maciel
- Signal Processing Laboratory, School of Engineering of São Carlos, Department of Electrical Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
16
|
Wang C, Chen S, Huang L, Yu L. Prediction and control of focal seizure spread: Random walk with restart on heterogeneous brain networks. Phys Rev E 2022; 105:064412. [PMID: 35854502 DOI: 10.1103/physreve.105.064412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Whole-brain models offer a promising method of predicting seizure spread, which is critical for successful surgical treatment of focal epilepsy. Existing methods are largely based on structural connectome, which ignores the effects of heterogeneity within the regional excitability of brains. In this study we used a whole-brain model to show that heterogeneity in nodal excitability had a significant impact on seizure propagation in the networks and compromised the prediction accuracy with structural connections. We then addressed this problem with an algorithm based on random walk with restart on graphs. We demonstrated that by establishing a relationship between the restarting probability and the excitability for each node, this algorithm could significantly improve the seizure spread prediction accuracy in heterogeneous networks and was more robust against the extent of heterogeneity. We also strategized surgical seizure control as a process to identify and remove the key nodes (connections) responsible for the early spread of seizures from the focal region. Compared to strategies based on structural connections, virtual surgery with a strategy based on a modified random walk with extended restart generated outcomes with a high success rate while maintaining low damage to the brain by removing fewer anatomical connections. These findings may have potential applications in developing personalized surgery strategies for epilepsy.
Collapse
Affiliation(s)
- Chen Wang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Sida Chen
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Liang Huang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lianchun Yu
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
17
|
Mo J, Zhang J, Hu W, Shao X, Sang L, Zheng Z, Zhang C, Wang Y, Wang X, Liu C, Zhao B, Zhang K. Neuroimaging gradient alterations and epileptogenic prediction in focal cortical dysplasia Ⅲa. J Neural Eng 2022; 19. [PMID: 35405671 DOI: 10.1088/1741-2552/ac6628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/10/2022] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Focal cortical dysplasia Type Ⅲa (FCD Ⅲa) is a highly prevalent temporal lobe epilepsy but the seizure outcomes are not satisfactory after epilepsy surgery. Hence, quantitative neuroimaging, epileptogenic alterations, as well as their values in guiding surgery are worth exploring. METHODS We examined 69 patients with pathologically verified FCD Ⅲa using multimodal neuroimaging and stereoelectroencephalography (SEEG). Among them, 18 received postoperative imaging which showed the extent of surgical resection and 9 underwent SEEG implantation. We also explored neuroimaging gradient alterations along with the distance to the temporal pole. Subsequently, the machine learning regression model was employed to predict whole-brain epileptogenicity. Lastly, the correlation between neuroimaging or epileptogenicity and surgical cavities was assessed. RESULTS FCD Ⅲa displayed neuroimaging gradient alterations on the temporal neocortex, morphology-signal intensity decoupling, low similarity of intra-morphological features and high similarity of intra-signal intensity features. The support vector regression model was successfully applied at the whole-brain level to calculate the continuous epileptogenic value at each vertex (mean-squared error = 13.8 ± 9.8). CONCLUSION Our study investigated the neuroimaging gradient alterations and epileptogenicity of FCD Ⅲa, along with their potential values in guiding suitable resection range and in predicting postoperative seizure outcomes. The conclusions from this study may facilitate an accurate presurgical examination of FCD Ⅲa. However, further investigation including a larger cohort is necessary to confirm the results.
Collapse
Affiliation(s)
- Jiajie Mo
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Jianguo Zhang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Wenhan Hu
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Xiaoqiu Shao
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Lin Sang
- Peking University First Hospital Fengtai Hospital, No. 99 South 4th Fengtai Road, Fengtai District, Beijing, 100070, CHINA
| | - Zhong Zheng
- Peking University First Hospital Fengtai Hospital, No. 99 South 4th Fengtai Road, Fengtai District, Beijing, 100070, CHINA
| | - Chao Zhang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Yao Wang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Xiu Wang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Chang Liu
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| | - Baotian Zhao
- Beijing Tiantan Hospital, , Beijing, 100070, CHINA
| | - Kai Zhang
- Beijing Tiantan Hospital, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, CHINA
| |
Collapse
|
18
|
O'Hara NB, Lee MH, Juhász C, Asano E, Jeong JW. Diffusion tractography predicts propagated high-frequency activity during epileptic spasms. Epilepsia 2022; 63:1787-1798. [PMID: 35388455 DOI: 10.1111/epi.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Determine the structural networks that constrain propagation of ictal oscillations during epileptic spasm events, and compare observed propagation patterns across patients with successful or unsuccessful surgical outcomes. METHODS Subdural electrode recordings of 18 young patients (age 1-11 years) were analyzed during epileptic spasm events to determine ictal networks and quantify the amplitude and onset time of ictal oscillations across the cortical surface. Corresponding structural networks were generated with diffusion MRI tractography by seeding the cortical region associated with the earliest average oscillation onset time, and white matter pathways connecting active electrode regions within the ictal network were isolated. Properties of this structural network were used to predict oscillation onset times and amplitudes, and this relationship was compared across patients who did and did not achieve seizure freedom following resective surgery. RESULTS Onset propagation patterns were relatively consistent across each patients' spasm events. An electrode's average ictal oscillation onset latency was most significantly associated with the length of direct corticocortical tracts connecting to the area with the earliest average oscillation onset (p < .001, model R2 = 0.54). Moreover, patients demonstrating a faster propagation of ictal oscillation signals within the corticocortical network were more likely to have seizure recurrence following resective surgery (p = .039). Ictal oscillation amplitude was also associated with connecting tractography length and weighted fractional anisotropy (FA) measures along these pathways (p = .002/.030, model R2 = 0.31/0.25). Characteristics of analogous corticothalamic pathways did not show significant associations with ictal oscillation onset latency or amplitude. SIGNIFICANCE Spatiotemporal propagation patterns of high-frequency activity in epileptic spasms align with length and FA measures from onset-originating corticocortical pathways. Considering data in this individualized framework may help inform surgical decision making and expectations of surgical outcomes.
Collapse
Affiliation(s)
- Nolan B O'Hara
- Wayne State University (WSU) Translational Neuroscience Program.,Children's Hospital of Michigan Translational Imaging Laboratory
| | - Min-Hee Lee
- Children's Hospital of Michigan Translational Imaging Laboratory
| | - Csaba Juhász
- Wayne State University (WSU) Translational Neuroscience Program.,Children's Hospital of Michigan Translational Imaging Laboratory.,WSU Department of Pediatrics.,WSU Department of Neurology
| | - Eishi Asano
- Wayne State University (WSU) Translational Neuroscience Program.,Children's Hospital of Michigan Translational Imaging Laboratory.,WSU Department of Pediatrics.,WSU Department of Neurology
| | - Jeong-Won Jeong
- Wayne State University (WSU) Translational Neuroscience Program.,Children's Hospital of Michigan Translational Imaging Laboratory.,WSU Department of Pediatrics.,WSU Department of Neurology
| |
Collapse
|
19
|
Millán AP, van Straaten ECW, Stam CJ, Nissen IA, Idema S, Baayen JC, Van Mieghem P, Hillebrand A. Epidemic models characterize seizure propagation and the effects of epilepsy surgery in individualized brain networks based on MEG and invasive EEG recordings. Sci Rep 2022; 12:4086. [PMID: 35260657 PMCID: PMC8904850 DOI: 10.1038/s41598-022-07730-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/24/2022] [Indexed: 11/08/2022] Open
Abstract
Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized computational model based on MEG brain networks to explore seizure propagation and the efficacy of different virtual resections. Eventually, the goal is to obtain individualized models to optimize resection strategy and outcome. We have modelled seizure propagation as an epidemic process using the susceptible-infected (SI) model on individual brain networks derived from presurgical MEG. We included 10 patients who had received epilepsy surgery and for whom the surgery outcome at least one year after surgery was known. The model parameters were tuned in in order to reproduce the patient-specific seizure propagation patterns as recorded with invasive EEG. We defined a personalized search algorithm that combined structural and dynamical information to find resections that maximally decreased seizure propagation for a given resection size. The optimal resection for each patient was defined as the smallest resection leading to at least a 90% reduction in seizure propagation. The individualized model reproduced the basic aspects of seizure propagation for 9 out of 10 patients when using the resection area as the origin of epidemic spreading, and for 10 out of 10 patients with an alternative definition of the seed region. We found that, for 7 patients, the optimal resection was smaller than the resection area, and for 4 patients we also found that a resection smaller than the resection area could lead to a 100% decrease in propagation. Moreover, for two cases these alternative resections included nodes outside the resection area. Epidemic spreading models fitted with patient specific data can capture the fundamental aspects of clinically observed seizure propagation, and can be used to test virtual resections in silico. Combined with optimization algorithms, smaller or alternative resection strategies, that are individually targeted for each patient, can be determined with the ultimate goal to improve surgery outcome. MEG-based networks can provide a good approximation of structural connectivity for computational models of seizure propagation, and facilitate their clinical use.
Collapse
Affiliation(s)
- Ana P Millán
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Elisabeth C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ida A Nissen
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Amunts K, DeFelipe J, Pennartz C, Destexhe A, Migliore M, Ryvlin P, Furber S, Knoll A, Bitsch L, Bjaalie JG, Ioannidis Y, Lippert T, Sanchez-Vives MV, Goebel R, Jirsa V. Linking Brain Structure, Activity, and Cognitive Function through Computation. eNeuro 2022; 9:ENEURO.0316-21.2022. [PMID: 35217544 PMCID: PMC8925650 DOI: 10.1523/eneuro.0316-21.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/19/2023] Open
Abstract
Understanding the human brain is a "Grand Challenge" for 21st century research. Computational approaches enable large and complex datasets to be addressed efficiently, supported by artificial neural networks, modeling and simulation. Dynamic generative multiscale models, which enable the investigation of causation across scales and are guided by principles and theories of brain function, are instrumental for linking brain structure and function. An example of a resource enabling such an integrated approach to neuroscientific discovery is the BigBrain, which spatially anchors tissue models and data across different scales and ensures that multiscale models are supported by the data, making the bridge to both basic neuroscience and medicine. Research at the intersection of neuroscience, computing and robotics has the potential to advance neuro-inspired technologies by taking advantage of a growing body of insights into perception, plasticity and learning. To render data, tools and methods, theories, basic principles and concepts interoperable, the Human Brain Project (HBP) has launched EBRAINS, a digital neuroscience research infrastructure, which brings together a transdisciplinary community of researchers united by the quest to understand the brain, with fascinating insights and perspectives for societal benefits.
Collapse
Affiliation(s)
- Katrin Amunts
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, Jülich 52425, Germany
- C. & O. Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28002, Spain
| | - Cyriel Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Alain Destexhe
- Centre National de la Recherche Scientifique, Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif sur Yvette 91400, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne CH-1011, Switzerland
| | - Steve Furber
- Department of Computer Science, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alois Knoll
- Department of Informatics, Technical University of Munich, Garching 385748, Germany
| | - Lise Bitsch
- The Danish Board of Technology Foundation, Copenhagen, 2650 Hvidovre, Denmark
| | - Jan G Bjaalie
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yannis Ioannidis
- ATHENA Research & Innovation Center, Athena 12125, Greece
- Department of Informatics & Telecom, Nat'l and Kapodistrian University of Athens, 157 84 Athens, Greece
| | - Thomas Lippert
- Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Research Centre Jülich, Jülich 52425, Germany
| | - Maria V Sanchez-Vives
- ICREA and Systems Neuroscience, Institute of Biomedical Investigations August Pi i Sunyer, Barcelona 08036, Spain
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| | - Viktor Jirsa
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| |
Collapse
|
21
|
An S, Fousek J, Kiss ZHT, Cortese F, van der Wijk G, McAusland LB, Ramasubbu R, Jirsa VK, Protzner AB. High-resolution Virtual Brain Modeling Personalizes Deep Brain Stimulation for Treatment-Resistant Depression: Spatiotemporal Response Characteristics Following Stimulation of Neural Fiber Pathways. Neuroimage 2021; 249:118848. [PMID: 34954330 DOI: 10.1016/j.neuroimage.2021.118848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Over the past 15 years, deep brain stimulation (DBS) has been actively investigated as a groundbreaking therapy for patients with treatment-resistant depression (TRD); nevertheless, outcomes have varied from patient to patient, with an average response rate of ∼50%. The engagement of specific fiber tracts at the stimulation site has been hypothesized to be an important factor in determining outcomes, however, the resulting individual network effects at the whole-brain scale remain largely unknown. Here we provide a computational framework that can explore each individual's brain response characteristics elicited by selective stimulation of fiber tracts. We use a novel personalized in-silico approach, the Virtual Big Brain, which makes use of high-resolution virtual brain models at a mm-scale and explicitly reconstructs more than 100 000 fiber tracts for each individual. Each fiber tract is active and can be selectively stimulated. Simulation results demonstrate distinct stimulus-induced event-related potentials as a function of stimulation location, parametrized by the contact positions of the electrodes implanted in each patient, even though validation against empirical patient data reveals some limitations (i.e., the need for individual parameter adjustment, and differential accuracy across stimulation locations). This study provides evidence for the capacity of personalized high-resolution virtual brain models to investigate individual network effects in DBS for patients with TRD and opens up novel avenues in the personalized optimization of brain stimulation.
Collapse
Affiliation(s)
- Sora An
- Department of Communication Disorders, Ewha Womans University, 03760, Seoul, Republic of Korea.
| | - Jan Fousek
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005, Marseille, France
| | - Zelma H T Kiss
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Mathison Centre for Mental Health, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Department of Clinical Neurosciences and Psychiatry, Cumming School of Medicine, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Filomeno Cortese
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Seaman Family MR Centre, Foothills Medical Centre, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Gwen van der Wijk
- Department of Psychology, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Laina Beth McAusland
- Department of Clinical Neurosciences and Psychiatry, Cumming School of Medicine, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Rajamannar Ramasubbu
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Mathison Centre for Mental Health, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Department of Clinical Neurosciences and Psychiatry, Cumming School of Medicine, University of Calgary, T2N 1N4, Calgary, Alberta, Canada
| | - Viktor K Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005, Marseille, France.
| | - Andrea B Protzner
- Hotchkiss Brain Institute, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Mathison Centre for Mental Health, University of Calgary, T2N 1N4, Calgary, Alberta, Canada; Department of Psychology, University of Calgary, T2N 1N4, Calgary, Alberta, Canada.
| |
Collapse
|
22
|
Vattikonda AN, Hashemi M, Sip V, Woodman MM, Bartolomei F, Jirsa VK. Identifying spatio-temporal seizure propagation patterns in epilepsy using Bayesian inference. Commun Biol 2021; 4:1244. [PMID: 34725441 PMCID: PMC8560929 DOI: 10.1038/s42003-021-02751-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/04/2021] [Indexed: 01/24/2023] Open
Abstract
Focal drug resistant epilepsy is a neurological disorder characterized by seizures caused by abnormal activity originating in one or more regions together called as epileptogenic zone. Treatment for such patients involves surgical resection of affected regions. Epileptogenic zone is typically identified using stereotactic EEG recordings from the electrodes implanted into the patient's brain. Identifying the epileptogenic zone is a challenging problem due to the spatial sparsity of electrode implantation. We propose a probabilistic hierarchical model of seizure propagation patterns, based on a phenomenological model of seizure dynamics called Epileptor. Using Bayesian inference, the Epileptor model is optimized to build patient specific virtual models that best fit to the log power of intracranial recordings. First, accuracy of the model predictions and identifiability of the model are investigated using synthetic data. Then, model predictions are evaluated against a retrospective patient cohort of 25 patients with varying surgical outcomes. In the patients who are seizure free after surgery, model predictions showed good match with the clinical hypothesis. In patients where surgery failed to achieve seizure freedom model predictions showed a strong mismatch. Our results demonstrate that proposed probabilistic model could be a valuable tool to aid the clinicians in identifying the seizure focus.
Collapse
Affiliation(s)
- Anirudh N Vattikonda
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Meysam Hashemi
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Viktor Sip
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Marmaduke M Woodman
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
- Epileptology Department and Clinical Neurophysiology Department, Assistance publique des Hopitaux de Marseille, Marseille, France
| | - Viktor K Jirsa
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| |
Collapse
|
23
|
Computational modeling of seizure spread on a cortical surface. J Comput Neurosci 2021; 50:17-31. [PMID: 34686937 PMCID: PMC8818012 DOI: 10.1007/s10827-021-00802-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/16/2021] [Accepted: 09/24/2021] [Indexed: 10/26/2022]
Abstract
In the field of computational epilepsy, neural field models helped to understand some large-scale features of seizure dynamics. These insights however remain on general levels, without translation to the clinical settings via personalization of the model with the patient-specific structure. In particular, a link was suggested between epileptic seizures spreading across the cortical surface and the so-called theta-alpha activity (TAA) pattern seen on intracranial electrographic signals, yet this link was not demonstrated on a patient-specific level. Here we present a single patient computational study linking the seizure spreading across the patient-specific cortical surface with a specific instance of the TAA pattern recorded in the patient. Using the realistic geometry of the cortical surface we perform the simulations of seizure dynamics in The Virtual Brain platform, and we show that the simulated electrographic signals qualitatively agree with the recorded signals. Furthermore, the comparison with the simulations performed on surrogate surfaces reveals that the best quantitative fit is obtained for the real surface. The work illustrates how the patient-specific cortical geometry can be utilized in The Virtual Brain for personalized model building, and the importance of such approach.
Collapse
|
24
|
Nissen IA, Millán AP, Stam CJ, van Straaten ECW, Douw L, Pouwels PJW, Idema S, Baayen JC, Velis D, Van Mieghem P, Hillebrand A. Optimization of epilepsy surgery through virtual resections on individual structural brain networks. Sci Rep 2021; 11:19025. [PMID: 34561483 PMCID: PMC8463605 DOI: 10.1038/s41598-021-98046-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
The success of epilepsy surgery in patients with refractory epilepsy depends upon correct identification of the epileptogenic zone (EZ) and an optimal choice of the resection area. In this study we developed individualized computational models based upon structural brain networks to explore the impact of different virtual resections on the propagation of seizures. The propagation of seizures was modelled as an epidemic process [susceptible-infected-recovered (SIR) model] on individual structural networks derived from presurgical diffusion tensor imaging in 19 patients. The candidate connections for the virtual resection were all connections from the clinically hypothesized EZ, from which the seizures were modelled to start, to other brain areas. As a computationally feasible surrogate for the SIR model, we also removed the connections that maximally reduced the eigenvector centrality (EC) (large values indicate network hubs) of the hypothesized EZ, with a large reduction meaning a large effect. The optimal combination of connections to be removed for a maximal effect were found using simulated annealing. For comparison, the same number of connections were removed randomly, or based on measures that quantify the importance of a node or connection within the network. We found that 90% of the effect (defined as reduction of EC of the hypothesized EZ) could already be obtained by removing substantially less than 90% of the connections. Thus, a smaller, optimized, virtual resection achieved almost the same effect as the actual surgery yet at a considerably smaller cost, sparing on average 27.49% (standard deviation: 4.65%) of the connections. Furthermore, the maximally effective connections linked the hypothesized EZ to hubs. Finally, the optimized resection was equally or more effective than removal based on structural network characteristics both regarding reducing the EC of the hypothesized EZ and seizure spreading. The approach of using reduced EC as a surrogate for simulating seizure propagation can suggest more restrictive resection strategies, whilst obtaining an almost optimal effect on reducing seizure propagation, by taking into account the unique topology of individual structural brain networks of patients.
Collapse
Affiliation(s)
- Ida A Nissen
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ana P Millán
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Elisabeth C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Linda Douw
- Department of Anatomy and Neuroscience, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Demetrios Velis
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Bosl WJ, Leviton A, Loddenkemper T. Prediction of Seizure Recurrence. A Note of Caution. Front Neurol 2021; 12:675728. [PMID: 34054713 PMCID: PMC8155381 DOI: 10.3389/fneur.2021.675728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Great strides have been made recently in documenting that machine-learning programs can predict seizure occurrence in people who have epilepsy. Along with this progress have come claims that appear to us to be a bit premature. We anticipate that many people will benefit from seizure prediction. We also doubt that all will benefit. Although machine learning is a useful tool for aiding discovery, we believe that the greatest progress will come from deeper understanding of seizures, epilepsy, and the EEG features that enable seizure prediction. In this essay, we lay out reasons for optimism and skepticism.
Collapse
Affiliation(s)
- William J Bosl
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Health Informatics Program, University of San Francisco, San Francisco, CA, United States
| | - Alan Leviton
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Tobias Loddenkemper
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|