1
|
Chae SJ, Shin S, Lee K, Lee S, Kim JK. From homogeneity to heterogeneity: Refining stochastic simulations of gene regulation. Comput Struct Biotechnol J 2025; 27:411-422. [PMID: 39906159 PMCID: PMC11791169 DOI: 10.1016/j.csbj.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 02/06/2025] Open
Abstract
Cellular processes are intricately controlled through gene regulation, which is significantly influenced by intrinsic noise due to the small number of molecules involved. The Gillespie algorithm, a widely used stochastic simulation method, is pervasively employed to model these systems. However, this algorithm typically assumes that DNA is homogeneously distributed throughout the nucleus, which is not realistic. In this study, we evaluated whether stochastic simulations based on the assumption of spatial homogeneity can accurately capture the dynamics of gene regulation. Our findings indicate that when transcription factors diffuse slowly, these simulations fail to accurately capture gene expression, highlighting the necessity to account for spatial heterogeneity. However, incorporating spatial heterogeneity considerably increases computational time. To address this, we explored various stochastic quasi-steady-state approximations (QSSAs) that simplify the model and reduce simulation time. While both the stochastic total quasi-steady state approximation (stQSSA) and the stochastic low-state quasi-steady-state approximation (slQSSA) reduced simulation time, only the slQSSA provided an accurate model reduction. Our study underscores the importance of utilizing appropriate methods for efficient and accurate stochastic simulations of gene regulatory dynamics, especially when incorporating spatial heterogeneity.
Collapse
Affiliation(s)
- Seok Joo Chae
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea
- Biomedical Mathematics group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Department of Bioengineering, Rice University, Houston, 77005, TX, United States of America
| | - Seolah Shin
- Biomedical Mathematics group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Department of Applied Mathematics, Korea University, Seoul, 02841, Republic of Korea
| | - Kangmin Lee
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea
- Biomedical Mathematics group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Seunggyu Lee
- Biomedical Mathematics group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Department of Applied Mathematics, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, KAIST, Daejeon, 34141, Republic of Korea
- Biomedical Mathematics group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Iwamoto K, Matsuoka S, Ueda M. Excitable Ras dynamics-based screens reveal RasGEFX is required for macropinocytosis and random cell migration. Nat Commun 2025; 16:117. [PMID: 39746985 PMCID: PMC11696275 DOI: 10.1038/s41467-024-55389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/08/2024] [Indexed: 01/04/2025] Open
Abstract
Excitable systems of eukaryotic chemotaxis can generate asymmetric signals of Ras-GTP-enriched domains spontaneously to drive random cell migration without guidance cues. However, the molecules responsible for the spontaneous signal generation remain elusive. Here, we characterized RasGEFs encoded in Dictyostelium discoideum by live-cell imaging of the spatiotemporal dynamics of Ras-GTP and hierarchical clustering, finding that RasGEFX is primarily required for the spontaneous generation of Ras-GTP-enriched domains and is essential for random migration in combination with RasGEFB/M/U in starved cells, and they are dispensable for chemotaxis to chemoattractant cAMP. RasGEFX and RasGEFB that co-localize with Ras-GTP regulate the temporal periods and spatial sizes of the oscillatory Ras-GTP waves propagating along the membrane, respectively, and thus control the protrusions of motile cells differently, while RasGEFU and RasGEFM regulate adhesion and migration speed, respectively. Remarkably, RasGEFX is also important for Ras/PIP3-driven macropinocytosis in proliferating cells, but RasGEFB/M/U are not. These findings illustrate a specific and coordinated control of the cytoskeletal dynamics by multiple RasGEFs for spontaneous motility and macropinocytosis.
Collapse
Affiliation(s)
- Koji Iwamoto
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satomi Matsuoka
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- PRESTO, JST, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. Nat Commun 2023; 14:7909. [PMID: 38036511 PMCID: PMC10689845 DOI: 10.1038/s41467-023-43615-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The plasma membrane is widely regarded as the hub of the numerous signal transduction activities. Yet, the fundamental biophysical mechanisms that spatiotemporally compartmentalize different classes of membrane proteins remain unclear. Using multimodal live-cell imaging, here we first show that several lipid-anchored membrane proteins are consistently depleted from the membrane regions where the Ras/PI3K/Akt/F-actin network is activated. The dynamic polarization of these proteins does not depend upon the F-actin-based cytoskeletal structures, recurring shuttling between membrane and cytosol, or directed vesicular trafficking. Photoconversion microscopy and single-molecule measurements demonstrate that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane which enable their selective segregation. When these diffusion coefficients are incorporated into an excitable network-based stochastic reaction-diffusion model, simulations reveal that the altered affinity mediated selective partitioning is sufficient to drive familiar propagating wave patterns. Furthermore, normally uniform integral and lipid-anchored membrane proteins partition successfully when membrane domain-specific peptides are optogenetically recruited to them. We propose "dynamic partitioning" as a new mechanism that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins during various physiological processes where membrane polarizes.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522496. [PMID: 36712016 PMCID: PMC9881856 DOI: 10.1101/2023.01.03.522496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The plasma membrane is widely regarded as the hub of the signal transduction network activities that drives numerous physiological responses, including cell polarity and migration. Yet, the symmetry breaking process in the membrane, that leads to dynamic compartmentalization of different proteins, remains poorly understood. Using multimodal live-cell imaging, here we first show that multiple endogenous and synthetic lipid-anchored proteins, despite maintaining stable tight association with the inner leaflet of the plasma membrane, were unexpectedly depleted from the membrane domains where the signaling network was spontaneously activated such as in the new protrusions as well as within the propagating ventral waves. Although their asymmetric patterns resembled those of standard peripheral "back" proteins such as PTEN, unlike the latter, these lipidated proteins did not dissociate from the membrane upon global receptor activation. Our experiments not only discounted the possibility of recurrent reversible translocation from membrane to cytosol as it occurs for weakly bound peripheral membrane proteins, but also ruled out the necessity of directed vesicular trafficking and cytoskeletal supramolecular structure-based restrictions in driving these dynamic symmetry breaking events. Selective photoconversion-based protein tracking assays suggested that these asymmetric patterns instead originate from the inherent ability of these membrane proteins to "dynamically partition" into distinct domains within the plane of the membrane. Consistently, single-molecule measurements showed that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane. When these profiles were incorporated into an excitable network-based stochastic reaction-diffusion model of the system, simulations revealed that our proposed "dynamic partitioning" mechanism is sufficient to give rise to familiar asymmetric propagating wave patterns. Moreover, we demonstrated that normally uniform integral and lipid-anchored membrane proteins in Dictyostelium and mammalian neutrophil cells can be induced to partition spatiotemporally to form polarized patterns, by optogenetically recruiting membrane domain-specific peptides to these proteins. Together, our results indicate "dynamic partitioning" as a new mechanism of plasma membrane organization, that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins in different physiological processes.
Collapse
|
5
|
Banerjee T, Biswas D, Pal DS, Miao Y, Iglesias PA, Devreotes PN. Spatiotemporal dynamics of membrane surface charge regulates cell polarity and migration. Nat Cell Biol 2022; 24:1499-1515. [PMID: 36202973 PMCID: PMC10029748 DOI: 10.1038/s41556-022-00997-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/18/2022] [Indexed: 12/12/2022]
Abstract
During cell migration and polarization, numerous signal transduction and cytoskeletal components self-organize to generate localized protrusions. Although biochemical and genetic analyses have delineated many specific interactions, how the activation and localization of so many different molecules are spatiotemporally orchestrated at the subcellular level has remained unclear. Here we show that the regulation of negative surface charge on the inner leaflet of the plasma membrane plays an integrative role in the molecular interactions. Surface charge, or zeta potential, is transiently lowered at new protrusions and within cortical waves of Ras/PI3K/TORC2/F-actin network activation. Rapid alterations of inner leaflet anionic phospholipids-such as PI(4,5)P2, PI(3,4)P2, phosphatidylserine and phosphatidic acid-collectively contribute to the surface charge changes. Abruptly reducing the surface charge by recruiting positively charged optogenetic actuators was sufficient to trigger the entire biochemical network, initiate de novo protrusions and abrogate pre-existing polarity. These effects were blocked by genetic or pharmacological inhibition of key signalling components such as AKT and PI3K/TORC2. Conversely, increasing the negative surface charge deactivated the network and locally suppressed chemoattractant-induced protrusions or subverted EGF-induced ERK activation. Computational simulations involving excitable biochemical networks demonstrated that slight changes in feedback loops, induced by recruitment of the charged actuators, could lead to outsized effects on system activation. We propose that key signalling network components act on, and are in turn acted upon, by surface charge, closing feedback loops, which bring about the global-scale molecular self-organization required for spontaneous protrusion formation, cell migration and polarity establishment.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|