1
|
Manaranche J, Laurent M, Tressieres R, Nguyen M, Salim M, Ouji M, Reyser T, Egwu CO, Robert A, Augereau JM, Benoit-Vical F, Paloque L. In vitro evaluation of ganaplacide/lumefantrine combination against Plasmodium falciparum in a context of artemisinin resistance. J Antimicrob Chemother 2024; 79:2877-2886. [PMID: 39206510 PMCID: PMC11531816 DOI: 10.1093/jac/dkae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Ganaplacide, also known as KAF156, is among the new antimalarial drug candidates that have successfully reached Phase III clinical trials, and is proposed in combination with lumefantrine. This combination could replace the current front-line artemisinin-based combination therapies (ACTs) in case of Plasmodium falciparum resistance to both artemisinins and partner drugs. Indeed, the African continent, where the malaria burden is the highest, is currently experiencing worrying multiple emergences and spread of artemisinin resistance, which urges for the exploration of the antiparasitic properties of KAF156 in this context. OBJECTIVES AND METHODS The objectives of this work were firstly to evaluate the risk of cross-resistance between artemisinins and KAF156 alone, and in combination with lumefantrine, using a panel of artemisinin-resistant strains carrying different pfk13 mutations and markers of other antiplasmodial drug resistances; secondly to explore in vitro the relevance of combining KAF156 and lumefantrine with artemisinins, based on the model of triple ACTs. RESULTS Our results highlighted that KAF156 activity was not impaired by mutations in pfk13, pfcrt, pfmdr1, pfmdr2, pfdhps and pfdhfr genes or by pfmdr1 amplification. Moreover, we demonstrated that KAF156 alone and in combination with lumefantrine was active against artemisinin-resistant parasites, including when they are quiescent. CONCLUSIONS All these in vitro results evidence that multi-drug resistant parasites currently in circulation in the field might not affect KAF156 efficacy, and are encouraging signs for KAF156 use in a triple ACT to preserve the use of artemisinins for as long as possible.
Collapse
Affiliation(s)
- Jeanne Manaranche
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Marion Laurent
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Roxane Tressieres
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Michel Nguyen
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Maryam Salim
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Manel Ouji
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Chinedu O Egwu
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Anne Robert
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
2
|
Zupko RJ, Nguyen TD, Ngabonziza JCS, Kabera M, Li H, Tran TNA, Tran KT, Uwimana A, Boni MF. Modeling policy interventions for slowing the spread of artemisinin-resistant pfkelch R561H mutations in Rwanda. Nat Med 2023; 29:2775-2784. [PMID: 37735560 PMCID: PMC10667088 DOI: 10.1038/s41591-023-02551-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/18/2023] [Indexed: 09/23/2023]
Abstract
Artemisinin combination therapies (ACTs) are highly effective at treating uncomplicated Plasmodium falciparum malaria, but the emergence of the new pfkelch13 R561H mutation in Rwanda, associated with delayed parasite clearance, suggests that interventions are needed to slow its spread. Using a Rwanda-specific spatial calibration of an individual-based malaria model, we evaluate 26 strategies aimed at minimizing treatment failures and delaying the spread of R561H after 3, 5 and 10 years. Lengthening ACT courses and deploying multiple first-line therapies (MFTs) reduced treatment failures after 5 years when compared to the current approach of a 3-d course of artemether-lumefantrine. The best among these options (an MFT policy) resulted in median treatment failure counts that were 49% lower and a median R561H allele frequency that was 0.15 lower than under baseline. New approaches to resistance management, such as triple ACTs or sequential courses of two different ACTs, were projected to have a larger impact than longer ACT courses or MFT; these were associated with median treatment failure counts in 5 years that were 81-92% lower than the current approach. A policy response to currently circulating artemisinin-resistant genotypes in Africa is urgently needed to prevent a population-wide rise in treatment failures.
Collapse
Affiliation(s)
- Robert J Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - J Claude S Ngabonziza
- Research, Innovation and Data Science Division, Rwanda Biomedical Center (RBC), Kigali, Rwanda
- Department of Clinical Biology, University of Rwanda, Kigali, Rwanda
| | - Michee Kabera
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | - Haojun Li
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Kien Trung Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda
- Louvain Drug Research Institute, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Ethical considerations in deploying triple artemisinin-based combination therapies for malaria: An analysis of stakeholders’ perspectives in Burkina Faso and Nigeria. PLoS One 2022; 17:e0273249. [PMID: 36083995 PMCID: PMC9462557 DOI: 10.1371/journal.pone.0273249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Artemisinin-based combination therapies (ACTs) are the recommended treatment for uncomplicated Plasmodium falciparum malaria in all malaria endemic countries. Artemisinin resistance, partner drug resistance, and subsequent ACT failure are widespread in Southeast Asia. The more recent independent emergence of artemisinin resistance in Africa is alarming. In response, triple artemisinin-based combination therapies (TACTs) are being developed to mitigate the risks associated with increasing drug resistance. Since ACTs are still effective in Africa, where malaria is mainly a paediatric disease, the potential deployment of TACTs raises important ethical questions. This paper presents an analysis of stakeholders’ perspectives regarding key ethical considerations to be considered in the deployment of TACTs in Africa provided they are found to be safe, well-tolerated and effective for the treatment of uncomplicated malaria. Methods We conducted a qualitative study in Burkina Faso and Nigeria assessing stakeholders’ (policy makers, suppliers and end-users) perspectives on ethical issues regarding the potential future deployment of TACTs through 68 in-depth interviews and 11 focus group discussions. Findings Some respondents suggested that there should be evidence of local artemisinin resistance before they consider deploying TACTs, while others suggested that TACTs should be deployed to protect the efficacy of current ACTs. Respondents suggested that additional side effects of TACTs compared to ACTs should be minimal and the cost of TACTs to end-users should not be higher than the cost of current ACTs. There was some disagreement among respondents regarding whether patients should have a choice of treatment options between ACTs and TACTs or only have TACTs available, while ACTs are still effective. The study also suggests that community, public and stakeholder engagement activities are essential to support the introduction and effective uptake of TACTs. Conclusion Addressing ethical issues regarding TACTs and engaging early with stakeholders will be important for their potential deployment in Africa.
Collapse
|
4
|
de Haan F, Boon WPC, Amaratunga C, Dondorp AM. Expert perspectives on the introduction of Triple Artemisinin-based Combination Therapies (TACTs) in Southeast Asia: a Delphi study. BMC Public Health 2022; 22:864. [PMID: 35490212 PMCID: PMC9055751 DOI: 10.1186/s12889-022-13212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triple Artemisinin-based Combination Therapies (TACTs) are being developed as a response to artemisinin and partner drug resistance in Southeast Asia. However, the desirability, timing and practical feasibility of introducing TACTs in Southeast Asia is subject to debate. This study systematically assesses perspectives of malaria experts towards the introduction of TACTs as first-line treatment for uncomplicated falciparum malaria in Southeast Asia. METHODS A two-round Delphi study was conducted. In the first round, 53 malaria experts answered open-ended questions on what they consider the most important advantages, disadvantages, and implementation barriers for introducing TACTs in Southeast Asia. In the second round, the expert panel rated the relevance of each statement on a 5-point Likert scale. RESULTS Malaria experts identified 15 advantages, 15 disadvantages and 13 implementation barriers for introducing TACTs in Southeast Asia in the first round of data collection. In the second round, consensus was reached on 13 advantages (8 perceived as relevant, 5 as not-relevant), 12 disadvantages (10 relevant, 2 not-relevant), and 13 implementation barriers (all relevant). Advantages attributed highest relevance related to the clinical and epidemiological rationale of introducing TACTs. Disadvantages attributed highest relevance related to increased side-effects, unavailability of fixed-dose TACTs, and potential cost increases. Implementation barriers attributed highest relevance related to obtaining timely regulatory approval, timely availability of fixed-dose TACTs, and generating global policy support for introducing TACTs. CONCLUSIONS The study provides a structured oversight of malaria experts' perceptions on the major advantages, disadvantages and implementation challenges for introducing TACTs in Southeast Asia, over current practices of rotating ACTs when treatment failure is observed. The findings can benefit strategic decision making in the battle against drug-resistant malaria.
Collapse
Affiliation(s)
- Freek de Haan
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3484 CB, Utrecht, the Netherlands.
| | - Wouter P C Boon
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3484 CB, Utrecht, the Netherlands
| | - Chanaki Amaratunga
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi DistrictBangkok, 10400, Thailand
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi DistrictBangkok, 10400, Thailand
| |
Collapse
|
5
|
Small-Saunders JL, Hagenah LM, Wicht KJ, Dhingra SK, Deni I, Kim J, Vendome J, Gil-Iturbe E, Roepe PD, Mehta M, Mancia F, Quick M, Eppstein MJ, Fidock DA. Evidence for the early emergence of piperaquine-resistant Plasmodium falciparum malaria and modeling strategies to mitigate resistance. PLoS Pathog 2022; 18:e1010278. [PMID: 35130315 PMCID: PMC8853508 DOI: 10.1371/journal.ppat.1010278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/17/2022] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Multidrug-resistant Plasmodium falciparum parasites have emerged in Cambodia and neighboring countries in Southeast Asia, compromising the efficacy of first-line antimalarial combinations. Dihydroartemisinin + piperaquine (PPQ) treatment failure rates have risen to as high as 50% in some areas in this region. For PPQ, resistance is driven primarily by a series of mutant alleles of the P. falciparum chloroquine resistance transporter (PfCRT). PPQ resistance was reported in China three decades earlier, but the molecular driver remained unknown. Herein, we identify a PPQ-resistant pfcrt allele (China C) from Yunnan Province, China, whose genotypic lineage is distinct from the PPQ-resistant pfcrt alleles currently observed in Cambodia. Combining gene editing and competitive growth assays, we report that PfCRT China C confers moderate PPQ resistance while re-sensitizing parasites to chloroquine (CQ) and incurring a fitness cost that manifests as a reduced rate of parasite growth. PPQ transport assays using purified PfCRT isoforms, combined with molecular dynamics simulations, highlight differences in drug transport kinetics and in this transporter’s central cavity conformation between China C and the current Southeast Asian PPQ-resistant isoforms. We also report a novel computational model that incorporates empirically determined fitness landscapes at varying drug concentrations, combined with antimalarial susceptibility profiles, mutation rates, and drug pharmacokinetics. Our simulations with PPQ-resistant or -sensitive parasite lines predict that a three-day regimen of PPQ combined with CQ can effectively clear infections and prevent the evolution of PfCRT variants. This work suggests that including CQ in combination therapies could be effective in suppressing the evolution of PfCRT-mediated multidrug resistance in regions where PPQ has lost efficacy. The recent emergence of Plasmodium falciparum parasite resistance to the antimalarial drug piperaquine (PPQ) has contributed to frequent treatment failures across Southeast Asia, originating in Cambodia. Here, we show that earlier reports of PPQ resistance in Yunnan Province, China could be explained by the unique China C variant of the P. falciparum chloroquine resistance transporter PfCRT. Gene-edited parasites show a loss of fitness and parasite resensitization to the chemically related former first-line antimalarial chloroquine, while acquiring PPQ resistance via drug efflux. Molecular features of drug resistance were examined using biochemical assays to measure mutant PfCRT-mediated drug transport and molecular dynamics simulations with the recently solved PfCRT structure to assess changes in the central drug-binding cavity. We also describe a new computational model that incorporates parasite mutation rates, fitness costs, antimalarial susceptibilities, and drug pharmacological profiles to predict how infections with parasite strains expressing distinct PfCRT variants can evolve and be selected in response to different drug pressures and regimens. Simulations predict that a three-day regimen of PPQ plus chloroquine would be fully effective at preventing recrudescence of drug-resistant infections.
Collapse
Affiliation(s)
- Jennifer L Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Jeremie Vendome
- Schrödinger, Inc., New York, New York, United States of America
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Paul D Roepe
- Department of Chemistry, Georgetown University, Washington, DC, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Monica Mehta
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- Center for Molecular Recognition, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Margaret J Eppstein
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont, United States of America
- Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America
- Translational Global Infectious Diseases Research Center, University of Vermont, Burlington, Vermont, United States of America
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
6
|
Dhorda M, Amaratunga C, Dondorp AM. Artemisinin and multidrug-resistant Plasmodium falciparum - a threat for malaria control and elimination. Curr Opin Infect Dis 2021; 34:432-439. [PMID: 34267045 PMCID: PMC8452334 DOI: 10.1097/qco.0000000000000766] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Artemisinin-based combination therapies (ACTs) are globally the first-line treatment for uncomplicated falciparum malaria and new compounds will not be available within the next few years. Artemisinin-resistant Plasmodium falciparum emerged over a decade ago in the Greater Mekong Subregion (GMS) and, compounded by ACT partner drug resistance, has caused significant ACT treatment failure. This review provides an update on the epidemiology, and mechanisms of artemisinin resistance and approaches to counter multidrug-resistant falciparum malaria. RECENT FINDINGS An aggressive malaria elimination programme in the GMS has helped prevent the spread of drug resistance to neighbouring countries. However, parasites carrying artemisinin resistance-associated mutations in the P. falciparum Kelch13 gene (pfk13) have now emerged independently in multiple locations elsewhere in Asia, Africa and South America. Notably, artemisinin-resistant infections with parasites carrying the pfk13 R561H mutation have emerged and spread in Rwanda. SUMMARY Enhancing the geographic coverage of surveillance for resistance will be key to ensure prompt detection of emerging resistance in order to implement effective countermeasures without delay. Treatment strategies designed to prevent the emergence and spread of multidrug resistance must be considered, including deployment of triple drug combination therapies and multiple first-line therapies.
Collapse
Affiliation(s)
- Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chanaki Amaratunga
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|