1
|
Yang Y, Kawafi A, Tong Q, Kague E, Hammond CL, Royall CP. Tuning collective behaviour in zebrafish with genetic modification. PLoS Comput Biol 2024; 20:e1012034. [PMID: 39466814 PMCID: PMC11542821 DOI: 10.1371/journal.pcbi.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/07/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Zebrafish collective behaviour is widely used to assess their physical and mental state, serving as a valuable tool to assess the impact of ageing, disease genetics, and the effect of drugs. The essence of these macroscopic phenomena can be represented by active matter models, where the individuals are abstracted as interactive self-propelling agents. The behaviour of these agents depends on a set of parameters in a manner reminiscent of those between the constituents of physical systems. In a few cases, the system may be controlled at the level of the individual constituents such as the interactions between colloidal particles, or the enzymatic behaviour of de novo proteins. Usually, however, while the collective behaviour may be influenced by environmental factors, it typically cannot be changed at will. Here, we challenge this scenario in a biological context by genetically modifying zebrafish. We thus demonstrate the potential of genetic modification in the context of controlling the collective behaviour of biological active matter systems at the level of the constituents, rather than externally. In particular, we probe the effect of the lack of col11a2 gene in zebrafish, which causes the early onset of osteoarthritis. The resulting col11a2 -/- zebrafish exhibited compromised vertebral column properties, bent their body less while swimming, and took longer to change their orientations. Surprisingly, a group of 25 mutant fish exhibited more orderly collective motion than the wildtype. We show that the collective behaviour of wildtype and col11a2 -/- zebrafish are captured with a simple active matter model, in which the mutant fish are modelled by self-propelling agents with a higher orientational noise on average. In this way, we demonstrate the possibility of tuning a biological system, changing the state space it occupies when interpreted with a simple active matter model.
Collapse
Affiliation(s)
- Yushi Yang
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, United Kingdom
| | - Abdelwahab Kawafi
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Qiao Tong
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
- Institute of Genetics and Cancer, Centre for Genomic and Experimental Medicine, University of Edinburgh, Crewe Road South, Edinburgh, United Kingdom
| | - Chrissy L. Hammond
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
2
|
de Souza AJF, Romaguera ARDC, Vasconcelos JVA, Negreiros-Neto LG, de Oliveira VM, Cadena PG, Barbosa ALR, Lyra ML. Speckle statistics as a tool to distinguish collective behaviors of Zebrafish shoals. Sci Rep 2024; 14:15835. [PMID: 38982121 PMCID: PMC11233544 DOI: 10.1038/s41598-024-64229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Zebrafish have become an important model animal for studying the emergence of collective behavior in nature. Here, we show how to properly analyze the polarization statistics to distinguish shoal regimes. In analogy with the statistical properties of optical speckles, we show that exponential and Rayleigh distributions emerge in shoals with many fish with uncorrelated velocity directions. In the opposite limit of just two fish, the polarization distribution peaks at high polarity, with the average value being a decreasing function of the shoal's size, even in the absence of correlations. We also perform a set of experiments unveiling two shoaling regimes. Large shoals behave as small domains with strong intra-domain and weak inter-domain correlations. A strongly correlated regime develops for small shoals. The reported polarization statistical features shall guide future automated neuroscience, pharmacological, toxicological, and embryogenesis-motivated experiments aiming to explore the collective behavior of fish shoals.
Collapse
Affiliation(s)
- Adauto J F de Souza
- Departamento de Física, Universidade Federal Rural de Pernambuco, Recife, PE, 52171-900, Brazil
| | | | - João V A Vasconcelos
- Departamento de Física, Universidade Federal Rural de Pernambuco, Recife, PE, 52171-900, Brazil
| | | | - Viviane M de Oliveira
- Departamento de Física, Universidade Federal Rural de Pernambuco, Recife, PE, 52171-900, Brazil
| | - Pabyton G Cadena
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, PE, 52171-900, Brazil
| | - Anderson L R Barbosa
- Departamento de Física, Universidade Federal Rural de Pernambuco, Recife, PE, 52171-900, Brazil
| | - Marcelo L Lyra
- Instituto de Física, Universidade Federal de Alagoas, Maceió, AL, 57072-970, Brazil.
| |
Collapse
|
3
|
Zampetaki A, Yang Y, Löwen H, Royall CP. Dynamical order and many-body correlations in zebrafish show that three is a crowd. Nat Commun 2024; 15:2591. [PMID: 38519478 PMCID: PMC10959973 DOI: 10.1038/s41467-024-46426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
Zebrafish constitute a convenient laboratory-based biological system for studying collective behavior. It is possible to interpret a group of zebrafish as a system of interacting agents and to apply methods developed for the analysis of systems of active and even passive particles. Here, we consider the effect of group size. We focus on two- and many-body spatial correlations and dynamical order parameters to investigate the multistate behavior. For geometric reasons, the smallest group of fish which can exhibit this multistate behavior consisting of schooling, milling and swarming is three. We find that states exhibited by groups of three fish are similar to those of much larger groups, indicating that there is nothing more than a gradual change in weighting between the different states as the system size changes. Remarkably, when we consider small groups of fish sampled from a larger group, we find very little difference in the occupancy of the state with respect to isolated groups, nor is there much change in the spatial correlations between the fish. This indicates that fish interact predominantly with their nearest neighbors, perceiving the rest of the group as a fluctuating background. Therefore, the behavior of a crowd of fish is already apparent in groups of three fish.
Collapse
Affiliation(s)
- Alexandra Zampetaki
- Institute for Applied Physics, TU Wien, A-1040, Wien, Austria.
- Institut für Theoretische Physik: Weiche Materie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany.
| | - Yushi Yang
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.
| | - Hartmut Löwen
- Institut für Theoretische Physik: Weiche Materie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - C Patrick Royall
- Gulliver, UMR CNRS 7083, ESPCI Paris, Université PSL, 75005, Paris, France.
| |
Collapse
|
4
|
Moore F, Russo J, Liverpool TB, Royall CP. Active Brownian particles in random and porous environments. J Chem Phys 2023; 158:104907. [PMID: 36922118 DOI: 10.1063/5.0131340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The transport of active particles may occur in complex environments, in which it emerges from the interplay between the mobility of the active components and the quenched disorder of the environment. Here, we explore the structural and dynamical properties of active Brownian particles (ABPs) in random environments composed of fixed obstacles in three dimensions. We consider different arrangements of the obstacles. In particular, we consider two particular situations corresponding to experimentally realizable settings. First, we model pinning particles in (non-overlapping) random positions and, second, in a percolating gel structure and provide an extensive characterization of the structure and dynamics of ABPs in these complex environments. We find that the confinement increases the heterogeneity of the dynamics, with new populations of absorbed and localized particles appearing close to the obstacles. This heterogeneity has a profound impact on the motility induced phase separation exhibited by the particles at high activity, ranging from nucleation and growth in random disorder to a complex phase separation in porous environments.
Collapse
Affiliation(s)
- Fergus Moore
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1FD, United Kingdom
| | - John Russo
- Department of Physics, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | - C Patrick Royall
- H. H. Wills Physics Laboratory, Tyndall Ave., Bristol BS8 1TL, United Kingdom
| |
Collapse
|
5
|
Zhou H, Jung W, Farhana TI, Fujimoto K, Kim T, Yokokawa R. Durability of Aligned Microtubules Dependent on Persistence Length Determines Phase Transition and Pattern Formation in Collective Motion. ACS NANO 2022; 16:14765-14778. [PMID: 36098647 DOI: 10.1021/acsnano.2c05593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Collective motion is a ubiquitous phenomenon in nature. The collective motion of cytoskeleton filaments results mainly from dynamic collisions and alignments; however, the detailed mechanism of pattern formation still needs to be clarified. In particular, the influence of persistence length, which is a measure of filament flexibility, on collective motion is still unclear and lacks experimental verifications although it is likely to directly affect the orientational flexibility of filaments. Here, we investigated the collective motion of microtubules with different persistence lengths using a microtubule-kinesin motility system. We showed that local interactions between microtubules significantly vary depending on their persistence length. We demonstrated that the bundling of microtubules is enhanced by more durable alignment, rather than by greater likelihood of alignment. An agent-based computational model confirmed that the rigidity-dependent durability of microtubule alignment dominates their collective behavior.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tamanna Ishrat Farhana
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|